Электронная библиотека » Е. Фурсова » » онлайн чтение - страница 6

Текст книги "Антенны"


  • Текст добавлен: 1 января 2014, 00:53


Автор книги: Е. Фурсова


Жанр: Дом и Семья: прочее, Дом и Семья


сообщить о неприемлемом содержимом

Текущая страница: 6 (всего у книги 10 страниц) [доступный отрывок для чтения: 3 страниц]

Шрифт:
- 100% +
Разновидности промышленных наружных телевизионных антенн

Согласно ГОСТу, условное обозначение отечественных наружных телевизионных антенн начинается с букв АТ – антенна телевизионная. Третья буква указывает назначение антенны: К – коллективная; И – индивидуальная. Четвертая буква указывает на исполнение: Г – для горизонтальной поляризации сигнала; Г/В – комбинированное исполнение; Г(В) – альтернативное исполнение. Первая цифра после букв обозначает тип антенны, который подразделяется в зависимости от числа принимаемых ТВ каналов или диапазонов частот: 1 – одноканальные антенны, работающие в полосе частот одного ТВ канала, расположенного в диапазоне частот I, II или III; 2 – многоканальные антенны, работающие в полосах частот двух или нескольких каналов; 3 – широкополосные антенны, работающие в диапазонах частот I и II; 4 – широкополосные антенны, работающие в диапазоне частот III; 5 – широкополосные антенны, работающие в диапазонах частот IV и V; 6 – широкополосные антенны, работающие в диапазонах частот I–III; 7 – широкополосные антенны, работающие во всех диапазонах. Вторая цифра обозначает категорию сложности условий приема: 1 – наиболее легкая, 2 – средней степени сложности, 3 – наиболее сложная. Третья цифра обозначает номер частотного канала, в полосе которого работает антенна. Четвертая цифра указывает на порядковый номер разработки.

Многие предприятия выпускают телевизионные антенны для индивидуального и коллективного пользования (цвет. вкладка 1–4). Индивидуальные антенны устанавливают в доме и подключают к одному или нескольким телевизорам. Коллективные антенны используют для систем коллективного приема программ телевидения. Сигнал, принятый от одной или нескольких антенн, после распределения (при необходимости и после усиления) используется большим числом абонентов.

Большое распространение получили телевизионные индивидуальные наружные антенны типа «волновой канал».

«СИГНАЛ-1 (2–5)» АТИГ(В)-1.1.1.15-1.1.5.15

Антенны телевизионные приемные наружные для индивидуального пользования, предназначены для приема одного из телевизионных каналов, передаваемых с горизонтальной (вертикальной) поляризацией в зоне уверенного приема телевизионных сигналов. Общий вид представлен на рис. 26.

Рис. 26


«СИГНАЛ-6» АТИГ(В)-4.1.6-12.15

Антенна телевизионная приемная наружная для индивидуального пользования, предназначена для приема сигналов телевидения, передаваемых с горизонтальной (вертикальной) поляризацией в полосе частот 174–230 МГц (каналы с 6-го по 12-й) в зоне уверенного приема. Общий вид представлен на рис. 27.

Рис. 27


Для подключения коаксиального кабеля к симметричному петлевому вибратору рассмотренных выше антенн и согласования его применяют антенные коробки типа АК-1 либо АК-2, имеющие в своем составе фильтр сложения телевизионных каналов I, II и III метрового диапазона.

«ГАММА» АТИГ(В)-5.2.21–41.19

Антенна телевизионная приемная наружная для индивидуального пользования предназначена для приема сигналов телевидения, передаваемых с горизонтальной (вертикальной) поляризацией в полосе частот 470–638 МГц (каналы с 21-го по 41-й) в зоне уверенного приема. Общий вид антенны «ГАММА» представлен на рис. 28.

Рис. 28


Кабель снижения подключается к петлевому вибратору с помощью симметрирующего устройства, выполненного в виде эквивалента полуволновой кабельной петли, размещенного в корпусе присоединителя кабельного ПАК-Д.

Антенны спутникового телевизионного вещания

Спутниковое телевидение на сегодняшний день завоевало массу поклонников и прочно вошло в нашу жизнь как гарант свободы выбора услуг и их качества. В настоящее время оно уже не является новинкой в мире информационных технологий и становится все более доступным широкому кругу пользователей, постепенно вытесняя «классическое» эфирное телевизионное вещание и становясь достойным «конкурентом» кабельному. Так, спутниковое телевидение не только открывает уникальную возможность просмотра массы новых каналов, но и позволяет существенно повысить качество трансляции национальных каналов. Вот оно – непревзойденное цифровое качество!

После установки спутниковой антенны можно не беспокоиться, что любимый фильм прервется из-за погодных условий и других коллизий! Спутниковое телевидение использует антенну как механизм, способный передать и принять сигнал.

Кино, музыка, мультфильмы, детские каналы, новостные и развлекательные каналы, ночные каналы для взрослых, познавательные и развлекательные, русскоязычные и иностранные – все это и многое другое откроет для вас мир спутникового телевидения. А малое количество рекламы и невысокая абонентская плата (или в ряде случаев ее отсутствие) будет приятным весомым плюсом к установке и отладке оборудования для просмотра каналов.

В журнале «Теле-Спутник» – наиболее популярном периодическом издании по спутниковому и кабельному телевидению – приведены сведения только о части спутников из большого ряда космических аппаратов, осуществляющих телевизионное вещание. В действительности их гораздо больше, и все они находятся на геостационарной орбите, расположенной в плоскости экватора Земли. Это единственная круговая орбита с радиусом 35 786 км, находясь на которой спутник кажется земному наблюдателю неподвижным при условии, что угловая скорость вращения спутника вокруг земной оси совпадает с угловой скоростью вращения Земли вокруг своей оси. Если спутниковая антенна правильно настроена на прием со спутника, расположенного на геостационарной орбите, и надежно закреплена, в дальнейшем корректировать ее положение не потребуется. Спутники, размещенные на других орбитах, не будут неподвижными относительно Земли, и для приема их сигналов необходима специальная конструкция поворотного узла антенны и управляющая им следящая система.

На современном этапе развития нашего общества каждая технически развитая страна стремится разместить свои телевизионные спутники на геостационарной орбите, что вызывает определенные технические сложности, обусловленные нехваткой места на орбите. Поэтому спутники группируют, например, под названием спутника «HotBird» подразумевается ряд близко (порядка 100 км), по космическим меркам, расположенных друг от друга космических аппаратов, занимающих орбитальную позицию примерно 13° восточной долготы.

Территорию Украины «освещают» многие спутники, однако большинство из них создают малую плотность потока мощности. Наибольший интерес для нас, жителей Украины, представляют спутники, с которых ведется трансляция национальных телеканалов, а также телеканалов России, прием которых возможен на спутниковые антенны небольших размеров.

На Украине самой востребованной спутниковой системой является тройная система «Hotbird – Sirius– Amos», которая обеспечивает прием на одну спутниковую антенну диаметром 0,9 м сигналов сразу с трех спутников. Из 500 свободно принимаемых каналов для нас наибольший интерес представляют каналы на украинском и русском языках. Приведем список некоторых каналов, работающих по тройной системе:

Украинские каналы: 24-новости, 5 канал, 1+1, 1+1 internat, 1+1 кино, Интер, ТЕТ, СТБ, Новый канал, ТОНИС, К1, К2, ТРК Киев, УБК, КРТ, Мегаспорт, Энтер-фильм, Рада, ОСК, OTV, Энтер, М1, М2-эстрада, Star TV, MTV Украина, Music Box Ukraine.

Российские (русскоязычные) каналы: ОРТ-межд., РТР – планета, РЕН-ТВ, Вести, Euronews, R1 (первый российский канал), Сарафан, К+, РВК-TV, ТВ-5, Планета спорт, Travel, Jetix, Romantica, Adjara, RU TV, 1 балтийский музыкальный, Music Box RU, LUX TV.

Если к описанной выше тройной системе добавить еще одну спутниковую антенну, направленную на спутник ABS 1, занимающий позицию 75° восточной долготы, можно принять еще десяток российских каналов. Эту антенну имеет смысл установить даже для приема одного канала НТВ, входящего в список каналов спутника.

Вот список главных открытых каналов спутника ABS 1: НТВ, НТВ0+3, Зоопарк, Иллюзион+, СТС, ДТВ, телеканал 2*2, Мир, ТВ XXI, TV Club, Gameplay TV, РБК-ТВ, Fashion TV Russia.

Основные принципы спутникового телевизионного вещания

Поскольку все спутники находятся в плоскости экватора, географическая широта у них равна нулю, а различаются они по долготе. Нулевой меридиан, как известно, проходит через Лондон. Телевизионный спутник имеет свою диаграмму направленности и выводится в заданную точку орбиты с целью обслуживания определенной территории поверхности Земли. Поскольку на каждом космическом аппарате устанавливается несколько транспондеров (приемопередатчиков), каждый из которых способен передавать в одном потоке несколько телепрограмм, общее количество транслируемых каналов может измеряться десятками.

Передатчик спутника, находящегося на геостационарной орбите без остронаправленной антенны, может обеспечить телевизионным вещанием около трети поверхности Земли. Однако из-за того, что мощность передатчика ограничена находящимися на спутнике источниками питания (солнечными батареями) и достигает обычно нескольких сот ватт, плотность потока мощности, падающей на Землю, оказывается недостаточной для приема сигналов. В то же время большая часть мощности передатчика тратится на облучение необитаемых областей (морей, океанов, пустынь, тундры и т. п.). Для повышения плотности потока мощности и возможности приема на небольшие приемные антенны излучаемая передатчиком спутника мощность концентрируется антенной в узком «луче» (около 1), направленном только на ту территорию, которую необходимо охватить непосредственным телевизионным вещанием (рис. 29). Благодаря этому плотность потока мощности возрастает до вполне приемлемых значений.

Рис. 29


Для наглядности спутник можно представить как «зависший» в ночном небе над экватором прожектор или группу прожекторов, которые освещают часть поверхности Земли. При этом, в зависимости от площади освещаемой поверхности, лучи этих прожекторов бывают узкими, зонными, региональными, глобальными и т. д. Наибольшая плотность электромагнитных волн достигается в центре луча. Кроме этого, в зависимости от того, сигнал какой мощности достигает поверхности Земли в месте установки антенны, выбирается размер зеркала спутниковой антенны. Чем сильнее мощность сигнала, тем меньший диаметр зеркала необходим. Таким преимуществом обладает узкий луч. Чем шире зона охвата, тем меньше плотность потока мощности у поверхности Земли. Например, чтобы принять в Киеве телепрограммы глобального луча спутника «Intelstat 905» (27,5° западной долготы), охватывающего всю видимую с него часть поверхности Земли, требуется антенна диаметром не менее 3 м.

Географические границы зон возможного приема находят в результате проецирования основного луча диаграммы направленности антенны на шаровую поверхность Земли. Границы выглядят в виде эллипсов (рис. 30).

Рис. 30

Антенны спутникового телевизионного вещания, расположенные на искусственных спутниках Земли (ИСЗ)

Спутниковые системы связи являются одним из основных видов дальней связи. Связь между объектами, расположенными на расстояниях от нескольких тысяч до нескольких десятков тысяч километров друг от друга, осуществляется на сантиметровых волнах при помощи ИСЗ, применяемых в качестве активных или пассивных ретрансляторов. На сантиметровых и дециметровых волнах производится также связь с космическими кораблями, удаленными от Земли на сотни миллионов километров.

Для повышения пропускной способности спутниковых систем связи, кроме ранее уже использовавшегося частотного диапазона 4–6 ГГц, в настоящее время осваиваются новые диапазоны 11–14, 12–18 и 20–30 ГГц.

Допустимый уровень излучения в сторону Земли бортовых антенн ИСЗ ограничен из-за недопустимости излучения в этом направлении мощных сигналов, которые могут создать помехи другим радиотехническим системам. Сигналы, приходящие от космических кораблей, весьма слабы из-за очень большой удаленности их источников.

Из-за малой ширины диаграммы направленности при изменении положения ИСЗ необходимо обеспечить весьма высокую точность наведения луча антенны на эти объекты и непрерывное их сопровождение. Для этого антенны снабжаются поворотными устройствами и системами управления ими.

Тип приемно-передающей антенны, установленной на ИСЗ, выбирают с учетом требований, связанных с построением и энергетическим потенциалом линии связи, диапазоном рабочих частот и полосой пропускания, условиями работы в космосе, стабилизацией ИСЗ и т. п.

На первых ИСЗ использовались слабонаправленные малогабаритные антенны. На ИСЗ, выведенных на геостационарную орбиту, с которой угловой размер Земли составляет примерно 20°, применялись антенны с шириной диаграммы направленности Θ0,5 = 20–25° и коэффициентом усиления примерно 6-17 дБ.

На ИСЗ, находящихся на орбите средней высоты (5-10 тыс. км), применялись почти ненаправленные (изотропные) антенны с круговой поляризацией поля (турникетные, спиральные, щелевые).

Недостаток усиления бортовых антенн компенсировался использованием больших наземных антенн с высоким коэффициентом усиления. С увеличением общих размеров ИСЗ появилась возможность применять более направленные антенны, коэффициент усиления которых достигает 30–35 дБ и более. К таким, в частности, относятся параболические (однозеркальные и двухзеркальные) антенны.

Одним из основных направлений в конструировании бортовых антенн является создание складных антенн, раскрывающихся после вывода космического аппарата на орбиту. Современные конструкции антенных систем ИСЗ решают следующие задачи:

– обеспечение эффективного облучения только заданной области земной поверхности путем формирования диаграммы направленности специальной формы;

– обеспечение возможности повторного (многократного) использования рабочих частот за счет пространственного разноса диаграмм направленности и поляризационного разделения;

– ослабление излучения вне зоны обслуживания с тем, чтобы уровни поля на основной и кроссполяризации соответствовали нормам Международного Консультативного Комитета по Радио (МККР);

– коэффициент направленного действия антенны должен при заданной мощности бортового передатчика обеспечивать необходимый для нормального приема уровень напряженности электрического поля;

– размеры спутниковых антенн в процессе их вывода на орбиту должны позволять их размещение в обтекателе ракеты-носителя;

– антенны должны иметь малую массу и сохранять работоспособность в условиях глубокого вакуума, выдерживать, не изменяя геометрической формы, солнечное излучение и т. п. Для изготовления антенны на ИСЗ используются алюминий, титан, инвар и композиты. Так, например, графитоэпоксидные композиты обладают хорошими механическими свойствами, близким к нулю коэффициентом линейного расширения, малым удельным весом и большой жесткостью.

Эти задачи могут решаться применением многолучевых антенн, к которым в последнее время проявляется значительный интерес. Используя диапазон частот 20–30 ГГц и обладающие большим усилением многолучевые антенны, можно значительно снизить мощность бортовых передатчиков ИСЗ и наземных станций и уменьшить диаметры раскрывов антенн.

В качестве бортовых многолучевых антенн применяются зеркальные, линзовые и фазированные антенные решетки (ФАР). Основным преимуществом зеркальных многолучевых антенн является их сравнительно невысокая стоимость, простота облучающей системы, небольшая масса, простота конструкции. Коэффициент усиления (КУ) таких антенн изменяется от 27–30 дБ в диапазоне 4–6 ГГц (при диаметре раскрыва 1–2,5 м) до 45 дБ в диапазоне 30 ГГц. Антенны имеют высокую развязку по поляризации (не менее 35 дБ).

Основными направлениями в области развития антенн систем спутниковой связи являются:

– использование многолучевых бортовых антенн и увеличение их размеров (в дальнейшем предполагается большие многолучевые антенны создавать на крупногабаритных орбитальных конструкциях);

– увеличение коэффициента усиления (примерно до 55 дБ);

– снижение уровня боковых лепестков и уровня кроссполяризации поля;

– использование адаптивных антенн;

– уменьшение размеров и стоимости антенн наземных станций;

– применение электронного сканирования.

Приемные антенны

Прием сигналов спутникового телевидения осуществляется специальными приемными устройствами, основной частью которых является антенна, которая бывает различных конструкций. Среди этих антенн получили распространение и планарные антенны, основой которых служит решетка диполей с рефлектором в виде металлического листа, то есть так называемая фазированная антенная решетка (ФАР). Улавливаемые диполями сигналы суммируются и поступают на вход конвертера. Регулируя фазовращателем фазу и амплитуду сигнала, принятого каждым диполем, можно сформировать суммарную диаграмму направленности, как неподвижную, так и изменяющую направление приема – сканирующую. Безинерционное мгновенное электронное сканирование с применением системы слежения позволяет устанавливать такие антенны на подвижных объектах (самолете, ракете или нестационарном спутнике). При этом число электронных фазовращателей равно числу применяемых диполей, из-за чего такие антенны оказываются очень дорогими и применяются лишь в радиолокационной и космической технике, где их большая стоимость может быть оправдана.

Особую популярность и широкое распространение для осуществления приема сигналов со спутников получили в настоящее время так называемые зеркальные антенны.

К зеркальным антеннам относится достаточно широкий класс антенн, в которых формирование диаграммы направленности происходит за счет отражения электромагнитных волн первичных источников – облучателей от металлических зеркал той или иной формы. В простейшем случае зеркало может представлять собой плоскую металлическую пластину достаточно больших размеров. Такая пластина играет роль рефлектора, благодаря которому излучение будет происходить преимущественно по направлению нормали к поверхности зеркала. Несколько более сложным является зеркало в виде двух плоских металлических пластин, чаще всего образующих прямой двугранный угол. Вместе с облучателем, представляющим собой симметричный вибратор, такое зеркало образует так называемую уголковую антенну. Вибратор обычно устанавливается в плоскости биссектрисы двугранного угла, образованного пластинами зеркала, параллельно его ребру. Хорошими направленными свойствами обладают антенны с зеркалом в виде параболоида вращения. Такие антенны имеют узкую диаграмму направленности в двух плоскостях, которая называется диаграммой направленности игольчатого типа. Если нужно иметь антенну, диаграмма направленности которой достаточно узкая в одной плоскости и широкая в другой плоскости, перпендикулярной первой, то в качестве зеркала можно использовать усеченный параболоид вращения. Однако в такой антенне трудно получить диаграмму направленности с большой разницей в ширине диаграмм направленности в одной и другой главной плоскости. Поэтому для реализации «веерной» диаграммы направленности чаще используется зеркало в виде параболического цилиндра с линейным облучателем.

Все приемные антенны собирают энергию сигнала, поступающего на них со спутника. В параболических антеннах фокусировка энергии на облучателе происходит по законам оптики благодаря отражению от поверхности параболического рефлектора. Для спутникового приема можно использовать однозеркальные антенны с осесимметричным или смещенным облучателем и двухзеркальные антенны по схеме Кассегрена с параболическим рефлектором и гиперболическим контррефлектором.

Обычно применяют антенны с круговой поляризацией поля. Антенны для станций телевизионного вещания, обслуживающих небольшой населенный пункт (КУ примерно 35 дБ), обычно бывают однозеркальные. С этой же целью применяют несколько многоэлементных директорных антенн, работающих в параллель (КУ примерно 21–28 дБ). Размеры (диаметр раскрыва) антенн спутникового телевидения 1–2 м.

Параболические антенны

В большинстве случаев для профессионального и любительского приема передач с ИСЗ используют зеркальные антенны, зеркало которых выполнено в виде параболоида вращения, – так называемые параболические антенны. Популярность антенн такого типа обусловлена свойством параболоида вращения отражать падающие на его апертуру (часть плоскости, ограниченная кромкой параболоида вращения) параллельные оси лучи в одну точку, называемую фокусом.

Параболоид вращения, который используется в качестве отражателя антенны, образуется вращением плоской параболы вокруг ее оси. Параболой называется геометрическое место точек, равноудаленных от заданной точки (фокуса) и заданной прямой (директрисы). На рис. 31 приведены основные параметры параболы (а), определение ее фокуса (б) и сходимость лучей в фокусе параболоида вращения (в). Точка F – фокус, линия АВ – директриса. Точка М с координатами х, у – одна из точек параболы. Расстояние между фокусом и директрисой называется параметром параболы и обозначается буквой р. Тогда координаты фокуса F следующие: (р/2, 0). Начало координат (точка 0) называется вершиной параболы.

Рис. 31


По определению параболы отрезки MF и РМ равны. Согласно теореме Пифагора, MF2 = FK2 + MK2. В то же время FK = х – р/2, КМ = у и РМ = х + р/2, тогда (х – р/2)2 + у2 = (х + р/2)2.

Возводя в квадрат выражения в скобках и приводя подобные члены, окончательно получаем каноническое уравнение параболы:


у2 = 2рх, или у = (2рх)0,5.


По этой классической формуле сделаны миллионы антенн для приема сигналов спутникового телевидения. Чем же заслужила внимание данная антенна?

Параллельные оси параболоида, лучи (радиоволны) от спутника, отраженные от апертуры к фокусу, проходят одинаковое (фокусное) расстояние. Условно два луча (1 и 2) падают на площадь раскрыва параболоида в разных точках (рис. 31б). Однако отраженные сигналы обоих лучей проходят к фокусу F одинаковое расстояние. Это означает, что расстояние A + B = C + D. Таким образом, все лучи, которые излучает передающая антенна спутника и на которую направлено зеркало параболоида, концентрируются синфазно в фокусе F. Этот факт доказывается математически (рис. 31в).

Рис. 31в


Выбор параметра параболы определяет глубину параболоида, то есть расстояние между вершиной и фокусом. При одинаковом диаметре апертуры короткофокусные параболоиды обладают большой глубиной, что делает крайне неудобным установку облучателя в фокусе. Кроме того, в короткофокусных параболоидах расстояние от облучателя до вершины зеркала значительно меньше, чем до его краев, что приводит к неравномерности амплитуд у облучателя для волн, отразившихся от кромки параболоида и от зоны, близкой к вершине.

Длиннофокусные параболоиды имеют меньшую глубину, установка облучателя является более удобной, и амплитудное распределение становится более равномерным. Так, при диаметре апертуры 1,2 м и параметре 200 мм глубина параболоида равна 900 мм, а при параметре 750 мм – всего 240 мм. Если параметр превышает радиус апертуры, фокус, в котором должен находиться облучатель, располагается вне объема, ограниченного параболоидом и апертурой. Оптимальным считается вариант, когда параметр несколько больше, чем радиус апертуры.

Спутниковая антенна – единственный усиливающий элемент приемной системы, который не вносит собственных шумов и не ухудшает сигнал, а следовательно, и изображение. Антенны с зеркалом в виде параболоида вращения делятся на два основных класса: симметричный параболический рефлектор и асимметричный. Первый тип антенн принято называть прямофокусными, второй – офсетными. Принцип работы (фокусировки) прямофокусной (осесимметричной) и офсетной (асимметричной) антенн показан на рис. 32 а и 32б соответственно.

Рис. 32


Офсетная антенна представляет собой вырезанный сегмент параболы. Фокус такого сегмента расположен ниже геометрического центра антенны. Такое устройство антенны устраняет затенение ее полезной площади облучателем и его опорами, что приводит к существенному повышению ее коэффициента полезного использования по сравнению с осесимметричной антенной при одинаковой площади их зеркал. К тому же облучатель офсетных антенн установлен ниже их центра тяжести, что увеличивает тем самым ее устойчивость при ветровых нагрузках.

Именно такая конструкция антенны является наиболее популярной для индивидуального приема спутниковых телепередач, хотя нередко используются и другие принципы построения наземных спутниковых антенн.

Офсетные антенны целесообразно использовать, если для устойчивого приема программ выбранного спутника необходим размер антенны до 1,5 м, так как с увеличением общей площади антенны эффект затенения зеркала становится менее значительным.

Офсетная антенна крепится почти вертикально. В зависимости от географической широты угол ее наклона немного меняется. Такое положение исключает собирание в чаше антенны атмосферных осадков, которые сильно влияют на качество приема.

Основные параметры. Одной из важнейших характеристик наземных антенн является величина отношения коэффициента усиления антенн (G) к суммарной шумовой температуре (TΣ) на входе приемного устройства. Очевидно, что для увеличения отношения G/TΣ (коэффициент шумовой добротности приемного устройства) следует увеличивать коэффициент усиления антенны и уменьшать суммарную шумовую температуру ТΣ = Ty + Tmp + Tа. Здесь Ту – шумовая температура малошумящего усилителя (МШУ), к которому присоединена антенна (обычно Ту ~ 40-60К); Тmp – шумовая температура СВЧ-тракта, соединяющего антенну с малошумящим усилителем; Та – эквивалентная антенная шумовая температура. Все три составляющие соизмеримы, и для увеличения отношения G/TΣ, при заданном значении G (а значит, и размере антенны) следует уменьшать составляющие Tmp и Та. Уменьшение Tmp достигают, помещая МШУ как можно ближе к облучателю, то есть сокращая длину тракта питания антенны, либо заменяя волноводный тракт лучеводом – системой перископических зеркал между облучателем и малым зеркалом, что существенно снижает потери в тракте питания.

Антенная температура Та растет при уменьшении угла места Δ (угол между направлением максимального излучения и горизонтальной плоскостью) из-за увеличения поглощения радиоволн в прилегающих к Земле слоях атмосферы и приема шумов теплового излучения Земли. Для уменьшения влияния шумов Земли необходимо обеспечить низкий уровень боковых лепестков антенны. Это позволяет при Δ = 5–7° в диапазоне 4–6 ГГц достаточно сильно подавлять шумы Земли, поскольку их прием происходит через боковые лепестки, близкие к максимуму. Кроме того, при уменьшении угла Δ путь от ИСЗ до антенны, проходящий в плотных слоях атмосферы, удлиняется, что ведет к увеличению шумов, порождаемых потерями в атмосфере. В высокочастотных диапазонах 11–14 и 20–30 ГГц ввиду существенного возрастания потерь в атмосфере минимальный рабочий угол места Δ увеличивается до 10°.

Имеются факторы, препятствующие увеличению коэффициента усиления антенны путем увеличения ее размеров. Это, во-первых, влияние случайных ошибок в выполнении поверхности зеркала, вызывающих расширение главного лепестка диаграммы направленности и увеличения уровня боковых лепестков, что приводит к снижению коэффициента усиления, увеличению Та и ухудшению помехозащищенности. Для уменьшения этих вредных эффектов у антенн диапазонов 11–14 и 20–30 ГГц существенно повышена точность выполнения поверхности (среднеквадратическое отклонение формы поверхности зеркала от заданной составляет десятые или даже сотые доли миллиметра, что соответствует относительному допуску 10-4-10-5). Очевидно, что повысить точность выполнения зеркала тем труднее, чем больше его размеры. В большинстве случаев считается, что отклонения от синфазного поля могут лежать в пределах от – π/4 до +π/4.

Вторым фактором, ограничивающим возможность увеличения размеров, является осуществимая точность наведения луча на ИСЗ. При недостаточной точности наведения связь осуществляется через круто спадающие участки диаграммы направленности, что приводит к значительным потерям усиления. Поэтому максимальный диаметр раскрыва зеркала 2Ro следует выбирать с учетом технико-экономических факторов, определяющих реализуемую точность наведения, а также соответствующих этой точности потерь усиления.

Допуск на точность установки облучателя на фокальной оси зеркала должен соответствовать условию, что отклонение от синфазного распределения не превышает π/4. Это соответствует тому, что |ΔΖ| < λ/8(1-cosψ0) (рис. 33).

Рис. 33


Таким образом, при постоянном диаметре зеркала с ростом фокусного расстояния (что приводит к уменьшению угла ψ0) требуемая точность в установке облучателя снижается. Такой вывод имеет важное значение для практики, если речь идет, например, об установке облучателя, который не имеет фазового центра.

Из-за неточности в установке облучателя он может оказаться смещенным из фокуса не только по оси зеркала, но и в направлении, перпендикулярном этой оси. Такое смещение приводит к повороту диаграммы направленности антенны, при этом отклонение происходит в сторону, противоположную смещению облучателя.

Максимальное значение ρ, определяемое краем зеркала, называется радиусом раскрыва зеркала ρ0, а плоская поверхность, ограниченная краем зеркала, называется раскрывом параболического зеркала (рис. 34). Наряду с радиусом раскрыва можно говорить о диаметре зеркала, который будем обозначать через Dr, так что Dr = 2ρ0. Пусть значению ρ = ρ0 соответствует угол ψ = ψ0. Угол 2ψ0 называется углом раскрыва зеркала. Если угол раскрыва меньше 180°, зеркало называется короткофокусным (рис. 34а). Для длиннофокусных зеркал ρ0 < 2ψ0; для короткофокусных зеркал ρ0 > 2ψ0. По ряду причин в антеннах применяются главным образом длиннофокусные зеркала.

Рис. 34


Коэффициент направленного действия D к направлению максимального излучения рассчитывается по формуле D = 4πkF/λ2, где F – поверхность раскрыва параболоида, равная F = πρ020 – диаметр зеркала).

Множитель к является коэффициентом использования поверхности раскрыва параболоида. В случае, когда облучателем является элементарный вибратор с рефлектором, было показано, что имеется оптимальное отношение ρ0/f = 1,3 (f – фокусное расстояние), при котором k и, следовательно, коэффициент направленного действия получается максимальным. При ρ0/f = 1,3 величина k равна 0,83. Оптимальное значение ρ0/f определяется следующими факторами. Часть энергии, излучаемой облучателем, проходит мимо зеркала. Количество теряемой энергии зависит от формы диаграммы направленности облучателя и от отношения ρ0/f При заданной форме диаграммы облучателя потери энергии увеличиваются с уменьшением отношения ρ0/f Оптимальная форма диаграммы облучателя приведена на рис. 35.


Страницы книги >> Предыдущая | 1 2 3
  • 4.6 Оценок: 5

Правообладателям!

Данное произведение размещено по согласованию с ООО "ЛитРес" (20% исходного текста). Если размещение книги нарушает чьи-либо права, то сообщите об этом.

Читателям!

Оплатили, но не знаете что делать дальше?


Популярные книги за неделю


Рекомендации