Электронная библиотека » Елена Царева » » онлайн чтение - страница 4


  • Текст добавлен: 23 мая 2014, 14:06


Автор книги: Елена Царева


Жанр: Медицина, Наука и Образование


Возрастные ограничения: +16

сообщить о неприемлемом содержимом

Текущая страница: 4 (всего у книги 10 страниц) [доступный отрывок для чтения: 3 страниц]

Шрифт:
- 100% +
Тип 1 – Стационарная полисомнографическая система

Полисомнография – метод длительной регистрации различных параметров жизнедеятельности организма во время ночного сна. Стандартная полисомнографическая система имеет от 18 до 24 каналов. Регистрируются следующие параметры (рис. 1):

• электроэнцефалограмма (ЭЭГ);

• электроокулограмма (движения глаз) (ЭОГ);

• электромиограмма (тонус подбородочных мышц) (ЭМГ);

• движения нижних конечностей;

• электрокардиограмма (ЭКГ);

• храп;

• носо-ротовой поток воздуха;

• дыхательные движения грудной клетки и брюшной стенки;

• положение тела;

• степень насыщения крови кислородом – сатурация (SpO2).


Рис. 1. Фрагмент полисомнограммы пациента Н., 48 лет, с синдромом обструктивного апноэ сна тяжелой степени. (собственные данные).

Индекс апноэ/гипопноэ – 64 в час. На 5-минутной развертке видна классическая картина циклических остановок дыхания (канал 9) при сохраняющихся дыхательных усилиях (каналы 10–11). Данные нарушения сопровождаются падением насыщения крови кислородом (канал 12), колебаниями пульса (канал 14) и микроактивациями на энцефалограмме (каналы 1–2).


Регистрация ЭЭГ, ЭОГ и ЭМГ необходима для определения стадий сна и структуры сна. В настоящее врем я в соответствии со стандартами Американской академии медицины сна рекомендуется запись 6 отведений ЭЭГ (фронтальных, теменных, затылочных) для оптимальной расшифровки стадий сна.

Полисомнография является «золотым стандартом» инструментальной диагностики синдрома обструктивного апноэ сна и других нарушений сна. Интересно отметить, что еще в 2004 году был издан приказ Минздрава РФ № 4 ОТ 24.01.2003 «О мерах по совершенствованию организации медицинской помощи больным с артериальной гипертонией в Российской Федерации», в котором говорилось о необходимости проведения полисомнографии для уточнения диагноза у пациентов с артериальной гипертонией и подозрением на синдром нарушения дыхания во сне. Но, к сожалению, до настоящего времени это единственный официальный документ Минздрава, в котором упоминается полисомнография. Ни в одном из стандартов медицинской помощи кардиологическим пациентам, которые были приняты в последние годы, не имеется указаний на необходимость проведения полисомнографии.


Рис. 2. 24-канальная (13 параметров) полисомнографическая система Somte PSG (Compumedics, Австралия) с беспроводной передачей данных через bluetooth на компьютерную станцию.

А – Система установлена на пациента.

Б – Регистрирующие блоки общей массой 200 грамм.


Ранее полисомнографические системы четко делились на стационарные и мобильные. В последние годы это деление стало достаточно условным. Развитие компьютерной техники обусловило миниатюризацию диагностических систем. Если раньше для полной полисомнографии применялось оборудование, которое не подлежало транспортировке, то в настоящее время полисомнографические системы размещаются в небольшом чемоданчике весом не более 2 кг (рис. 2).

В настоящее время основное отличие между стационарным или амбулаторным проведением полисомнографии заключается в том, что при стационарном варианте поступающие от системы в компьютер данные визуально контролируются дежурным персоналом сомнологической лаборатории в течение всей ночи. Кроме этого, обязательной является запись видео пациента и звука в течение всего времени сна. Современные сомнологические системы обеспечивают синхронизацию регистрируемых параметров, видео и звука на дисплее компьютера.

Основными преимуществами стационарной полисомнографии являются:

• Высокая точность диагностики синдрома обструктивного апноэ сна и его осложнений (нарушения ритма сердца, изменение структуры сна).

• Дифференциальный диагноз синдрома обструктивного апноэ сна и других расстройств сна (синдром центрального апноэ сна, синдром периодических движений конечностей во сне, ночная эпилепсия и другие пароксизмальные состояния, бессонница).

• Обеспечение инструментального и визуального контроля за проведением CPAP-терапии в режиме реального времени, что позволяет оптимизировать титрацию лечебного давления и своевременно устранять различные проблемы.

• Возможность в реальном времени применять сложные и комбинированные режимы лечения у пациентов с сочетанием СОАС и хронической ночной гипоксемии (с титрованием при терапии Bi-Level, Tri-Level и концентрацию кислорода при низкопотоковой кислородотерапии).

• Возможность устранения артефактов записи в режиме реального времени и обеспечение качественной регистрации сигналов.

Однако стационарная полисомнография имеет и очевидные недостатки:

• Необходимость выделять стационарные площади под сомнологическую лабораторию (минимум 2 палаты – для пациента и для дежурного персонала).

• Высокая трудоемкость проведения исследования.

• Необходимость ночных дежурств персонала.


Несколько особняком стоят расширенные стационарные полисомнографические системы, которые позволяют регистрировать помимо всех прочих параметров стандартную ЭЭГ в соответствии с Единой стандартной системой наложения электродов «10–20». Для этого требуется значительно больше каналов (рис. 3).


Рис. 3. 77-канальная (14 параметров) расширенная стационарная полисомнографическая система Grael (Compumedics, Австра ли я). Система позволяет проводить полисомнографию, мониторинг видео-ЭЭГ, стандартную электроэнцефалографию.


Данные системы предназначены для углубленной диагностики нарушений сна и, в частности, уточнения генеза ночных пароксизмальных состояний, включая эпилепсию. Они позволяют диагностировать и СОАС, но не предназначены для рутинного использования только с целью диагностики нарушений дыхания во сне. Как правило, эти системы используются в стационарных условиях.

Тип 2 – Мобильная полисомнографическая система

Мобильная полисомнографическая система по количеству регистрируемых параметров и каналов может быть полностью аналогична стационарной системе (обычно 18–24 канала). Основное отличие заключается в том, что исследование проводится без постоянного визуального и инструментального контроля дежурного персонала. В этой ситуации диагностика может осуществляться в любой палате или на дому, так как современные полисомнографические системы вполне мобильны. Данные накапливаются в памяти прибора, а утром переписываются на компьютер и анализируются персоналом. Таким образом, нет необходимости выделять стационарные площади для развертывания системы. Также не нужны ночные дежурства персонала, так как система устанавливается перед сном, а снимается утром после пробуждения пациента. Определенным недостатком амбулаторной полисомнографии является невозможность коррекции артефактов в режиме реального времени, например, при отсоединении электрода. Не имеется также возможности оперативно реагировать на изменения состояния пациента. Особенно это касается проблем, связанных с титрацией уровня давления при терапии в лечебном режиме CPAP или BiLevel. Комплектация данных систем также не предусматривает видеонаблюдения за пациентом, однако возможно использование независимых мобильных систем длительной видеозаписи без аппаратной синхронизации с данными полисомнографии.

Тип 3 – Системы с ограниченным набором параметров

Полисомнографические системы позволяют решать все диагностические задачи в области сомнологии. Но, как отмечалось выше, это весьма дорогие и трудоемкие методики. В связи с этим были разработаны системы с меньшим набором регистрируемых параметров и каналов (6-12 параметров, 4-13 каналов). Основное их отличие от полисомнографических систем – отсутствие регистрации параметров электроэнцефалограммы и невозможность оценки стадий сна. Они предназначены главным образом для диагностики синдрома обструктивного апноэ сна, синдрома центрального апноэ сна и хронической ночной гипоксемии. Некоторые из них позволяют диагностировать периодические движения конечностей во сне. Данный тип систем имеет два основных подтипа: кардио-респираторные системы (рис. 4) и расширенные респираторные системы.


Рис 4. 13-канальная (12 параметров) кардио-респираторная система Somte (Compumedics, Австралия)


• респираторный канал (индуктивная плетизмография) (2 канала)

• поток воздуха (пьезорезистивный преобразователь)

• давление в лечебном контуре

• храп

• сатурация (SpO2)

• пульс

• пульсовая волна

• электрокардиограмма (ЭКГ) (2 канала)

• движения нижних конечностей

• дыхательные движения грудной клетки

• дыхательные усилия брюшной стенки

• положение тела


Обычно кардио-респираторные системы обеспечивают регистрацию только 1 канала электрокардиограммы. Это не позволяет производить стандартную автоматическую расшифровку электрокардиограммы в соответствии с современными стандартами обычных холтеровских систем. Таким образом, оператор должен «вручную» просмотреть ЭКГ и определить наличие тех или иных нарушений и их связь с нарушениями дыхания. Для более углубленной диагностики нарушений ритма и ишемических изменений приходится проводить стандартное холтеровское мониторирование.

Для системы Somte (Compumedics, Австралия) в качестве опции предусмотрено приложение «ЭКГ-анализ Somte», которое выполняет автоматический анализ по двум отведениям ЭКГ и обеспечивает:

• автоматическое выявление и классификацию комплексов QRS, включая нормальные (синусовые), желудочковые эктопические, суправентрикулярные эктопические и артефактные;

• выявление периодов брадикардии и тахикардии;

• анализ вариабельности сердечного ритма, включая временной и спектральный анализ;

• возможность просмотра шаблонов QRS и реклассификацию индивидуальных комплексов QRS;

• оценку связи данных между респираторными событиями и данными ЭКГ.


Кардио-респираторные системы позволяют с достаточной точностью диагностировать апноэ сна, дифференцировать обструктивное и центральное апноэ сна, определять зависимость тяжести апноэ от позиции тела и оценивать связь аритмий и иных нарушений на ЭКГ с расстройствами дыхания во сне. Здесь уместно напомнить, что около 70 % всех ночных брадиаритмий связано с синдромом обструктивного апноэ сна.

В последние годы наблюдается тенденция добавления в кардиореспираторные системы двух-трех «свободных» дифференциальных каналов для регистрации дополнительных параметров, таких как ЭЭГ, ЭОГ, ЭМГ или ЭКГ. Это несколько расширяет диагностические возможности систем, но в любом случае не позволяет полноценно регистрировать стадии и структуру сна.

Системы расширенного респираторного мониторинга обеспечивают регистрацию сатурации, пульса, дыхательного потока, давления в лечебном контуре, храпа, дыхательных усилий грудной клетки и брюшной стенки, позиции тела. Данные системы позволяют диагностировать нарушения дыхания во сне, дифференцировать обструктивные и центральные апноэ/гипопноэ, оценивать связь нарушений дыхания с позицией тела. Отсутствие канала ЭКГ не влияет на точность диагностики собственно апноэ сна, но не позволяет выявлять нарушения ритма и проводимости сердца. Данные системы в большей степени востребованы пульмонологами, неврологами, эндокринологами и рядом других специалистов, которые заинтересованы в диагностике синдрома обструктивного апноэ сна, но в их прямые обязанности не входит оценка ЭКГ и сердечнососудистого риска.

Тип 4 – Скрининговые системы

К скрининговым системам относятся системы скринингового респираторного мониторинга и компьютерная пульсоксиметрия.

Системы скринингового респираторного мониторинга (рис. 5) могут с определенными ограничениями применяться для диагностики СОАС [4]. Обычно они используются для первичного скрининга с последующим уточнением диагноза с помощью полисомно-графии или кардио-респираторного мониторинга.


Рис. 5. Система скринингового респираторного мониторинга SomnoCheck Micro (Weinmann, Германия). Регистрируемые параметры: поток воздуха, храп, сатурация, пульс, пульсовая волна.


Мониторинговая компьютерная пульсоксиметрия (МКП) – метод длительного мониторирования сатурации и пульса с применением портативных пульсоксиметров (рис. 6). Для мониторинга применяются компьютерные пульсоксиметры, обеспечивающие регистрацию сигнала с дискретностью раз в несколько секунд (от 1 до 10 секунд). Таким образом, за 8 часов сна компьютерный пульсоксиметр может выполнить до 28800 измерений и сохранить полученные данные в памяти прибора для последующей обработки и анализа.

В отделении восстановительного сна Клинического санатория «Барвиха» используются специализированные пульсоксиметры для мониторирования сатурации во сне PulseOx 7500 (SPO Medical, Израиль), в которых применяется отражающая технология регистрации сигнала, минимизирующая двигательные артефакты во сне. Данная технология также устраняет артефакты, обусловленные изменениями ногтевой пластинки. Использование мягкого пульсоксиметрического датчика и функция автостарт/автостоп обеспечивают комфорт и простоту исследования.


Рис. 6. Компьютерный пульсоксиметр PulseOx 7500 (SPO Medical, Израиль). Регистрируемые параметры: сатурация, пульс.


Для анализа полученных данных используется компьютерная программа, которая автоматически генерирует отчет, включающий параметры насыщения крови кислородом и пульса. Рассчитывается количество значимых деса-тураций в час, фактически отражающее индекс апноэ/гипопноэ. Возможен также визуальный анализ кривых сатурации и пульса за любой выбранный интервал (от 10 секунд на экран) и за весь период наблюдения (рис 7):



Рис. 7. Пациент 3., 49 лет. Синдром обструктивного апноэ сна тяжелой степени, индекс десатураций 53,5 в час.

В верхней части рисунка: статистические данные по исследованию. В средней: 8-часовая развертка кривых сатурации и пульса. В нижней: 10-минутная развертка кривых сатурации и пульса. На графике Sp02 отмечается классическая картина резких циклических десатураций, обусловленных апноэ/гипопноэ (колебания SpO2 составляют 10 % и более). Индекс десатураций – 53,5 в час, что указывает на тяжелую степень апноэ сна. При этом средние показатели SpO2 лишь незначительно снижены (90,6 %), что указывает на «чистое» апноэ сна без сопутствующей хронической ночной гипоксемии другого генеза. Вне эпизодов десатураций насыщение крови кислородом находится в пределах нормы. На графике пульса – выраженная брадикардия (пациент принимал бета-блокаторы).


Подсчет количества десатураций в час (индекс десатураций) позволяет судить о частоте эпизодов апноэ/гипопноэ в час – индексе апноэ/гипопноэ. Так как индекс апноэ/гипопноэ является основным критерием тяжести апноэ сна, фактически, мониторинговая компьютерная пульсоксиметрия позволяет с высокой степенью достоверности прогнозировать степень тяжести нарушений дыхания во сне. Для уточнения обструктивного или центрального генеза апноэ необходимо проведение уточняющих методов диагностики.

Методика проведения мониторинговой компьютерной пульсоксиметрии достаточно простая и нетрудоемкая. Программирование и установка пульсоксиметра занимают около 5 минут, расшифровка с автоматическим формированием заключения – около 10 минут. Пульсоксиметр может выдаваться пациенту днем, далее перед сном пациент самостоятельно устанавливает его на палец – прибор автоматически включается, утром снимает – прибор выключается. Далее пульсоксиметр возвращается персоналу для расшифровки в рабочее время. Исследования могут проводиться как в стационаре, так и на дому.

До настоящего времени в научных кругах идет активная дискуссия о целесообразности применения мониторинговой компьютерной пульсоксиметрии для скрининговой диагностики синдрома обструктивного апноэ сна. Высказываются мнения от полного неприятия данного метода до возможности его использования не только в качестве скринингового метода, но и для установления точного клинического диагноза синдрома обструктивного апноэ сна. Противниками применения мониторинговой компьютерной пульсоксиметрии, как правило, являются представители классической сомнологии, работающие в сомнологических центрах. Сторонниками, главным образом, являются врачи разных специальностей, работающие в учреждениях практического здравоохранения.

Мониторинговая компьютерная пульсоксиметрия, как скрининговый метод, естественно, имеет и плюсы, и минусы. Основной претензией противников мониторинговой компьютерной пульсоксиметрии является низкая, по их мнению, чувствительность метода. Их настораживает, что часть пациентов с имеющимся синдромом обструктивного апноэ сна остается недиагностированной и нелеченной. Чувствительность и специфичность мониторинговой компьютерной пульсоксиметрии в выявлении синдрома обструктивного апноэ сна исследовалась в большом количестве работ и колебалась в широком диапазоне. По данным различных авторов значения чувствительности составляют от 31 до 98 %, специфичности – от 41 до 100 % [9-17].

Следует отметить, что в ряде исследований, которые выявляли недостаточную чувствительность мониторинговой компьютерной пульсоксиметрии, как правило, использовалась низкая частота отцифровки сигнала (например, каждые 12 секунд). То есть, пульсоксиметр в течение 12 секунд измерял сатурацию, далее усреднял данные и записывал в память усредненное значение за весь период измерения. Так как при эпизодах апноэ/гипопноэ отмечаются достаточно быстрые изменения сатурации, то при данной частоте регистрации сигнала недооценивается много случаев клинически значимого синдрома обструктивного апноэ сна [18,19]. Данный вывод подтверждают результаты исследования, в котором у пациента одновременно проводилась полисомнография и ночная пульсоксиметрия тремя идентичными пульсоксиметрами с частотой регистрации сигнала 3, 6 и 12 секунд. Была показана достоверная разница в индексах десатураций (p<0,01), зарегистрированных всеми тремя пульсоксиметрами. Минимальное значение индекса десатураций было при регистрации сигнала раз в 12 секунд. Это, в свою очередь, приводило к различной клинической интерпретации результатов пульсоксиметрии врачом [20]. Таким образом, при проведении мониторинговой компьютерной пульсоксиметрии с целью детекции апноэ целесообразно устанавливать минимальный интервал измерений (не более 4 секунд, в идеале 1 секунда) [21]. Важно также наличие в пульсоксиметрах алгоритмов, которые эффективно устраняют двигательные артефакты на кривой сатурации.

Интересно отметить, что в клинически отличных группах пациентов показатели чувствительности и специфичности мониторинговой компьютерной пульсоксиметрии существенно различаются. Так Cooper B.G. и соавт. показали, что чувствительность и специфичность мониторинговой компьютерной пульсоксиметрии зависит от индекса апноэ/гипопноэ. У пациентов с индексом апноэ/гипопноэ >25 в час чувствительность мониторинговой компьютерной пульсоксиметрии была 100 %, специфичность – 95 %, у пациентов с индексом апноэ/гипопноэ > 15 в час значения снизились до 75 % и 86 %, при индексе апноэ/гипопноэ > 5 в час – до 60 % и 80 % соответственно. Авторы сделали вывод, что мониторинговая компьютерная пульсоксиметрия является эффективным методом скринирования пациентов с синдромом обструктивного апноэ сна средне-тяжелой степени, но недостаточно точна при диагностике легкой степени заболевания [22].

В другой работе одновременно были проведены полисомнография и мониторинговая компьютерная пульсоксиметрия. Это выявило, что если брать за пороговое значение индекса десатураций >15 (при величине десатураций >3 %), то чувствительность и специфичность для выявления индекса апноэ/гипопноэ >20 по данным ПСГ составила 90 % и 100 % соответственно. Таким образом, авторы сделали вывод, что при выявлении индекса десатурации>15 в час можно с достаточно высокой достоверностью утверждать, что у пациента имеется синдром обструктивного апноэ сна средней или тяжелой степени [23]. Другие авторы показали, что если бы анализ выполнялся только на основании мониторинговой компьютерной пульсоксиметрии, то было бы пропущено только 15 % пациентов со средне-тяжелой степенью синдрома обструктивного апноэ сна [9].

С практической точки зрения можно сделать вывод, что мониторинговая компьютерная пульсоксиметрия вполне может применяться для выявления синдрома обструктивного апноэ сна средней или тяжелой степени даже при условии того, что каждый 7 пациент со средне-тяжелой степенью синдрома обструктивного апноэ сна будет пропущен. Но и это будет уже огромным шагом вперед по сравнению с текущей ситуацией, когда синдром обструктивного апноэ сна в отечественном практическом здравоохранении не диагностируется вообще.

Чувствительность мониторинговой компьютерной пульсоксиметрии при выявлении синдрома обструктивного апноэ сна легкой степени относительно невысока. Следует, однако, отметить что легкая степень СОАС, во-первых, не несет значительных сердечно-сосудистых рисков, во-вторых, переносимость CPAP-терапии у таких пациентов низка. Таким образом, даже если мы и не диагностируем методом мониторинговой компьютерной пульсоксиметрии часть пациентов с легкой степенью синдрома обструктивного апноэ сна, то это не будет нести катастрофических последствий в отношении прогноза их жизни или не назначения им СРАР-терапии – метода лечения синдрома обструктивного апноэ сна – так как пациенты, скорее всего, от него откаж у тся из-за отсутствия выраженных симптомов заболевания [24].

До настоящего времени продолжается и дискуссия о том, какую частоту десатураций в час считать клинически значимой. Разные авторы указывают на различное патологическое пороговое значение: 5 десатураций в час [22,25–28], 10 десатураций в час [24,29,30] или 15 десатураций в час [12,15,17,31,32]. Но ни у кого из авторов не возникает сомнений, что индекс десатурации>15 является очевидно патологическим и требует серьезного внимания.

Еще одним важным критерием целесообразности применения любой диагностической методики является прогностическая ценность положительного результата (ПЦПР). Формула, связывающая чувствительность и распространенность заболевания с ПЦПР, выводится из теоремы Байеса [33]:

П Ц ПР=(Ч*P)/[(Ч*P)+(1-Ч)*(1-P)], где

ПЦПР – Прогностическая ценность положительного результата

Ч – Чувствительность

P – Распространенность


Из формулы следует, что чем выше распространенность заболевания в исследуемой популяции, тем выше ПЦПР. Данные расчеты подтверждаются и результатами клинических исследований. Gyulay S. и соавт. установили, что при претестовой вероятности синдрома обструктивного апноэ сна 30 % ПЦПР для индекса десатураций более 15 в час составила 83 %. Если претестовая вероятность синдрома обструктивного апноэ сна была 50 %, то ПЦПР составила >90 %, что является очень хорошим показателем для скринингового теста [18]. Таким образом, даже при относительно невысокой исходной чувствительности теста ПЦПР будет увеличиваться в популяции с высокой вероятностью заболевания.

На практике это означает, что, если мониторинговая компьютерная пульсоксиметрия назначается, например, женщине в возрасте 30 лет без избыточной массы тела и указаний на храп, которая предъявляет жалобы на ранние пробуждения с невозможностью повторного засыпания (признак депрессии), то диагностическая ценность пульсоксиметрии в данном случае будет весьма незначительна из-за низкого риска наличия апноэ сна. Это вполне оправдано, так как у пациентов с малой вероятностью апноэ сна портативные системы, имеющие невысокую чувствительность, дают низкую предсказательную ценность положительного результата. В данном случае можно согласиться с рекомендациями Американской академии медицины сна, которые указывают на нецелесообразность проведения портативного мониторинга на предмет синдрома обструктивного апноэ сна у асимптомных пациентов [34].

В то же время, если пульсоксиметрия назначается мужчине в возрасте 50 лет с ожирением 2 степени, артериальной гипертонией, сильным храпом и жалобам и на выраженную дневную сонливость, то весьма высока вероятность того, что данный простой скрининговый метод позволит с высокой вероятностью установить диагноз синдрома обструктивного апноэ сна. Исходя из этого, если применение мониторинговой компьютерной пульсоксиметрии будет выполняться у пациентов с исходно высокой вероятностью заболевания, то относительно невысокая чувствительность теста не будет существенно влиять на качество скрининговой диагностики синдрома обструктивного апноэ сна.

Низкая трудоемкость мониторинговой компьютерной пульсоксиметрии позволила внедрить ее в Клиническом санатории «Барвиха» в качестве скрининговой методики у всех пациентов с определенным перечнем соматических диагнозов (таблица 1 в разделе «Клиническая диагностика»). Охват данной методикой составляет около 50 % всех поступающих в санаторий первичных пациентов. При данном подходе выявляемость клинически значимых нарушений дыхания во сне увеличилась в 2,5 раза по сравнению со старой схемой скрининга, основанной только на клинических жалобах, и составила 11 % от всех первичных пациентов. Таким образом, программа компьютерного пульсоксиметрического скрининга показала высокую эффективность в отношении выявления расстройств дыхания во сне при минимальных затратах материальных и человеческих ресурсов.


Страницы книги >> Предыдущая | 1 2 3
  • 0 Оценок: 0

Правообладателям!

Данное произведение размещено по согласованию с ООО "ЛитРес" (20% исходного текста). Если размещение книги нарушает чьи-либо права, то сообщите об этом.

Читателям!

Оплатили, но не знаете что делать дальше?


Популярные книги за неделю


Рекомендации