112 000 произведений, 32 000 авторов Отзывы на книги Бестселлеры недели


» » » онлайн чтение - страница 5

Текст книги "Путешествия к Луне"

Правообладателям!

Представленный фрагмент произведения размещен по согласованию с распространителем легального контента ООО "ЛитРес" (не более 20% исходного текста). Если вы считаете, что размещение материала нарушает чьи-либо права, то сообщите нам об этом.

Читателям!

Оплатили, но не знаете что делать дальше?

  • Текст добавлен: 3 мая 2014, 11:35


Автор книги: Коллектив Авторов


Жанр: Физика, Наука и Образование


Возрастные ограничения: +12

сообщить о неприемлемом содержимом

Текущая страница: 5 (всего у книги 32 страниц) [доступный отрывок для чтения: 21 страниц]

2.2. Вид поверхности для наблюдателя с телескопом

Невооруженный глаз хорошо различает на лунном диске такие образования, как Океан Бурь, Море Дождей, Море Ясности, Море Спокойствия, Море Кризисов и некоторые другие крупные детали. С помощью даже слабого телескопа или бинокля на лунном диске становится видимым множество деталей; прежде всего глаз замечает крупные кратеры. На рис. 2.13 приведено изображение лунного диска с обозначением некоторых деталей. Оно составлено из фотографий первой и последней четверти Луны. Это сделано для того, чтобы лучше был виден кратерный рельеф, который за счет длинных теней четко проявляется вблизи терминатора.

В западной части лунного диска расположен Океан Бурь – крупнейшее на Луне образование морского типа. Его площадь (S) составляет 2100 тыс. км2. К югу от Океана Бурь лежат два моря – Море Влажности (S= 110 тыс. км2) и Море Облаков (S = 250 тыс. км2). На севере Океан Бурь граничит с Морем Холода (S = 430 тыс. км2) и Морем Дождей (S = 830 тыс. км2). Море Дождей очень неоднородно по цвету, а значит, и по составу. В центре лунного диска находятся небольшие образования морского типа – Залив Зноя (S = 40 тыс. км2) и Море Паров (S = 80 тыс. км2). Восточную часть диска украшают Море Ясности (S = 300 тыс. км2) и Море Спокойствия (S = 420 тыс. км2). У восточного лимба расположено Море Кризисов (S = 180 тыс. км2). На юг от Моря Спокойствия находятся Море Изобилия (S = 330 тыс. км2) и Море Нектара (S = 100 тыс. км2). Все лунные моря представляют собой впадины, заполненные застывшими лавами. Их темный цвет обусловлен отличием химического состава лав от окружающего материкового вещества; в морских лавах содержится большее количество хромофорных (поглощающих свет) элементов, главным образом железа и титана.

Рис. 2.13. Составное изображение лунного диска с обозначениями некоторых образований: А – Океан Бурь, В – Море Влажности, С – Море Облаков, D – Море Холода, Е – Море Дождей, F – Залив Зноя, G – Море Паров, Н – Море Ясности, I – Море Спокойствия, J – Море Кризисов, К – Море Изобилия, L – Море Нектара, S – Криптоморе (кратер Шиккард). 1 – кратер Тихо, 2 – кратер Коперник, 3 – кратер Аристарх, 4 – горы Апеннины, 5 – горы Альпы, 6 – кратер Платон, 7 – образование Рейнергамма, 8 – кратеры Теофил, Кирилл и Катарина (сверху вниз), 9 – кратеры Птолемей, Альфонс и Арзахель (сверху вниз), 10 – кратер Прокл.


Моря заполнялись не одновременно. Из оценок количества кратеров на единицу площади (кратерной плотности) следует, что самое старое – Море Спокойствия (ок. 3,5 млрд лет). Океан Бурь – наиболее молодой (ок. 2,5 млрд лет).

Рис. 2.14. Изображение кратера Тихо, заимствованное из фотографического атласа Койпера.


На Луне были найдены так называемые криптоморя. Это очень древние морские образования, которые были скрыты материалом выбросов при образовании крупных бассейнов, например бассейна Моря Восточного. Признаками криптоморя служат кратеры, имеющие темное гало, что является признаком наличия на некоторой глубине темного вещества, вероятно, базальтового состава. Классическим примером криптоморя является область, включающая кратер Шиккард.

Опишем детальнее некоторые интересные кратеры. Это самая распространенная форма рельефа на Луне. Старых кратеров очень много; они зачастую накладываются друг на друга. Молодые кратеры представляют наибольший интерес для изучения.

В южной части диска видимой стороны Луны расположен кратер Тихо (диаметр D = 80 км, глубина 3 500 м, высота вала над окружающей местностью около 2000 м). При большом фазовом угле этот молодой кратер ничем не отличается от соседних кратеров, однако в полнолуние он обнаруживает яркую лучевую систему. Эта система самая мощная на Луне; один из его лучей хорошо прослеживается даже в Море Ясности. Лучевая система Тихо возникла при образовании кратера и является результатом взаимодействия ударных выбросов с лунной поверхности. Причиной необычных фотометрических свойств лучевых систем молодых кратеров является в основном вскрытие нижележащего (более светлого) материала вторичными ударами выброшенного из кратера вещества. Кратер Тихо окружен темным кольцом-ореолом, хорошо заметным вблизи полнолуния. Это кольцо имеет небольшой избыток красного цвета. Снимки более высокого разрешения показывают, что вал этого кратера заметно разрушен, хорошо видны террасы, рельеф в окрестности кратера в масштабе десятков и сотен метров очень сложен.

Кратер Коперник (D = 90 км) также является очень заметным образованием на лунном диске. Он старше кратера Тихо, но тоже имеет лучевую систему, хотя и более слабую, чем у Тихо. Лучевая система Коперника также хорошо видна при малых фазовых углах, т. е. вблизи полнолуния. Глубина ровного дна и высота вала кратера Коперник относительно окружающей местности составляют соответственно 1600 и 2200 м. Изображения высокого разрешения показывают, что вал этого кратера сильно террасирован. Как и у Тихо, это террасирование имеет гравитационно-тектоническую природу. Террасы представляют собой гигантские осовы (мегаоползни) шириной в километры и протяженностью в десятки километров, смещенные друг относительно друга по вертикали на сотни метров. С помощью спектральных измерений в материале вала и днища кратера Коперник были обнаружены типичные для лунного материкового вещества ассоциации минералов: полевошпатовый материал с преобладанием низкокальциевого пироксена. Однако на трех участках довольно разрушенной центральной горки пироксен не был найден (по крайней мере, его меньше 5 %); в качестве главного компонента здесь выявлен оливин. Источник материала центральной горки, по-видимому, находится глубже, чем источники материала других частей кратера.

Рассмотрим еще несколько замечательных образований на лунной поверхности, которые хорошо видны в телескоп даже небольших размеров.

Начнем с района, где расположен знаменитый кратер Аристарх (D = 35 км). Он сравнительно молод и образовался на морской поверхности. При его рождении был пробит слой затопления морским материалом и вскрылась материковая подложка, т. е. более яркое материковое вещество было вынесено на морскую поверхность. Благодаря этому кратер Аристарх имеет сравнительно высокое альбедо и выглядит как очень контрастная деталь на лунном диске. Поверхность внутри кратера неоднородна по составу и имеет сложную структуру. Возможно, из-за этого вид деталей внутри этого кратера очень изменчив – он сильно зависит от условий освещения. Ранее такая изменчивость часто интерпретировалось как свидетельство проявления современной активности Луны. На рис. 2.15 приведена телескопическая фотография кратера Аристарх (он справа). Левее и ниже расположен кратер Геродот. Хорошо видна извилистая Долина Шрётера.

Рис. 2.15. Любительский снимок кратеров Аристарх (справа) и Геродот вблизи терминатора. Хорошо виден рельеф плато Аристарх.


Значительно более детальные изображения района кратера Аристарх получены с помощью космического телескопа «Хаббл». Он позволяет издалека делать снимки Луны очень высокого разрешения. Заманчиво было бы использовать «Хаббл» для спектрозональной съемки всей площади видимого полушария Луны, однако специалисты, контролирующие распределение времени на этом телескопе, избегают наблюдать Луну: это слишком яркий объект для такого телескопа. Кроме того, исследования далеких объектов Вселенной имеют гораздо более высокие приоритеты для этого инструмента. Космический телескоп «Хаббл» находится на околоземной орбите уже около 20 лет. За это время он смотрел на Луну лишь два раза. На рис. 2.16 показан снимок кратера Аристарх, сделанный телескопом «Хаббл» в синих лучах при малом фазовом угле; пространственное разрешение около 200 м. Внутри кратера видно много ярких деталей.

Рис. 2.16. Изображение кратера Аристарх, полученное с околоземной орбиты космическим телескопом «Хаббл».


Кратер Аристарх образовался рядом с замечательной областью, которая называется плато Аристарх или пятно Вуда (на рис. 2.16 оно над кратером Аристарх). Предполагается, что эта область является останцом, сохранившимся при затоплении лавами бассейна Океана Бурь. Об этом говорит приподнятость плато Аристарх над уровнем окружающего моря и больший возраст (определенный по числу мелких кратеров на единицу поверхности) некоторых участков этого образования. Плато Аристарх пересекает Долина Шрётера. Ее длина примерно 170 км, а ширина около 7 км. Было множество сообщений о нестационарных (временных) явлениях в Долине Шрётера, но их достоверность трудно оценить.

Необычным является материал, покрывающий поверхность плато Аристарх. В видимой части спектра его альбедо довольно низкое. Этот материал имеет аномально сильное ультрафиолетовое (УФ) поглощение. Это заметил еще известный физик Роберт Вуд в 1911 г., когда получил свои первые фотографии Луны в УФ-диапазоне спектра. На фотографиях Вуда плато Аристарх выделяется очень сильно (поэтому его и называют пятном Вуда). Рыжеватый оттенок этого образования отмечался гораздо раньше Яном Гевелием. Отметим, однако, что границы ультрафиолетового пятна Вуда не всегда буквально следуют топографическим границам плато Аристарх. Роберт Вуд предполагал, что причиной возникновения УФ-поглощения в пятне служат отложения серы или ее соединений, сопровождающие вулканическую деятельность. Но сейчас считают, что аналогом материала поверхности пятна Вуда является необычный грунт, найденный в районе посадки экспедиции «Аполлон-17». Этот грунт содержит много стеклянных шариков оранжевого цвета. Образцы такого грунта показывают сильное УФ-поглощение. Предполагается, что оранжевые шарики имеют вулканическую природу – они возникли при распылении в вакууме фонтанирующей лавы в окрестности места ее выхода на поверхность. Среди геологов нет согласия в том, когда могли происходить такие извержения, но, скорее всего, их возраст велик. На снимках плато Аристарх, сделанных современными цифровыми фотокамерами, хорошо различаются цвета: плато имеет выраженный рыжеватый оттенок в сравнении с окружающими морскими областями.

Рис. 2.17. Телескопическое изображение горной системы лунных Апеннин.


Следующий объект нашего рассмотрения – лунные горы.

Горная цепь Апеннин – одна из самых мощных горных систем на Луне. Высота некоторых пиков доходит до 5–6 км. Эта цепь обрамляет Море Дождей с юга и юго-востока. Ее происхождение связано с ударным образованием бассейна этого моря. Северные склоны Апеннин, обращенные к Морю Дождей, более крутые, чем южные (рис. 2.17). Однако эта крутизна относительна – типичные наклоны поверхности на севере Апеннин редко превышают 10° на базе в 1 км. У северо-западного подножия Апеннин находится извилистая Борозда Хэдли (Гадлея), имеющая длину около 100 км, среднюю ширину 1,5 км и глубину 300–400 м. В районе этой борозды совершил посадку «Аполлон-15».

Рис. 2.18. Борозда Хэдли.

Рис. 2.19. Астронавт рядом с лунным электромобилем вблизи Борозды Хэдли.


Альпы – менее мощная горная система, обрамляющая Море Дождей с северо-востока. Здесь самая высокая вершина (разумеется – Монблан) имеет высоту около 3500 м. Удивительным образованием в этом районе Луны является Долина Альп, которая как бы прорезает горную систему Альп от Моря Холода до Моря Дождей (рис. 2.20). Эта долина прямолинейна; ее длина около 150 км, а средняя ширина около 10 км. Когда-то допускалось, что такая структура могла образоваться при косом (скользящем) ударе крупного тела о лунную поверхность. Простые оценки показывают невозможность такого сценария. В данном случае мы имеем дело, вероятно, с древним разломом, залитым лавой. На снимке Крэйга Зербе хорошо видна узкая трещина в середине долины. На космических изображениях высокого разрешения на этой трещине видны кратеры. Вероятно, они моложе трещины и попали на нее случайно. Но следует отметить, что на трещинах могут возникать так называемые димпловые кратеры: за счет просыпки грунта в трещину образуется воронка.

Рис. 2.20. Изображение Долины Альп, полученное Крэйгом Зербе с помощью цифровой камеры.


В Море Дождей имеются структуры останцового типа, например Прямой хребет длиной 80 км или пик Тенериф. При взгляде в телескоп, когда эти структуры освещены скользящими лучами, они кажутся грандиозными крутыми горами. На самом деле все обстоит не столь уж драматично. Например, пик Тенериф при высоте чуть более 2,4 км имеет размер у основания 15x20 км, что дает средний наклон поверхности пика менее чем 1/6. Конечно, локальные наклоны могут быть большими.

Рис. 2.21. Телескопическое изображение она Прямой Стены.

Рис. 2.22. Участок Моря Дождей, включающий пик Тенериф и Прямой хребет.

Рис. 2.23. Изображение кратера Варгентин, заимствованное из атласа Койпера.


Примечательным объектом лунной поверхности является также Прямая Стена. Это линейная сбросовая структура. Ее длина 110 км. Большая часть Стены возвышается на 600 м над равниной. Стена асимметрична – ее западный склон гораздо более крутой. Однако даже там крутизна склонов редко превосходит 30° на базе в сотни метров.

Рис. 2.24. Кратер Рейнер (справа) и светлая формация Рейнер-гамма. Телескопический снимок.


Среди уникальных образований на поверхности Луны особое место занимает кратер Варгентин диаметром 85 км. Его часто называют «столовой горой Варгентин». Он находится вблизи юго-западного лимба недалеко от кратера Шиккард. Кратер Варгентин заполнен лавой до уровня вала. Поверхность этого лавового поля сравнительно ровная. Это удивительный пример затопления кратера без прорыва вала – мощности лавового источника хватило ровно на то, чтобы заполнить чашу до краев, не разрушив ее.

Рис. 2.25. Телескопическое изображение кратеров Теофил, Кирилл и Катарина.


Отметим еще раз замечательный кратер Платон (D = 100 км), залитый лавой. Его очень легко найти на Луне вблизи полной фазы с помощью телескопа, поэтому этот кратер иногда используют в качестве стандартной детали для спектрофотометрических привязок при наблюдениях планет. Высота вала этого кратера достигает 2 км, однако из-за кривизны лунной поверхности даже такой вал не будет виден из центра этого кратера (см. рис. 2.8 и 2.9). Заметим также, что вещество этого вала и примыкающих к нему с севера внешних областей необычно по составу, о чем свидетельствует нетипичный для таких образований избыток красного цвета.

Рис. 2.26. Кратеры Птолемей и Альфонс вблизи терминатора (свет падает сбоку).


В Океане Бурь расположена небольшая формация, именуемая Рейнер-гамма. Она имеет форму вытянутого кольца, но это не кратер. Рис. 2.24 позволяет сравнить это образование с кратером Рейнер, который находится в правой части изображения. Образование Рейнер-гамма считается классическим примером свирла – структуры, возникающей при падении распавшейся кометы или компактного метеороидного роя на лунную поверхность. В рельефе эта область не выделяется – это чисто альбедное образование, имеющее детали причудливой формы.

Рис. 2.27. Кратеры Птолемей и Альфонс в эпоху полнолуния (свет падает отвесно).


С этой формацией связана также магнитная аномалия. Формация Рейнер-гамма имеет необычные фотометрические свойства, они указывают на то, что поверхность этого образования очень молодая, а ее микрорельеф более сложный, чем в окружающих морских областях.

На западном побережье Моря Нектара расположена последовательность крупных кратеров: Теофил (D = 100 км), Кирилл (D = 90 км) и Катарина (D = 100 км). Кратер Теофил – более молодой; он перекрыл вал кратера Кирилл. Замечательная особенность кратера Теофил – его центральная горка, у которой несколько вершин. Иногда астрономы-любители проверяют качество телескопического изображения по тому, разрешается ли горка кратера Теофил или нет: если не разрешается, то наблюдать на небе что-либо точно не стоит.

Кратер Птолемей – один из самых крупных на Луне (D = 225 км). Кривизна его заполненного лавой днища хорошо видна на изображениях, близких к терминатору (рис. 2.26). На дне этого кратера видны неровности, вероятно, обусловленые рельефом подстилающей поверхности или связаные с многоэтапностью заливки морской лавой этого небольшого бассейна. Правее и немного ниже кратера Птолемей находится кратер Альбатениус, который, как считается, изображен на одной из первых зарисовок Луны, сделанных Галилео Галилеем.

По-своему уникален кратер Альфонс (D= 125 км). Его центральная горка возвышается почти на километр. У вала хорошо заметны признаки внутреннего обрушения (он как бы двоится). Через середину кратера проходит геологический разлом. В кратере расположено несколько темных пятен, заметных в телескоп среднего размера при хорошем качестве изображения. Это мелкие кратеры с темными ореолами; некоторые из них ассоциированы с трещинами того же простирания, что и центральный разлом. Происхождение темных ореолов не совсем понятно. Вероятно, здесь произошло ударное вскрытие темного материала, как в случае криптоморей. Нельзя не отметить, что в кратере Альфонс, возможно, наблюдались нестационарные явления (см. ниже).

Интересен молодой кратер Прокл, находящийся в восточной части лунного диска. В полнолуние хорошо видна его лучевая система; она асимметрична. Такое возможно при очень косом ударе налетевшего тела по лунной поверхности.

В заключение этого раздела отметим: каждый район и каждая деталь лунной поверхности, имея общие для всей Луны особенности формирования и эволюции, почти всегда демонстрируют также и замечательные индивидуальные черты. Это делает интересным и захватывающим изучение практически любого района лунной поверхности.

2.3. Нестационарные явления

Исследованию нестационарных, временных явлений на лунной поверхности и окружающем ее пространстве уделялось некогда большое внимание. Это было в период подготовки космических программ изучения Луны. Сейчас такого рода наблюдения чаще проводятся любителями астрономии, хотя встречаются публикации на эту тему авторитетных профессиональных наблюдателей, таких как французский астроном Одуэн Дольфюс. В последнее время интерес к этой проблеме несколько возрос в связи с обнаружением на ночной стороне Луны вспышек, вызванных ударами метеоритных тел.

Как правило, сообщения о кратковременных явлениях малодоказательны. Можно думать, что подавляющая часть таких сообщений вообще не является достоверной. При проведении новых исследований следует иметь в виду, что проблема доказательства реальности нестационарных явлений и скептицизм научной общественности будут постоянно сопутствовать работам, ведущимся в этой области. Данный раздел посвящен обзору наиболее достоверных результатов.

Проблема поиска возможных изменений, происходящих на лунной поверхности, очень старая. Такие изменения пытались обнаружить многие астрономы-наблюдатели, начиная с Галилея. Известный английский астроном Джон Гершель сообщал в позапрошлом столетии о видимых им на затененной части лунного диска ярких точках, которые он считал лунными вулканическими извержениями. Сейчас понятно, что никаких действующих вулканов на Луне нет, но тогда эти сообщения авторитетнейшего наблюдателя будоражили умы. Следует отметить, что и до изобретения телескопа проблема нестационарных явлений на Луне была актуальна. В частности, лет 20 назад на страницах уважаемого научного журнала «Nature» обсуждалось сообщение о том, что в 1178 г. некоторые очевидцы наблюдали явления, возможно, связанные с рождением на обратной стороне Луны, вблизи лимба, кратера Джордано Бруно. Дело в том, что в Англии (Кентербери) в церковных архивах, датированных XII столетием, обнаружились записи показаний пяти человек о «странном» поведении Луны: на ней были видны искры, а верхний конец ее серпа вдруг раскололся на две части (тень от выброса?). Кто знает, не отмечали ли слишком усердно эти люди семейный праздник? А может быть, они видели случайно спроецированный на Луну болид, сгоревший в атмосфере Земли? Или все же это событие связано с Луной? Кратер Джордано Бруно (D = 20 км) действительно один из самых молодых на Луне. Однако его изображения, полученные с высоким разрешением, показывают, что в нем присутствует достаточно много мелких кратеров. Это означает, что молодость этого объекта относительна – его образование едва ли можно датировать XII веком.

Существуют каталоги нестационарных явлений на поверхности Луны. В частности, в 1960-е гг. Берли и Мидлхерст изучили литературу, охватывающую несколько сотен лет, в которой упоминается о примерно 200 случаях наблюдений на Луне ярких вспышек, изменений цвета и прочих преходящих явлений. Эти наблюдения были сопоставлены с солнечной активностью (зависимости не обнаружилось) и с приливным действием Земли. Оказалось, максимальное число явлений приходится на перигей и апогей лунной орбиты. Отсюда был сделан вывод, что явления, наблюдаемые на Луне, возможно, вызваны внутренними причинами, происходящими в Луне в периоды максимальных изменений приливных напряжений.

Позднее Камерон составила каталог более 1500 лунных временных явлений. Они связаны с примерно 100 объектами лунной поверхности; интересно, что на область кратера Аристарх попадает 30 % всех явлений. Распределение этих объектов показывает, что преходящие явления чаще наблюдаются по краям морей. Обработка каталога не дала корреляции этих явлений ни с одним физическим фактором. Корреляция с приливами, указанная ранее Берли и Мидлхерст, оказалась выраженной очень слабо. Вполне возможно, что многие события в каталогах Мидлхерст и Камерон просто недостоверны.

Особенно интенсивно проблема нестационарных явлений изучалась перед началом реализации космической программы «Аполлон». Например, для выявления кратковременных цветовых явлений на Луне в конце 1960-х гг. была создана сеть из 12 станций в США и двух в Англии. Выполнялось «блинкование» Луны – быстрое сравнение двух полученных последовательно изображений, позволяющее заметить их различие. Это делалось при помощи небольших телескопов, снабженных вращающимися обтюраторами, которые имели красный и синий светофильтры. Станции работали в течение нескольких лет, однако не дали результатов, которые достоверно подтверждали бы нестационарные цветовые эффекты. Позднее к явлениям такого рода возникло устойчивое скептическое отношение. Появились работы, в которых разбирается ошибочность некоторых данных о временных явлениях на Луне. Например, это касалось сообщений, появившихся 22–28 февраля 1975 г., когда в Западной Европе господствовал глубокий антициклон с температурной инверсией. Дисперсия света при преломлении в такой атмосфере могла дать окраску альбедно контрастных лунных деталей.

Согласно работе Яна, опубликованной в 1972 г., все наблюдавшиеся временные явления на Луне делятся на три типа: 1) очень быстро проходящие яркие вспышки; 2) длительные, до нескольких часов, бесцветные свечения или затемнения районов размером во многие квадратные километры; 3) красные или голубые свечения. Первая группа явлений может быть как лунного, так и не лунного происхождения. В последнем случае вспышки могут объясняться случайным проецированием на лунный диск картины сгорания метеоров в земной атмосфере. Другим «не лунным» объяснением вспышек, наблюдаемых в наше время, могут быть блики от солнечных панелей искусственных спутников, в большинстве своем уже утерянных и потому находящихся в бесконтрольном полете. Однако теоретически возможны и вспышки, связанные с Луной. В частности, в некоторых работах 1970– 1980-х гг. обсуждается механизм электрического разряда в разреженном газе, который, как считается, может выделяться из трещин в лунной поверхности при освобождении напряжений. То, что процесс выделения газов из недр Луны реален, сомнений не вызывает – это экспериментальный факт, установленный в ходе орбитальной съемки лунной поверхности, проведенной на космическом корабле «Аполлон-16» с помощью α-спектрометра. Были обнаружены вариации потока α-частиц, порождаемых радиоактивным распадом очень летучего газа радона, который выделяется из лунных недр вместе с другими компонентами. Проблема состоит в количестве газа, необходимого для поддерживания разряда, – согласно измерениям «Аполлона-16», газа на много порядков меньше, чем необходимо.

В последнее время заметный импульс получили исследования вспышек на лунной поверхности, которые вызваны ударами метеоритов. Такие вспышки надежно наблюдались в 1999–2002 гг., когда Луна пересекала метеорный поток Леониды. Однако этим наблюдениям предшествовали теоретические работы, которые стимулировали экспериментальные исследования. В частности, расчеты, выполненные российским физиком И. В. Немчиновым и его коллегами, показали, что удар о лунную поверхность метрового метеороидного тела, летящего со скоростью 15–30 км/с, может дать вспышку, регистрируемую с Земли. Наибольший интерес в таких исследованиях представляли бы детальные спектры вспышек. Они могли бы дать информацию о составе материала, вовлеченного в ударное испарение. Однако световой поток от этих событий должен быть весьма слаб. При образовании импактного (ударного) кратера в энергию световой вспышки преобразуется лишь малая доля кинетической энергии ударника, всего 10-4-10-5. Однако удары тел размером порядка 1 м могут быть зарегистрированы с помощью телескопов с зеркалом диаметром около 1 м.

Серьезной проблемой, ограничивающей наблюдательные возможности, является длительность вспышек. Чем меньше упавшее на Луну тело, тем короче вспышка. Для тел размером 1 м длительность вспышки составляет всего одну секунду. Тем не менее детектирование таких вспышек вполне возможно, что, как уже отмечалось, было подтверждено с помощью наблюдений Луны во время пересечения ею метеорного потока Леониды.

Рис. 2.28. Любительская фотография лунной поверхности со случайно спроецировавшимся самолетом.


Патрулирование импактных вспышек проводилось синхронно с использованием инструментов, находящихся на значительном расстоянии друг от друга, чтобы отделить вспышки на поверхности Луны от вспышек, вызванных отражением солнечных лучей от спутников или сгоранием метеоров в земной атмосфере. Удивительные случайные проекции действительно порой происходят при наблюдениях Луны. Так, на любительской фотографии (рис. 2.28) можно видеть лунную поверхность, на которую спроецировался летящий самолет.

Метеорный поток Леониды наблюдается каждый год примерно 17–18 ноября, когда Земля пересекает орбиту кометы 55Р/Темпеля – Тутля; вдоль этой орбиты движется множество пылевых и более крупных фрагментов кометы. Движение потока по отношению к движению Земли почти встречное, поэтому скорость соударения частиц потока с Луной очень высока, примерно 70 км/с. Поток неоднороден, поэтому количество ударных событий может год от года сильно варьироваться. Ноябрь 2001 г. был очень благоприятным для регистрации вспышек на ночной стороне Луны. Американские любители астрономии и профессиональные астрономы надежно зарегистрировали не менее шести вспышек на темной части лунного диска. Это были одновременные наблюдения из разных мест, документированные видеосъемкой, причем измерение проводились в такое время, когда большинство искусственных спутников, способных дать случайно проецирующийся блик, находились в глубокой тени.

В ноябре следующего, 2002 года, пересечение Луной потока Леонид происходило при полнолунии, что сделало регистрацию вспышек практически невозможной. Леониды – очень неоднородный поток: в нем есть уплотненные и разреженные области, орбиты его частиц возмущаются Юпитером. Обычно усиление потока наблюдается с периодом в 33 года, но это правило может и не выполняться. Ближайшее благоприятное пересечение Луны с этим потоком прогнозируется лишь на 2099 г., так что придется терпеливо ожидать новых результатов.

Отметим сравнительно свежее ударное событие в Море Облаков, которое произошло 2 мая 2006 г. Вспышку удалось снять на видео ученым NASA, ведущим патрульные наблюдения Луны. Вспышка длилась 0,4 секунды; мощность взрыва оценивается эквивалентом 4 тонн тротила. Расчеты показали, что лунную поверхность ударило тело диаметром около 25 см, которое двигалось со скоростью примерно 40 км/с. Должен был образоваться кратер диаметром около 15 м и глубиной около 3 м, но с Земли его заметить невозможно.

Если причины вспышек на ночной стороне Луны довольно понятны, то глобальные изменения яркости (если они действительно происходят) на больших площадях освещенной части лунной поверхности интерпретировать довольно трудно. Учитывая, что яркость таких преходящих явлений должна быть сравнима с яркостью освещенной Солнцем лунной поверхности, механизм свечения должен быть очень мощным. В работе Гарлика и его коллег 1977 г. предполагается, что это может быть связано с временными возмущениями поверхностного пылевого слоя, нарушающими когезию частиц (т. е. связь между молекулами разных частиц при их соприкосновении), что усиливает диффузное отражение света. Причинами таких нарушений считаются: 1) спорадический выход газов; 2) лунотрясения; 3) электростатическая левитация пыли, типа той, что наблюдалась по свечению горизонта при заходе Солнца на снимках космических аппаратов «Сервейор-7» и «Луноход-2». Роль этих механизмов трудно анализировать, не имея достаточно надежных характеристик самих явлений. Понятно, однако, что при нынешней активности недр Луны первые два механизма едва ли можно обсуждать всерьез. Третий механизм, вероятно, также слишком слаб, чтобы создать эффекты, которые наблюдались бы с Земли. Однако он все же не кажется вовсе безнадежным, и его продолжают исследовать.

Недавно сотрудница НИИ астрономии Харьковского национального университета им. В. Н. Каразина Л. В. Старухина вновь рассмотрела возможность временного потемнения лунной поверхности во время мощных солнечных вспышек. Под действием ионизирующих излучений, сопровождающих вспышку, в твердых материалах могут возникать дефекты, приводящие к дополнительному поглощению света в видимом и ультрафиолетовом диапазоне. Способность радиационно-индуцированных центров поглощения к термо– и фотообесцвечиванию делает возможным последующее восстановление отражательной способности реголита. Расчеты показали, что если радиационная чувствительность материала лунной поверхности равна максимальной чувствительности прозрачных силикатных стекол, то эффект потемнения можно наблюдать на пределе чувствительности астрономических приборов и только после наиболее мощных солнечных вспышек, таких как события 1959–1960 гг. и августа 1972 г.

Рис. 2.29. Спектрограммы кратера Альфонс во время предполагаемого события (верхняя) и после него (нижняя).

Страницы книги >> Предыдущая | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 | Следующая

Правообладателям!

Представленный фрагмент произведения размещен по согласованию с распространителем легального контента ООО "ЛитРес" (не более 20% исходного текста). Если вы считаете, что размещение материала нарушает чьи-либо права, то сообщите нам об этом.

Читателям!

Оплатили, но не знаете что делать дальше?


Популярные книги за неделю

Рекомендации