Электронная библиотека » Микаэль Лонэ » » онлайн чтение - страница 6


  • Текст добавлен: 16 мая 2018, 00:40


Автор книги: Микаэль Лонэ


Жанр: Прочая образовательная литература, Наука и Образование


Возрастные ограничения: +12

сообщить о неприемлемом содержимом

Текущая страница: 6 (всего у книги 14 страниц) [доступный отрывок для чтения: 4 страниц]

Шрифт:
- 100% +

8
Сила треугольников


Перенесемся в 762 г., в Месопотамию, откуда все началось. В то время как Вавилон уже был в руинах, в сотне километров на север шли грандиозные работы. Именно здесь, на правом берегу Тигра, халиф Аббасидов аль-Мансур решил построить новую столицу.

Арабо-мусульманская империя в это время стремительно расширяется. За сто тридцать лет до этого, в 632 г., в то время как Брахмагупта в возрасте 34 лет только что закончил писать свою работу «Брахма-спхута-сиддханта», в Медине умирает пророк Мухаммед. После его смерти халифы распространяют ислам вплоть до юга Испании, реки Инд, на севере Африки, в Персии и Месопотамии.

Халифат Аль-Мансура раскинулся на площади более 10 млн кв. км. Если сравнивать его с современными государствами, то халифат стал бы вторым по величине после России и больше, чем Канада, США или Китай. Аль-Мансур был просвещенным халифом. Для строительства столицы он пригласил лучших архитекторов, мастеров и художников арабского мира. Говорят, что для выбора местоположения и даты начала работы он советовался с географами и астрологами.

Потребовалось четыре года и более ста тысяч рабочих, чтобы построить город, о котором он мечтал. Город имел форму круга, был защищен по всему периметру двойной стеной протяженностью 8 километров, которая имела 112 защитных башен и четыре пары ворот, расположенных по диагонали по направлению четырех сторон света. В центре города находились казармы, мечеть и дворец халифа. Зеленый купол дворца возвышался почти на 50 метров и был виден приблизительно на 20 километров вокруг.

В год своего основания город был назван Мадинат ас-Салам, в переводе «город мира». Также его называли Мадинат аль-Анвар, «город огней», или же Азимат ад-Дунья, «столица мира». Однако в историю город Аль-Мансура войдет под другим своим именем: Багдад.

Население Багдада быстро росло и вскоре насчитывало уже несколько сот тысяч человек. Город находился на пересечении основных торговых путей, по улицам ходили купцы со всего мира. Шелк, золото и слоновая кость на прилавках, воздух, наполненный ароматами специй, – так выглядел бурлящий жизнью город Багдад. Эта атмосфера описана в арабских сказках, таких как «Тысяча и одна ночь», в легендах о султанах, визирях и принцессах, коврах-самолетах, волшебной лампе и джиннах.

Аль-Мансур и халифы, пришедшие к власти после него, стремились сделать Багдад первым городом на Земле с культурной и научной точек зрения. Так, чтобы привлечь в свой город величайших ученых своего времени, в городе основали библиотеку, подобно тому, как это было сделано тысячу лет назад в Александрии. В конце VIII в. халиф Харун ар-Рашид начал собирать коллекцию книг с целью сохранения знаний, накопленных учеными из древних Греции, Месопотамии, Египта и Индии.

Большое количество книг было скопировано и переведено на арабский язык. В первую очередь, ученые из Багдада переняли открытия, сделанные в Древней Греции. Через некоторое время появились арабские переводы «Начал» Евклида. Были переведены трактаты Архимеда, в том числе его работа по изучению окружностей, «Альмагест» Птолемея и «Арифметика» Диофанта.

В начале IX в. математик Мухаммад аль-Хорезми опубликовал большую работу, известную как «Книга об индийском счете», в которой он описывает десятичную систему исчисления, взятую из Индии. Благодаря ему десять цифр, включая ноль, будут распространены по всему арабскому миру, то есть, по сути, по всему миру. На арабском языке ноль называется «зифр» (zifr), что переводится как «пустой». В Европе, впоследствии из этого слова сформируются два: первое на итальянском языке будет звучать как «зефиро» (zefiro) и обозначать «ноль»; а второе, «цифра» (cifra), на латинском языке получит значение «цифра». Европейцы, не вдаваясь в индийское происхождение этих десяти символов, станут называть цифры арабскими.

В 809 г. Харун ар-Рашид умер, и к власти пришел его сын Мухаммад аль-Амин. Его правление было недолгим: уже в 813 г. Мухаммада сверг с престола собственный брат Абдуллах аль-Мамун.

Легенда гласит, что однажды ночью во сне аль-Мамуну явился Аристотель. Этот сон глубоко поразил молодого халифа и повлиял на его решение развивать науку в своем городе и привлекать для этого все больше и больше ученых. Таким образом, в 832 г. при библиотеке Багдада было основано учреждение, предназначенное для содействия сохранению и развитию научных знаний. Академия получила название Байт аль-Хикма, что переводится с арабского как «Дом мудрости». По своей сути это учреждение напоминало Мусейон из Александрии.

Халиф активно участвовал в его развитии. Он поддерживал отношения с иностранными державами, такими как Византия, с целью получения редких книг для копирования и перевода в Багдаде и приказал ученым распространять полученные знания на всей территории халифата. Иногда халиф лично присутствовал на научных или философских дискуссиях, которые проводились не реже одного раза в неделю в Байт аль-Хикма.

В течение следующих веков «дома мудрости», подобные багдадскому, появились по всему арабскому миру. Во многих других городах, в свою очередь, строились библиотеки и учреждения для работы ученых. Так, крупнейшие из них появились в Кордове (Андалусия) в X в., в Каире (Египет) в XI в., в также в Фесе (Марокко) в XIV в.

Следует отметить, что развитию науки в различных уголках мира в значительной степени способствовало изобретение бумаги в Китае. Секрет ее изготовления был получен в 751 г. после победы в битве при Табласе (современная территории Казахстана) от китайских военнопленных. Появление бумаги упростило процесс копирования и транспортировки книг. С этого момента больше не приходилось ехать в Багдад, чтобы быть в курсе последних открытий в области математики, астрономии и географии. Великие ученые отныне могли заниматься своими исследованиями в любой точке арабо-мусульманской империи.

Замощение в Альгамбре

В то время как в Байт аль-Хикма великие умы занимались математикой, на улицах Багдада и других арабских городов можно было наблюдать еще одно интересное ее проявление. Ислам запрещает изображать человека или животных в мечетях и других местах поклонения. Для того чтобы не нарушать этот запрет, мусульманские художники нашли способ для самовыражения в форме декоративных геометрических узоров.

Давайте вспомним, как ремесленники первых оседлых поселений Месопотамии украшали свою керамику. Не осознавая этого, они использовали семь возможных категорий узоров. Если же изобразить узоры в нескольких направлениях, то таким образом можно покрыть всю поверхность. Это то, что мы называем замощение. Улицы Багдада и других мусульманских городов постепенно покрывались геометрическими узорами, что стало одной из визитных карточек исламского искусства.

Некоторые типы замощения весьма просты.



Другие – более сложные.



Позже математикам удалось доказать, что всего можно выделить семнадцать категорий замощения в зависимости от геометрических особенностей, и любое конкретное замощение можно отнести к одному из них. Используя какой угодно из этих типов замощения, можно создать бесконечные варианты конкретных примеров. Арабские художники, не имея обоснования этого, разработали семнадцать категорий и мастерски использовали их в своей архитектуре: как в оформлении значительных культурных объектов, так и в повседневной жизни.

Расположенный в Гранаде (Андалусия) дворец Альгамбра является одним из самых значительных памятников исламского искусства эпохи Средневековья, расположенных в Испании. Более двух миллионов туристов посещают его ежегодно. Мало кто из них догадывается, что дворец пользуется особой репутацией среди математиков. Альгамбра знаменита тем, что в ее оформлении использованы все семнадцать способов замощения, которые распределены (а иногда хорошо спрятаны) в залах и садах. Так что, если вам когда-нибудь посчастливится провести день в Гранаде, вы знаете, что делать.

Останемся еще ненадолго в Багдаде и попытаемся выяснить, что же на самом деле происходит за дверями Байт аль-Хикмы. Какие новые открытия сделали арабские математики? О чем все эти книги, что лежат на полках библиотеки?

Одна из новых дисциплин, развивающихся активно в этот период, получила название тригонометрия и занималась изучением величин треугольников. На первый взгляд, это может разочаровать, т. к. древние народы уже изучали треугольники, подтверждением чего является теорема Пифагора. Арабские ученые пошли дальше в своих исследованиях и достигли удивительно точных результатов, которые активно используются и сегодня.

Вопреки кажущейся простоте не все свойства треугольников так очевидны, и ряд из них еще уточнят в конце эпохи Античности. Треугольник определяется шестью своими основными свойствами: длины трех его сторон, а также величины трех его углов.

Например, для того, чтобы измерить расстояние между двумя точками с использованием тригонометрии, достаточно просто найти угол между ними, чтобы избежать необходимости непосредственного измерения этого расстояния. Для астрономии это особенно актуально. Рассчитать расстояния между звездами, которые мы наблюдаем в ночном небе, очень сложно, и может потребоваться несколько столетий, чтобы найти ответ. А вот измерить угол между этими звездами или углы, образуемые с горизонтом, гораздо проще. Обычного октанта,[9]9
  Угломерный прибор.


[Закрыть]
которому на смену пришел секстант,[10]10
  Угломерный прибор.


[Закрыть]
вполне хватит для этой задачи. Аналогично этому, географу для составления карты достаточно измерить углы треугольника, образованного тремя вершинами гор. Для этого ему потребуется только алидада – прибор, представляющий собой не что иное, как транспортер, на концах которого прикреплено визирное устройство. А для того чтобы сориентировать карту в пространстве, можно использовать лишь компас, с помощью которого измеряют угол между севером и заданным направлением. Непосредственное же измерение расстояний между тремя горами требует организации соответствующей экспедиции и проведения значительно более сложных вычислений. Пример Александра Македонского и его бематистов подтверждает возможность реализации и такого проекта!

Таким образом, задача заключается в следующем: как узнать все данные о треугольнике и при этом сделать минимум измерений? Задаваясь этим вопросом, теоретики тригонометрии столкнулись с проблемой, аналогичной той, которая стояла перед Архимедом тысячелетием ранее. Во-первых, если вам известны размеры всех углов треугольника, но не известен размер ни одной из его сторон, можно сделать вывод, что вам известна его форма, но не размер. Для наглядности ниже продемонстрированы примеры таких треугольников, имеющих равные углы, но различную длину соответствующих сторон.



Тем не менее все они имеют одинаковые пропорции. Например, если необходимо определить, на какое число надо умножить длину самой длинной стороны, чтобы определить длину самой короткой, то можно выяснить что для каждого из этих трех треугольников результат будет одинаковый: 0,64! Аналогично тому, как в случае с определением периметра окружности необходимо умножить его диаметр на π, независимо от его размера.

Если быть совсем точным… почти 0,64 – это приблизительное число. Что касается π, эта величина не может быть вычислена точно, и нам приходится довольствоваться ее приблизительным значением. Можно попытаться определить значение более точно, как 0,642 или даже 0,64278, но это все еще далеко от совершенства. Десятичное значение этого числа имеет бесконечное число знаков после запятой. Аналогичным образом дело обстоит со всеми величинами, которые могут быть вычислены в этих треугольниках. Так, чтобы рассчитать величину средней стороны треугольника, необходимо умножить величину самой длинной стороны на 0,766, а чтобы рассчитать величину длинной стороны треугольника, необходимо умножить величину короткой стороны на 1,192.



Так как невозможно определить точные значения этих трех соотношений, математики дали им свои имена, для того чтобы обозначить предмет своего изучения. В ходе исторического развития они именовались по-разному, но сегодня общепринято называть их косинус, синус и тангенс соответственно. Различные варианты были введены и использовались, прежде чем были преданы забвению. Так, например, произошло с величиной секед, которую древние египтяне использовали для измерения наклона пирамид. В качестве еще одного примера такой величины можно назвать хорду равнобедренного треугольника, которую описали в Древней Греции.

Определение тригонометрических соотношений осложняется еще одним обстоятельством: их значения в различных треугольниках отличаются. Так, значения 0,642, 0,766 и 1,192 действительны только для треугольников с углами 40°, 50° и 90°. Если же взять прямоугольный треугольник с углами 20°, 70° и 90°, то значения косинуса, синуса и тангенса будет приблизительно равны 0,342, 0,940 и 2,747 соответственно! Таким образом, исследования в области тригонометрии потребовали гораздо больших усилий, чем ожидалось. Речь шла о поиске не только одного значения или даже трех, а о целых таблицах чисел, которые отличаются в зависимости от размера углов!

Ниже представлена таблица с тригонометрическими величинами для треугольников, один угол которых находится в диапазоне от 10° до 80°. Обратите внимание на то, что для каждого треугольника указан только один угол. Указывать значение других углов не имеет смысла, т. к. второй угол всегда составляет 90°, а третий определяется согласно описанной ранее теореме, с помощью вычитания из 180° суммы двух других заданных углов. Таким образом, даже не имеет смысла рисовать треугольники: значения одного угла достаточно. Поэтому в первом столбце тригонометрических таблиц, как правило, указывается только один угол. Так, косинус 10° равен 0,9848, а тангенс 50° составляет 1,1918.



Конечно же, представленная таблица не является полной. Всегда можно продолжить ее, указав более точные значения тригонометрических величин либо добавив значений для углов, не представленных в текущей редакции. В этой таблице перечислены треугольники с углами в диапазоне от 10° до 80°, но было бы лучше указать точные значения для всех возможных углов, вплоть до десятых градуса. Уточнять тригонометрические таблицы можно было до бесконечности, чем последовательно занимались математики. Так было вплоть до XX в., когда изобрели калькуляторы, что существенно упростило расчеты.

Древние греки, вероятно, стали первыми, кто начал составлять тригонометрические таблицы. Самое раннее сохранившееся свидетельство – «Альмагест» Птолемея, в котором содержатся исследования Гиппарха Никейского – математика, жившего во II в. до н. э. В конце V в. н. э. индийский ученый Ариабхата также опубликовал свои тригонометрические таблицы. В Средние века в Персии Омар Хайям в XI в. и аль-Каши в XIV в. также составили одни из наиболее известных тригонометрических таблиц своего времени.

Ученые арабского мира продвинутся дальше всех не только в составлении наиболее точных таблиц, но и научатся эффективно применять на практике полученные данные.

Аль-Каши опубликовал в 1427 г. книгу под названием «Мифтах аль-Хисаб», или «Ключ к арифметике», в котором приводит результат, обобщающий теорему Пифагора. Благодаря расчетам косинуса аль-Каши удается применить эту теорему не только к прямоугольным треугольникам, но и к любым другим. Теорема аль-Каши работает, дополняя теорему Пифагора: если треугольник не прямоугольный, то сумма квадратов катетов не равна квадрату гипотенузы. Однако это равенство будет верным при условии добавления корректирующего коэффициента, который рассчитывается непосредственно из косинуса угла, образуемого этими двумя сторонами.

Когда аль-Каши опубликовал эту работу, он уже был известным математиком. Прославился он тремя годами ранее после вычисления приближенного значения числа π до шестого знака после запятой – максимально точное значение для той эпохи! В то время как рекорды могут быть побиты,[11]11
  Математик из Голландии Людольф Цейлен рассчитал величину π с точностью до 35 знаков после запятой сто семьдесят лет спустя.


[Закрыть]
теоремы сохраняют свою силу вне зависимости от времени. Теорема аль-Каши и по сей день остается одной из самых важных в области тригонометрии.

Перенесемся на левый берег Парижа. На дворе стоит июнь, и я, можно сказать, выступаю в роли экскурсовода. Сегодня с группой, состоящей человек из двадцати, я прогуливаюсь по улицам Латинского квартала по следам исторического развития математики. Наша следующая остановка будет в Саду великих исследователей. В северной его части расположены симметричные аллеи Люксембургского сада, массивными рядами ведущие ко дворцу Сената. В южной части возвышается купол Парижской обсерватории.

Следуя по центральной дорожке сада, мы, словно по канату, идем по линии меридиана Парижа. Шаг влево, и мы оказываемся в восточном полушарии мира. Два шага вправо – и мы уже в Западном полушарии. Еще через пятьсот метров меридиан пересекает обсерваторию, тянется посередине 14-го округа Парижа, а затем выходит через парк Монсури. Далее он уходит за пределы города, частично проходит по территории Испании и устремляется через Африканский континент и Антарктический океан к Южному полюсу. С другой стороны он идет по улицам Монмартра, слегка соприкасается с Британскими островами и Норвегией, а затем устремляется к Северному полюсу.

Начертить линию меридиана было не так-то просто. Это требовало точных измерений колоссального масштаба. Как, например, узнать расстояние между двумя точками по разные стороны горы, не пересекая ее при этом? Для того чтобы ответить на этот вопрос, ученые в начале XVIII в. разметили траекторию меридиана, мысленно покрыв всю территорию Франции с севера на юг сеткой из треугольников.

В качестве точек триангуляции выбрали наиболее высокие географические объекты, такие как холмы, горы или башни, откуда можно было увидеть другие точки для измерения углов между ними. После проведения измерений на земле можно было в полной мере использовать тригонометрические методы, разработанные арабами, чтобы определить точное положение каждой точки триангуляции, а затем провести через них меридиан.

Одним из первых эту задачу будет решать Кассини. Род Кассини – это целая династия ученых, которых принято нумеровать, как царей! Джованни Доменико, именуемый Кассини I, только что эмигрировавший из Италии, был первым директором Парижской обсерватории с момента ее основания в 1671 г. После смерти Джованни Доменико в 1712 г. его преемником стал сын Жак, или Кассини II. Именно он в 1718 г. первым провел меридианы с помощью триангуляции. После этого Кассини III (Сезар-Франсуа, сын Кассини II) впервые полностью завершил триангуляцию всей территории Франции. Результатом его работы стала публикация в 1744 г. первой карты Франции, составленной полностью в соответствии с требуемой методикой. Сын Сезара Франсуа, Кассини IV, Жан-Доминик, продолжил эту работу и проводил триангуляцию одного региона за другим.


Карта Франции 1744: представлен меридиан, на котором находится Париж, и основные треугольники Кассини


Следуя по меридиану, мы практически идем по стопам арабских ученых, которые создали теоретическую основу для триангуляции. Разметка каждого треугольника на карте требует использования косинуса, синуса или тангенса. Все они есть наследие аль-Каши и первых багдадских ученых, занимавшихся тригонометрией. Все эти расчеты, сделанные вручную, потребовали бесчисленного количества часов, проведенных учеными, работавшими с тригонометрическими таблицами в обсерватории.

Расчеты с помощью триангуляции использовались вплоть до конца XX в., пока не появились спутники. Самая крупная сеть треугольников насчитывала до 80 000 точек. Особые знаки, которые отмечали эти точки, все еще можно встретить на всей территории Франции. В Париже вы можете увидеть две точки, через которые проходит ось меридиана: одна находится в южной части города в парке Монсури, другая – на севере, на Монмартре. В 1994 г. тридцать пять памятных знаков в честь астронома Франсуа Араго были установлены по линии меридиана, проходящей по территории Парижа. Один из них находится прямо в Лувре. В следующий раз, когда станете прогуливаться по улицам Парижа, будьте внимательнее, и, вполне возможно, заметите несколько из них.

Во время французской революции произошел переход на метрическую систему измерения и для универсальности длину 1 метра стали рассчитывать исходя из длины меридиана, а именно как одну десятимиллионную часть четверти длины меридиана. В 1796 г. в четырех концах Парижа установили шестнадцатиметровые камни для того, чтобы каждый мог увидеть эталон длины. По сей день два из них все еще можно увидеть: один – на улице Вожирар с видом на Люксембургский сад, другой – на Вандомской площади у входа в Министерство юстиции.

Парижский меридиан был общепризнанным ориентиром вплоть до международной конференции в Вашингтоне в 1884 г. С этого момента в качестве отправной точки признавали Гринвичский меридиан, проходящий через Королевскую обсерваторию в Лондоне. В свою очередь, англичане переняли у французов метрическую систему, которую используют по сей день.

С появлением компьютеров и спутников тригонометрические таблицы и триангуляция земли стали бесполезными. Но тригонометрия как таковая никуда не исчезла. Она находится в самом сердце процессоров. Треугольники скрыты, но они все еще там.

Достаточно взглянуть на автомобили, припаркованные на проспекте перед обсерваторией. Многие из них оснащены системой GPS. В каждую секунду их положение определяется четырьмя спутниками из космоса. Для определения положения в их вычислениях до сих пор используются тригонометрические свойства. Догадываются ли автомобилисты, что, пока голос подсказывает, что необходимо повернуть налево, процессор проводит вычисления синуса или косинуса?

А вы когда-нибудь замечали, как полицейские в детективных сериалах определяют местоположение телефона подозреваемого с помощью триангуляции? Суть данного метода сводится к тому, что положение сотового телефона определяется по расстоянию до трех ближайших антенн. Эта геометрическая задача решается без проблем благодаря тригонометрическим формулам – современные компьютеры молниеносно выполняют эти операции.

С помощью тригонометрии можно не только измерять существующие величины, но и конструировать виртуальную реальность. Достижения этой науки широко используются в создании 3D-анимационных фильмов и видеоигр. Под текстурами, обрабатываемыми графическими дизайнерами, скрываются 3D-формы, состоящие из геометрических сеток, странным образом напоминающие триангуляции Кассини. Именно благодаря деформации этих связей создаются объекты и фигуры. Моделирование даже самого простого 3D-изображения, как, например, чайник Юта, который был одним из первых объектов, созданных на компьютере в 1975 г., требует применения большого числа тригонометрических формул.



Страницы книги >> Предыдущая | 1 2 3 4
  • 4 Оценок: 5

Правообладателям!

Данное произведение размещено по согласованию с ООО "ЛитРес" (20% исходного текста). Если размещение книги нарушает чьи-либо права, то сообщите об этом.

Читателям!

Оплатили, но не знаете что делать дальше?


Популярные книги за неделю


Рекомендации