Электронная библиотека » Коллектив Авторов » » онлайн чтение - страница 11


  • Текст добавлен: 27 марта 2015, 03:06


Автор книги: Коллектив Авторов


Жанр: География, Наука и Образование


сообщить о неприемлемом содержимом

Текущая страница: 11 (всего у книги 58 страниц) [доступный отрывок для чтения: 15 страниц]

Шрифт:
- 100% +
4. Осадочные бассейны

Седиментационные бассейны с мощным осадочным наполнением играют важную роль в тектоническом устройстве Антарктики. Их общая площадь сопоставима с размерами описанных выше докембрийских платформенных и фанерозойских складчатых структур, служащих фундаментом бассейнов как в пределах пассивной континентальной окраины, так и в крупных внутриматериковых депрессиях, занятых шельфовыми ледниками морей Уэдделла и Росса и ледовым куполом центральной части Западной Антарктиды. Специфической особенностью антарктических бассейнов является их распространение далеко за пределы границы континент-океан с образованием практически непрерывной циркум-антарктической каймы внушительных по мощности преимущественно обломочных отложений, перекрывающих океаническую кору.

4.1. Бассейны западной Антарктики

В западной Антарктике расположены два крупнейших бассейна морей Росса и Уэдделла, которые распространяются не только на соответствующие океанические акватории и континентальные окраины, но имеют и внутриматериковое продолжение. Осадочные бассейны меньшего размера протягиваются также вдоль всего тихоокеанского побережья Западной Антарктиды и прерываются только на северной оконечности Антарктанд, где континентальная кора граничит непосредственно с некомпенсированными глубоководными желобами.


4.1.1. Бассейн моря Росса

Тектоническая природа бассейна моря Росса определенно увязывается с континентальным рифтогенезом в распадавшейся Гондване. Первым признаком этого процесса был среднеюрский базальтовый магматизм, широко проявленный в Трансантарктических горах («супергруппа Феррар») и, возможно, распространявшийся также в область будущего бассейна моря Росса. В австрало-новозеландско-антарктическом блоке Гондваны, сохранявшемся после отделения от Антарктиды Африки и Индостана, интенсивность растяжения достигла максимума в середине мелового периода (105–90 млн. лет) в направлении, ортогональном простиранию Трансантарктических гор. В результате вдоль росского орогена в это время возникла серия «несостоявшихся» рифтов, в совокупности образующих Западно-Антарктическую рифтовую систему площадью более 1 млн. км2 и шириной от 600 км на юге до 1200 км в северной части моря Росса, где величина горизонтального расширения растянутой коры превысила 100 % (Siddoway, 2008). Столь значительное увеличение площади бассейна уже на ранней стадии его формирования может объяснить наблюдаемую ныне разобщенность фрагментов борхгревинкского орогена на Землях Мэри Бэрд и Виктории, практически не затронутых растяжением, особенно если учесть вероятность некоторого латерального разрастания площади бассейна и в течение кайнозоя.

В пределах рифтовой системы складчатый и/или кристаллический фундамент (возможно, частично перекрытый «биконским» чехлом и «феррарскими» базальтоидами) испытал сложное горсто-грабеновое расчленение, что привело к резким перепадам глубин его залегания (и, соответственно, мощности осадочного чехла). В центральном горсте фундамент практически обнажается на поверхности дна, тогда как в непосредственной близости к уступу Трансантарктических гор консолидированный слой континентальной коры утонен до 5 км и погружен на 15–16 км ниже уровня моря, то есть общая мощность земной коры составляет здесь около 20 км. Сходное соотношение консолидированного и осадочного слоев наблюдается и в депоцентрах северо-восточной части бассейна. В горстах общая мощность континентальной коры также близка к 20 км, но в основном за счет ее консолидированного слоя. В грабенах в составе чехла ведущая роль принадлежит позднемеловому рифтогенному комплексу; пострифтовые преимущественно ледниково-морские отложения развиты повсеместно.

Раскол литосферы на юго-восточной окраине Гондваны, включавшей Западную Антарктиду, плато Кемпбелл и Новую Зеландию, произошел около 80 млн. лет назад вдоль побережья Земли Мери Бэрд и северной оконечности моря Росса, а интенсивное растяжение между Западной и Восточной Антарктидой привело лишь к формированию обширной рифтовой системы (Siddoway, 2008). В наиболее удаленной от побережья части бассейна моря Росса под ледовым куполом Западной Антарктиды известна линейная депрессия коренного ложа глубиной свыше 2000 м ниже уровня моря, которая, судя по геофизическим признакам, может быть заполнена магматическими породами основного состава. Возможно, здесь существует эмбриональный океанический рифт – отмерший, если время его возникновения соответствует ранним этапам формирования бассейна, или зарождающийся, если он является продуктом продолжающегося растяжения литосферы.


4.1.2. Бассейн моря Уэдделла

Процесс рифтогенной деструкции Гондваны наиболее ярко отразился в эволюции северного района бассейна моря Уэдделла. Этот район расположен на океанской коре, формировавшейся после откола африканско – южноамериканского блока от Антарктиды в конце средней юры (~ 160 млн. лет назад), и, следовательно, бассейн на этом месте просто не мог возникнуть до раскола Гондваны. Здесь в разрезе чехла доминируют позднеюрские и более молодые пострифтовые («постраспадные») комплексы сравнительно умеренной мощности, которая возрастает до 5–7 км лишь при приближении к шельфу Антарктического полуострова. Еще одним отчетливым признаком «распадных» событий служит распространение вдоль северо-восточного побережья моря Уэдделла рифтовых комплексов чехла, насыщенных стратиформными базитами (пассивная вулканическая окраина) при незначительной роли пострифтовой составляющей.

Западная, центральная и южная части бассейна сейсмическими методами практически не исследованы, хотя именно здесь, судя по магнитным данным, располагаются крупные депоцентры с мощностями осадочного наполнения, часто превышающими 10 км, а иногда и 13–15 км. Предполагается, что вся эта область подстилается растянутой континентальной корой, и что здесь могут находиться глубоко погребенные и поэтому пока не выявленные грабены, которые формировались и заполнялись осадками одновременно с вулканизмом пассивной окраины северо-восточного побережья моря Уэдделла и юрским магматизмом Антарктического полуострова (Millar et al., 2002). Однако присутствие таких комплексов и более молодых пост-рифтовых осадков вряд ли может объяснить столь значительную мощность осадочного чехла на всей площади бассейна моря Уэдделла. Скорее всего, это связано еще и с тем, что в истории континентальной части бассейна имелся «дораспадный» этап. Так, к востоку от Антарктического полуострова уже с позднетриасового времени существовал эпиконтинентальный задуговой бассейн Антарктанд, где накопление нижних горизонтов чехла бассейна могло предшествовать вовлечению всей области моря Уэдделла в позднемезозойские процессы рифтинга. Еще раньше интенсивное осадконакопление происходило, по-видимому, в южной шельфовой части бассейна, своеобразное глубинное строение которой охарактеризовано дискретными данными МПВ и профилем ГСЗ, пересекающим самый глубокий депоцентр бассейна вдоль южного побережья моря Уэдделла (Hubscher et al., 1996; Leitchenkov, Kudryavtsev, 2000).

Здесь в верхней части разреза земной коры выделен низко-среднескоростной осадочный слой мощностью 10–13 км, коррелируемый с рифтовыми и пострифтовыми комплексами мезозоя-кайнозоя. Ниже непрерывно прослеживается слой с промежуточными сейсмическими скоростями 5.3–5.8 км/с, мощность которого от краев бассейна к центру изменяется от 8–10 до 7 км. Этот слой, в свою очередь, залегает непосредственно на высокоскоростной нижней коре мощностью от 7 до 10 км. Вдоль большей части профиля ни в поверхности промежуточного слоя, ни в кровле нижней коры отчетливых горсто-грабеновых структур не выявлено.

Сейсмические скорости в промежуточном слое характерны для литифицированных осадочных толщ, которые могут быть представлены аналогами прерывисто-складчатых комплексов внутриплитных систем, окружающих южную часть бассейна моря Уэдделла, и/или их субплатформенными эквивалентами, сопоставимыми с недислоцированными чехлами Восточной Антарктиды. В любой интерпретации фактом остается очень большая (возможно, свыше 20 км) суммарная мощность преимущественно осадочных толщ в южной части бассейна моря Уэдделла, подстилающихся утоненной (рифтовой) континентальной корой. Стратиграфический диапазон этих толщ охватывает практически весь фанерозой и может быть даже эокембрий и свидетельствует о том, что у позднемезозойско-кайнозойского этапа эволюции бассейна, связываемого с распадом Гондваны, была длительная седиментационная предыстория, возможно, прерывавшаяся фазами внутриплитных деформаций, но в целом характеризующаяся преобладанием погружений и осадконакопления. Наиболее близкими аналогами бассейна моря Уэдделла по аномальному строению земной коры и, вероятно, по геологической истории являются Восточно-Баренцевский, Южно-Карский и Прикаспийский бассейны, геодинамическая эволюция которых до сих пор не получила однозначного толкования.

Обширнейший бассейн моря Уэдделла в своей северо-западной части отделен эоцен-миоценовой вулканической дугой и зоной палеосубдукции от небольшого задугового бассейна Пауэлл. Несмотря на малые размеры бассейна, в его фундаменте распознаются океаническая кора в центральной части, континентальная кора с выраженными структурами растяжения и крутыми трансформными границами на флангах, и узкие зоны переходного характера, в которых могут присутствовать как блоки сильно модифицированной континентальной коры, так и протрузии мантийного вещества (King et al., 1997). Мощность осадочного чехла в бассейне преимущественно составляет 1–2 км и лишь изредка превышает 3 км.

4.1.3. Бассейны морей Амундсена и Беллинсгаузена

Континентальная окраина морей Амундсена и Беллинсгаузена изучена очень плохо. На многих участках, особенно в море Амундсена, отсутствуют не только данные морских сейсмических исследований, но даже достоверная батиметрическая информация, позволяющая надежно оконтурить бровку шельфа. По имеющимся отрывочным сведениям, шельф моря Амундсена расширяется в восточном направлении от ~ 100 км на границе с морем Росса до 300 км при переходе к морю Беллинсгаузена. Под ним и в области континентального склона и подножья вероятно существование кайнозойского бассейна с мощностью чехла свыше 3 км, формировавшегося после отделения от Земли Мэри Бэрд новозеландского блока и возникновения пассивной окраины моря Амундсена.

Шельф моря Беллинсгаузена, наоборот, сужается в восточном направлении по мере приближения зоны палеосубдукции к Антарктическому полуострову и островам южной ветви дуги Скоша. Здесь между 63°з.д. и 70°з.д. проведены сейсмические исследования, выявившие существование позднекайнозойского преддугового бассейна с мощностью чехла более 2 км. Со стороны океана бассейн ограничен поднятием фундамента, мористее которого мощность чехла возрастает (в подножии континентального склона) до 6 км за счет интенсивного выноса ледникового терригенного материала с гор Антарктического полуострова. Преддуговая впадина продолжается, вероятно, от участка сейсмических исследований в западном направлении.

4.2. Бассейны морей индоокеанского сектора Антарктики

Осадочные бассейны, расположенные на индоокеанской пассивной окраине Восточной Антарктиды и в прилегающей океанической акватории, на протяжении последних десятилетий являлись главным объектом отечественных исследований, а также изучались совместными усилиями экспедиций разных стран, в том числе по программе МПГ 2007–2009 гг. Крупные осадочные бассейны выявлены в морях Рисер-Ларсена, Космонавтов, Содружества, Дэйвиса и в акватории, прилегающей к Земле Уилкса, и осуществлена интерпретация полученных данных с позиций геодинамической истории этих бассейнов.

В бассейне моря Рисер-Ларсена максимальная мощность осадочного чехла превышает 7 км в наиболее глубокой части периконтинентального рифта. Сложная комбинация рифтовых и сдвиговых сегментов границы континент-океан определяется обилием палеотрансформных разломов. Западной границей бассейна служит подводное вулканическое плато, южная часть которого составляет восточное окончание континентальной вулканической окраины морей Уэдделла и Лазарева, а северная располагается уже на океанической коре, утолщенной в этом районе до 8–10 км. Рядом (в северной части моря Лазарева) находится другое такое же океаническое плато. Восточной границей бассейна является длинное подводное ответвление кристаллического цоколя Восточной Антарктиды, вдающееся в море далеко за пределы береговой линии. Формирование бассейна моря Рисер-Ларсена началось 180–160 млн. лет назад под влиянием развившегося в это время рифтогенеза Гондваны и продолжилось в ходе откола Африки от Антарктиды (конец средней юры) и последующего раскрытия Индийского океана. Имеются признаки переориентации движения плит в результате перескока оси спрединга через 6–7 млн. лет после его начала (Leitchenkov et al., 2008), что могло привести к усложнению конфигурации границы континент-океан.

Бассейны морей Космонавтов, Содружества и Дейвиса протягиваются от 35° до 105°в.д. в виде цепочки, звенья которой отделены друг от друга пережимами в поперечной ширине бассейнов, особенно заметными по их наиболее углубленным частям. С востока эта практически непрерывная система бассейнов замыкается небольшим вулканическим плато на континентальной окраине моря Дейвиса, за которым начинается протяженный бассейн морей континентальной окраины Земли Уилкса и Австрало-Антарктической котловины. Как и в бассейне моря Рисер-Ларсена, максимальные мощности чехла превышают 7 км и приходятся на осевую зону периконтинентального рифта. Почти таких же значений достигает мощность осадочного наполнения в узком внутриконтинентальном ответвлении бассейна моря Содружества – рифте ледника Ламберта-Эймери.

В секторе, занятом рассматриваемой группой бассейнов, пассивная окраина формировалась в результате рифтогенеза и последующего разделения Индии и Антарктиды, начиная с позднеюрского времени. Время раскола литосферных плит было установлено в ходе детальных геофизических исследований по программе МПГ в сезон 2007–2008 гг. в морях Содружества и Дейвиса, где надежно задокументирована последовательность спрединговых аномалий от М11А (134 млн. лет) до М2 (122,5 млн. лет). Другими важными результатами работ МПГ явилось подтверждение методом ГСЗ и МПВ континентальной природы южной части плато Кергелен, а также вывод о перескоке около 128 млн. лет назад оси спрединга на север из ее первоначального положения вдоль современной континентальной окраины моря Содружества. Последнее наблюдение позволило предложить новую реконструкцию геодинамических событий в этом районе. Согласно этой модели, в начальной фазе океанического раскрытия между Антарктидой и Индостаном блок утоненной континентальной коры, подстилающий плато Кергелен, был частью индийской окраины, но в результате перескока оси спрединга отделился от нее и сохранил суб-Антарктическое положение (Лейченков и др., этот сборник). Превращение этого блока в вулканическое плато произошло в ходе интенсивного базальтового магматизма, закончившегося около 120 млн. лет назад.

Бассейн континентальной окраины Земли Уилкса и Австрало-Антарктической котловины протягивается от 115° до 150°в.д. и является самым крупным в индоокеанском секторе Антарктики как по общему размеру, так и по площади, в пределах которой мощность осадочного чехла превышает 10 км. Это связано с тем, что в своем развитии этот бассейн прошел чрезвычайно длительную стадию рифтовой деструкции континентальной коры, начавшуюся в поздней юре и продолжавшуюся свыше 80 млн. лет. К концу этого периода растяжение литосферы между Австралией и Антарктидой достигло экстремального уровня, и во внешней полосе периконтинентального рифта шириной до 100 км образовалось «мантийное окно», то есть зона отсутствия континентальной коры, где вещество верхней мантии вплотную приближено к подошве рифтовых осадков. Рифтовый комплекс при этом испытал заметную деформацию и был насыщен магматическими породами, скорее всего представлявшими собой продукты дифференциации верхней мантии. Рифтовая стадия развития бассейна завершилась расколом литосферы и началом спрединга морского дна около 80 млн. лет назад, что определяется присутствием в океанической коре последовательности идентифицированных линейных магнитных аномалий, самая древняя из которых имеет возраст 79,1 млн. лет (хрон 33), а самая молодая – 43,8 млн. лет (хрон 20). Скорость разрастания океанического дна между Австралией и Антарктикой, рассчитанная для этого временного интервала, составляла от 2,5 до 11 мм/год (Leitchenkov et al., 2007b).

5. Обсуждение и заключение

В становлении архейских комплексов фундамента Восточной Антарктиды ведущая роль принадлежала многократной переработке древнейшего изначального континентального субстрата. В них не обнаруживаются убедительные свидетельства образования ювенильной коры в конвергентных условиях. Это ставит под сомнение возможность интерпретации геодинамики архея с позиций тектоники плит, которые постулируют возможность формирования континентальной земной коры только в субдукционных (и в меньшей степени коллизионных) геодинамических обстановках и приписывают таким обстановкам широкое развитие уже в раннем докембрии, чтобы объяснить возникновение подавляющего объема глобальной континентальной массы к началу неогея.

Палеопротерозойская эра была скорее всего переходной от «до-плитно-тектонических» геодинамических режимов к обстановкам взаимодействия литосферных плит, формирующим аккреционно-коллизионные складчатые пояса активных окраин и сутурных швов (орогены s. str.). Переходный характер геодинамики палеопротерозоя проявлялся в том, что в это время «сквозное» архейско-палеопротерозойское развитие раннедокембрийских массивов, формировавшихся еще по «до-плитному» геодинамическому сценарию, завершалось параллельно с зарождением процессов, свойственных тектонике плит.

Отчетливое усиление этих процессов в мезопротерозое привело к мощному корообразующему гренвильскому орогенезу, сопровождавшемуся интенсивной плутонической деятельностью и метаморфизмом высоких ступеней. Вдоль индоокеанского побережья материка гренвилиды образуют практически непрерывный пояс, облекающий архейские ядра; с большой долей вероятности они распространены под ледниковым куполом Восточной Антарктиды, а также несомненно присутствуют в инфраструктуре Трансантарктических гор и Западной Антарктиды.

Пан-африканское тектоническое событие, широко проявленное в Восточной Антарктиде, было дистальной (внутриплитной) реакцией на формирование росско-деламерийского орогена на тихоокеанской окраине Гондваны и мозамбикского орогена в ее внутренней («африканской») части и выразилось главным образом в тектоно-магматической активизации гренвильских и в меньшей степени более древних докембрийских структур («телеорогенез»). Постулируемая главенствующая роль этого события в амальгамации Гондваны не находит подтверждения антарктическими данными.

Таким образом, в длительной докембрийской истории кристаллического фундамента Антарктиды явные признаки формирования континентальной земной коры за счет доминирующей роли конвергентных процессов, свойственных тектонике плит, фиксируются лишь в течение мезопротерозойской эры, закончившейся гренвильским орогенезом.

Последующие тектонические события носили подлинно орогенный характер только в тихоокеанском обрамлении материка, где выделяются эокембрийско-раннепалеозойский складчатый пояс Трансантарктических гор (росский ороген), ранне-(?)среднепалеозойская складчатая система северной оконечности Земли Виктории и западной части Земли Мэри Бэрд (борхгревинкский ороген), палеозойско-раннемезозойская складчатая система побережья моря Амундсена (амундсенский ороген) и мезозойско-кайнозойская складчатая область Антарктического полуострова (андский ороген, или Антарктанды). Росский и андский орогены занимают автохтонное положение, тогда как борхгревинский и амундсендский орогены могут представлять собой аллохтонные террейны.

Параллельно с субдукционно-аккреционным наращиванием континентальной коры Гондваны в антарктическом сегменте ее тихоокеанской окраины, в тыловой зоне фанерозойских орогенов и внутриплитных складчатых систем стали появляться признаки растяжения литосферы, первым сигналом которого послужило начало развития седиментационной впадины бассейна моря Уэдделла и формирования в ней промежуточного палеозойско-раннемезозойского(?) структурного этажа.

Направленность тектонической эволюции кардинально изменилась в середине мезозоя, когда после периода внутригондванского растяжения, рифтогенеза и континентального базальтового магматизма начался распад суперконтинента. Исходной причиной развития деструктивных процессов было, вероятно, внедрение под литосферу центральной Гондваны обширнейшего астеносферного плюма Карру, геологическим индикатором которого в Африке и Антарктиде явился широко распространенный юрский базальтовый магматизм, а глобальным геодинамическим последствием – раскол гондванской литосферы и раздвиг ее фрагментов с образованием Южного океана.

Время, в течение которого проявились эти события, было минимальным в районе морей Удделла-Лазарева, наиболее близком к центру плюма. Здесь континентальный рифтогенез, базальтовый магматизм (включая формирование вулканической окраины) и отделение Африки от Антарктиды уложились в интервал 180–160 млн. лет. По мере удаления от центра плюма Карру его разрушительное воздействие на Гондвану постепенно ослабевало, так что в районе морей Космонавтов-Содружества при активизации рифтогенеза в поздней юре раскол континентальной литосферы произошел около 135 млн. лет назад и сопровождался (возможно, с некоторым запаздыванием) образованием дочернего(?) плюма Кергелен. В наиболее удаленной от «головы» плюма стороне материка, в районе морей Дюрвиля-Росса, «предраспадный» рифтогенез растянулся уже на 80 млн. лет, и формирование Западно-Антарктической рифтовой системы и отделение от Антарктиды австралийского и новозеландского блоков Гондваны произошло только в течение позднемеловой эпохи. Возобновление рифтогенеза в позднем кайнозое, (возможно, связанное с формированием нового астеносферного плюма), вызвало дополнительное растяжение Западно-Антарктической рифтовой системы и ознаменовалось интенсивным щелочно-базальтовым вулканизмом на площади около 5 млн. км2, наиболее масштабным результатом которого явилось образование вулканического плато вдоль побережий морей Амундсена и Беллинсгаузена.

Изучение циркум-антарктических и внутриматериковых осадочных бассейнов долгие годы отставало от геологических исследований материка, тектонические карты и схемы которого еще в конце прошлого столетия не выходили за пределы береговой линии. Сегодняшний уровень понимания глубинной структуры и истории формирования этих бассейнов и, как следствие, геодинамической эволюции континентальной окраины Антарктиды в ходе рифтогенной деструкции Гондваны – это важный итог традиционного антарктического международного научного сотрудничества, особенно усилившегося в последние годы в проведении морских исследований, в том числе по программе МПГ 2007–2009 гг.


Страницы книги >> Предыдущая | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 | Следующая
  • 4.6 Оценок: 5

Правообладателям!

Данное произведение размещено по согласованию с ООО "ЛитРес" (20% исходного текста). Если размещение книги нарушает чьи-либо права, то сообщите об этом.

Читателям!

Оплатили, но не знаете что делать дальше?


Популярные книги за неделю


Рекомендации