Электронная библиотека » Наталия Тятенкова » » онлайн чтение - страница 1


  • Текст добавлен: 1 июня 2016, 04:01


Автор книги: Наталия Тятенкова


Жанр: Учебная литература, Детские книги


сообщить о неприемлемом содержимом

Текущая страница: 1 (всего у книги 6 страниц) [доступный отрывок для чтения: 2 страниц]

Шрифт:
- 100% +

Н. Н. Тятенкова
Физиология висцеральных систем. Часть 2. Физиология сердечно-сосудистой и дыхательной систем

Лекция 1. Физиология сердца

1. Строение сердца.

2. Свойства сердечной мышцы.

3. Механическая работа сердца.

4. Методы исследования деятельности сердца.

5. Понятия и термины.

1. Строение сердца

Сердце представляет собой полый мышечный орган, расположенный в левой половине грудной полости. Его вес у взрослого человека составляет в среднем 300 гр. (0,40–0,46 % от массы тела), длина – 12–13 см. Сердце человека продольной перегородкой разделено на две не сообщающиеся между собой половины: левую (системную), содержащую оксигенированную кровь, и правую (легочную), в которую поступает венозная кровь, бедная кислородом. В верхней части каждой половины расположено предсердие, в нижней части – желудочек, отделенные друг от друга прослойкой плотной соединительной ткани. Предсердие и желудочек соединены между собой отверстием, снабженным в левой половине двустворчатым (митральным), а в правой – трехстворчатым клапанами. Свободные края створок клапанов обращены в полость желудочков. Со стороны желудочков к клапанам прикрепляются сухожильные нити, что позволяет створкам открываться только в сторону желудочков. От левого желудочка отходит аорта, от правого – легочная артерия. Выходы из желудочков закрыты полулунными клапанами. Полулунный клапан представляет собой три карманообразные складки, свободные края которых направлены в просвет сосуда. Между предсердиями и впадающими в них венами клапанов нет, обратному току крови препятствует кольцеобразная мускулатура, работающая наподобие сфинктера.

Сердце расположено в эластичной соединительнотканной оболочке – околосердечной сумке, или перикарде. Стенка сердца состоит из трех оболочек: наружной, средней и внутренней. Наружная оболочка (эпикард) представлена слоем мезотелиальных клеток. Внутренняя оболочка (эндокард) образована соединительнотканными элементами и эпителиальными клетками.

Средняя многотканевая оболочка – миокард – состоит из поперечнополосатой сердечной мышечной ткани, межмышечной рыхлой соединительной ткани, многочисленных кровеносных сосудов и нервных элементов.

Основную массу миокарда составляет сердечная мышечная ткань, в ее составе выделяют несколько разновидностей мышечных клеток (кардиомиоцитов): сократительные, специализированные, переходные и секреторные. Между собой кардиомиоциты связаны волокнами межмышечной соединительной ткани. Все кардиомиоциты – это высоко дифференцированные клетки, не способные к делению и регенерации. Увеличение массы сердца в постэмбриональном периоде происходит за счет увеличения объема отдельных волокон.

Наиболее многочисленными клетками миокарда являются сократительные кардиомиоциты (рабочие, или сократительные, волокна) – средние по величине клетки, имеющие поперечнополосатую исчерченность благодаря наличию актиновых и миозиновых филаментов. Сократительные кардиомиоциты способны сильно сокращаться, обеспечивая нагнетательную функцию сердца. Их сокращение не зависит от внешней иннервации. Нервы, иннервирующие сердце, могут только изменять частоту и силу сокращений.

Переходные кардиомиоциты (Т-клетки) располагаются между проводящими и сократительными кардиомиоцитами, имеют промежуточные цитологические характеристики и обеспечивают взаимодействие между разными типами кардиомиоцитов.

Специализированные кардиомиоциты (специфические, атипичные) имеют небольшие размеры, слабо развитый сократительный аппарат. Различают Р-клетки и клетки Пуркинье. Р-клетки почти лишены сократительных элементов, способны генерировать электрические импульсы. Возбуждение по таким клеткам проводится очень медленно. Клетки (волокна) Пуркинье расположены на внутренней оболочке желудочков, это самые крупные клетки миокарда, имеют вытянутую форму. Эти клетки слабо сокращаются, обладают автоматией, но в меньшей степени, чем Р-клетки, и очень быстро проводят возбуждение, обеспечивая его распространение по миокарду. Специализированные кардиомиоциты составляют основу проводящей системы. Последняя включает синусно-предсердный, предсердно-желудочковый узлы и пучок Гиса. Синусно-предсердный узел (узел Кейт – Флака, синоатриальный узел), расположен в месте впадения полых вен в правое предсердие и образован Р-клетками, которые посредством Т-клеток связаны между собой и сократительными кардиомиоцитами предсердий. Предсердно-желудочковый узел (атриовентрикулярный узел, узел Ашоффа – Товара) расположен в толще сердечной перегородки на границе предсердий и желудочков, образован Р-клетками, клетками Пуркинье, Т-клетками. Пучок Гиса берет начало от предсердно-желудочкового узла и образует две ножки, заканчивающиеся тонкими волокнами Пуркинье, которые непосредственно контактируют с рабочими клетками миокарда. Основу пучка составляют клетки Пуркинье, связанные с сократительными кардиомиоцитами посредством Т-клеток.

Секреторные кардиомиоциты выполняют эндокринную функцию и располагаются преимущественно в предсердиях.

Кардиомиоциты структурно и функционально связаны друг с другом при помощи вставочных дисков. Десмосомы, находящиеся в области диска обеспечивают механическую связь, а щелевые контакты (нексусы) – функциональное взаимодействие. Вставочные диски соединяют кардиомиоциты «конец в конец», образуя тем самым непрерывную электрическую сеть (функциональный синцитий). В результате возбуждение, возникая в любой точке сердца, охватывает его целиком.

Кровоток в сердце. Сердечная мышца является самым большим потребителем кислорода в расчете на 1 г массы. В покое сердце поглощает около 30 мл кислорода за 1 минуту. Особенностью коронарного кровотока является прерывистость, периодичность. В момент систолы кровоток по артериям прекращается, а по венам кровь выталкивается. В основном миокард получает кровь во время диастолы. Следовательно, чем короче систола и длиннее диастола, тем лучше кровоснабжение сердца. В среднем в покое сердце получает 200–250 мл крови в минуту, в условиях интенсивной нагрузки кровоток достигает 3–4 л/мин. Уменьшение коронарного кровотока снижет сократимость миокарда.

2. Свойства сердечной мышцы

Сердечная мышца обладает следующими физиологическими свойствами: автоматия, возбудимость, проводимость и сократимость. Возбудимость, проводимость и автоматия миокарда обеспечиваются электрохимическими процессами, происходящими на плазматической мембране кардиомиоцитов. Сократимость реализуется за счет сократительных и регуляторных белков, расположенных в саркоплазме.

Автоматия сердца проявляется в способности ритмически возбуждаться под влиянием импульсов, возникающих в самом органе. Автоматия сердца обеспечивается клетками специфической мускулатуры, способными к самопроизвольной генерации потенциала действия. Эти клетки образуют узлы автоматии (водители ритма, пейсмекеры). В норме водителем ритма первого порядка служит синусно-предсердный узел. Частота его разрядов составляет 60–80 импульсов в минуту. Водитель ритма второго порядка локализован в предсердно-желудочковом узле, собственная частота ритмической активности клеток которого составляет 40–60 импульсов в минуту. Водитель ритма третьего порядка представлен клетками Пуркинье, входящими в состав проводящей системы желудочков с импульсацией 20–40 разрядов в минуту. Водители ритма в сердце подчиняются «закону градиента автоматии», согласно которому степень автоматии пейсмекера тем выше, чем ближе он расположен к синусно-предсердному узлу. В результате активность нижележащих водителей ритма подавляется синоатриальным узлом. Если по каким-либо причинам возбуждение синусно-предсердного узла не возникает, роль водителя ритма берет на себя пейсмекер второго или третьего порядка. В случае полной поперечной блокады предсердия и желудочки сокращаются независимо друг от друга.

Из всей массы синусно-предсердного узла только несколько клеток обладают способностью к спонтанной генерации потенциала действия. Эти самые «быстрые» клетки называют истинными пейсмекерами, они обычно подавляют более медленные и определяют частоту сокращений сердца. Если активность таких клеток по какой-либо причине прекращается, то водителем ритма становятся более медленные клетки (латентные, или потенциальные пейсмекеры), которые задают менее частый ритм.

Возбудимость. Сердечная мышца относится к возбудимым тканям. Это означает, что волокна миокарда отвечают на пороговые стимулы генерацией потенциала действия. По скорости развития фазы деполяризации кардиомиоциты делят на клетки с «медленным ответом» (проводящие клетки синусно-предсердного и предсердно-желудочкового узлов) и клетки с «быстрым ответом» (сократительные кардиомиоциты, проводящие кардиомиоциты и волокна Пуркинье).

В межимпульсный период проницаемость мембраны кардиомиоцита существенно выше для ионов калия, следовательно возникновение отрицательного диастолического потенциала определяется пассивным транспортом ионов калия. В формировании отрицательного диастолического потенциала также участвует активный транспорт ионов (K-Na-насос). В результате в клетку вносится два иона калия и выносится три иона натрия, что создает выходящий ток положительных зарядов.

Мембранный потенциал «медленных клеток» водителей ритма во время диастолы не стабилен. Поэтому его нельзя назвать «потенциалом покоя». Мембранный потенциал самопроизвольно отклоняется от максимального отрицательного уровня в сторону деполяризации (медленная диастолическая деполяризация). Когда мембранный потенциал достигает критического уровня, пейсмекер генерирует потенциал действия. Потенциал действия распространяется с возбужденной клетки на соседние невозбужденные, что приводит к распространению возбуждения по миокарду. Диастолический потенциал для кардиомиоцитов этого типа составляет около –60 мВ, амплитуда потенциала действия порядка 50 мВ, скорость распространения невелика. Фазы деполяризации и реполяризации протекают плавно. Фаза деполяризации обеспечивается входящим током ионов кальция. Фаза реполяризации обеспечивается соотношением между выходящим током ионов калия и входящим током ионов кальция. Реполяризация завершается достижением диастолического потенциала, после чего следует спонтанная диастолическая деполяризация. У «быстрых клеток» максимальный диастолический потенциал составляет около –90 мВ, амплитуда потенциала действия порядка 120 мВ. Мембранный потенциал сократительных кардиомиоцитов в период между двумя электрическими импульсами стабилен и называется потенциалом покоя. Формирование потенциала действия проходит пять фаз: быстрая деполяризация, быстрая начальная реполяризация, плато, конечная реполяризация, диастолический потенциал (наблюдается в период покоя клетки).

В период быстрой деполяризации открываются быстрые натриевые каналы, и натрий устремляется в клетку. Каналы быстро инактивируются (закрываются) и открываются медленные Na-Caканалы, по которым в клетку входят ионы натрия и кальция. Это порождает достижение пика потенциала действия (овершута). Медленные Na-Ca-каналы не способны к быстрой инактивации и остаются открытыми в фазу быстрой реполяризации и плато. Реполяризация обусловлена входом в клетку ионов кальция. В период плато продолжается вход в клетку натрия и кальция по медленным каналам. Одновременно открываются калиевые каналы, и ионы калия выходят из кардиомиоцитов. Число входящих катионов (ионы натрия и кальция) равно числу выходящих катионов (ионы калия), в результате мембранный потенциал «застывает» – возникает плато потенциала действия. В фазу конечной реполяризации поток выходящих ионов калия становится сильнее.

В состоянии покоя в кардиомиоцитах в электрогенном режиме работает натрий-калиевый насос, в результате которого один ион калия вносится в клетку, три иона натрия выносятся из клетки.

Определенным фазам цикла возбуждения миокарда соответствуют периоды невозбудимости (абсолютной рефрактерности) и сниженной возбудимости (относительной рефрактерности). Во время периода абсолютной рефрактерности клетка невозбудима, в период относительной рефрактерности возбудимость постепенно восстанавливается. Рефрактерность связана главным образом с инактивацией быстрых натриевых каналов, наступающей при длительной деполяризации. Эти каналы постепенно восстанавливаются лишь после того, как мембранный потенциал реполяризуется до уровня –40 мВ. Следовательно, продолжительность рефрактерного периода связана с продолжительностью потенциала действия. Длительный рефрактерный период предохраняет миокард от слишком быстрого повторного возбуждения, т. к. такое возбуждение могло бы нарушить нагнетательную функцию сердца. В связи с этим сердце не способно, в отличие от скелетных мышц, тетанически сокращаться.

Проводимость миокарда. В миокарде существует два механизма проведения возбуждения: с участием специализированной проводящей системы и с помощью кардиомиоцитов. В норме возбуждение возникает в синусно-предсердном узле и радиально распространяется к сократительным кардиомиоцитам предсердий и по специальным проводящим путям – к предсердножелудочковому узлу. Скорость проведения возбуждения минимальна – 0,05 м/с, что приводит к задержке проведения импульса на 0,02–0,04 с. Низкая скорость проведения возбуждения и атриовентрикулярная задержка обеспечивают последовательное сокращение сначала предсердий, а затем желудочков. Достигнув предсердно-желудочкового узла, возбуждение продолжает распространяться по проводящей системе желудочков: сначала возбуждается межжелудочковая перегородка, затем верхушка сердца, базальные отделы желудочков и сократительные кардиомиоциты. Скорость распространения возбуждения существенно отличается в проводящих кардиомиоцитах (волокна Пуркинье – до 4 м/с, по пучку Гиса – около 1 м/с) и сократительных (около 0,5 м/с). Высокая скорость распространения возбуждения обеспечивает почти одновременное сокращение клеток миокарда, что повышает его мощность и эффективность нагнетательной функции желудочков.

Проведение возбуждения осуществляется электротонически, распространяясь с одной клетки на другую. Проводящая система обеспечивает ритмическую генерацию импульсов, последовательность сокращений предсердий и желудочков и синхронное вовлечение в процесс сокращения сократительных кардиомиоцитов желудочков.

Сократимость миокарда. Рабочие клетки миокарда – сократительные кардиомиоциты – обладают способностью сокращаться. Кардиомиоцит содержит большое количество миофибрилл, каждая миофибрилла состоит из протофибрил. Различают два типа протофибрил – тонкие, образованные белком актином, и толстые, состоящие из белка миозина. Сократительные кардиомиоциты, так же как и клетки скелетной ткани, являются поперечнополосатыми, однако упорядоченность актиновых и миозиновых волокон в них менее выражена. Поверхностная мембрана кардиомиоцитов образует систему поперечных трубочек – Т-образные выпячивания (Т-система), направленные вглубь клетки и контактирующие с цистернами саркоплазматического ретикулума (система продольных трубочек).

Возбуждение, возникающее на мембране кардиомиоцита, смещает мембранный потенциал до уровня –40 мВ, после чего повышается проницаемость медленных потенциалзависимых кальциевых каналов, через которые в саркоплазму из внеклеточной среды поступает небольшое количество ионов кальция. Эти пусковые ионы увеличивают проницаемость для ионов кальция, заключенных в саркоплазматический ретикулум. Повышение внутриклеточной концентрации ионов кальция является ключевым фактором, который обеспечивает элетромеханическое сопряжение, т. е. связь между возбуждением кардиомиоцита и его сокращением. В мышечном волокне ионы кальция взаимодействуют с тропонином, что приводит к изменению положения тропомиозина, на актиновой нити в результате открываются центры, с которыми миозиновые мостики способны вступать в контакт. Далее начинается мостиковый цикл и укорочение мышечного волокна. Когда из среды удаляется кальций, то сердечная мышца уже через 15–60 с перестает сокращаться.

Обеспечение всех свойств миокарда требует постоянных затрат энергии. В качестве основного энергетического субстрата выступает АТФ, большую роль играет также креатинфосфат.

Особенности сократимости миокарда проявляются в следующем. Во-первых, в отличие от скелетной мышцы сила сокращения миокарда не зависит от силы раздражителя и подчиняется закону «все или ничего». Следовательно, раздражитель, сила которого равна пороговой величине или превышает ее, вызывает возбуждение всех кардиомиоцитов. Во-вторых, сердечная мышца не способна к тетаническим сокращениям и при высоких частотах стимуляции сохраняет режим одиночных сокращений. Такая особенность является следствием длительного рефрактерного периода, который защищает сердце от утомления. В-третьих, для миокарда характерен хронотропный эффек («лестница Боудича»). Он проявляется в том, что сила сердечных сокращений увеличивается с повышением частоты стимуляции. Это связано с тем, что при высокой частоте стимуляции промежутки времени между сокращениями уменьшаются и не происходит полное удаление кальция из саркоплазмы. При очередном сокращении концентрация кальция увеличивается и это приводит к возрастанию силы сокращений. В-четвертых, сила сокращений миокарда увеличивается по мере растяжения мышечных волокон (закон Франка – Старлинга).

3. Механическая работа сердца

Под механической работой сердца понимают внешние проявления его работы (тоны сердца, верхушечный толчок) и сердечный цикл.

Сердечный цикл состоит из систолы (сокращение) и диастолы (расслабление) предсердий, систолы и диастолы желудочков. Систола и диастола предсердий и желудочков согласованы между собой и составляют цикл работы сердца. Первыми начинают сокращаться предсердия (систола предсердий). Волна сокращений начинается от мышечных круговых волокон в устье полых вен и распространяется по мускулатуре предсердий, давление в предсердиях повышается. Затем наступает диастола предсердий. С момента начала диастолы предсердий начинается систола желудочков. Систола желудочков состоит из двух периодов: напряжения и изгнания. В период напряжения сократительная волна распространяется по миокарду, повышается давление в желудочках до 2–6 мм рт. ст., в результате закрываются предсердно-желудочковые клапаны, полулунные клапаны остаются закрытыми. Наступает изометрическое сокращение желудочков, сопровождающееся повышением внутрижелудочкового давления. Когда оно достигает 50–80 мм рт. ст, открываются полулунные клапаны. Период изгнания – сначала быстрая, затем медленная эвакуация крови из желудочков в аорту и легочные артерии. Давление крови понижается. После медленного изгнания крови наступает диастола желудочков, состоящая из протодиастолического периода, периода изометрического расслабления и периода наполнения кровью. В связи с развивающимся расслаблением происходит падение давления, что приводит к смыканию полулунных клапанов. Когда давление в желудочках становится меньше давления в предсердиях, открываются предсердно-желудочковые клапаны. С момента раскрытия клапанов начинается фаза сначала быстрого, затем медленного наполнения предсердий кровью. Поступление крови в желудочки вначале идет быстро, т. к. давление в них после расслабления падает до нуля (фаза быстрого наполнения). По мере наполнения давление увеличивается и наполнение замедляется (фаза медленного наполнения). В конце диастолы желудочков вновь возникает систола предсердий. Эта фаза наполнения желудочков, обусловленная систолой предсердий.

Выделяют три фактора, обеспечивающие наполнение сердца кровью: остаток движущей силы, которая была сообщена крови предыдущим сокращением, присасывающее действие грудной клетки, наличие механизма, насасывающего кровь в предсердия за счет увеличения продольного размера сердца.

При частоте сердечных сокращений 75 уд/мин сердечный цикл длится 0,8 с. При этом на систолу желудочков приходится 0,33 с, на диастолу желудочков – 0,47 с.

Временные параметры сердечного цикла:

1. Систола желудочков – 0,33 с:

1.1. Период напряжения желудочков – 0,08 с:

а) фаза асинхронного сокращения – 0,05 с,

б) фаза изометрического сокращения – 0,03 с.

1.2. Период изгнания крови – 0,25 с:

а) фаза быстрого изгнания крови – 0,12 с,

б) фаза медленного изгнания крови – 0,13 с.

2. Диастола желудочков – 0,47 с:

2.1. Протодиастолический период – 0,04 с,

2.2. Период изометрического расслабления – 0,08 с,

2.3. Период наполнения кровью – 0,35 с:

а) фаза быстрого наполнения – 0,08 с,

б) фаза медленного наполнения – 0,17 с,

в) фаза наполнения кровью, обусловленная систолой предсердий – 0,1 с.

Верхушечный толчок – видимые колебания грудной клетки в области V межреберья слева от грудины. Возникает в результате изменения объема, формы и пространственного расположения сердца в грудной полости.

Тоны сердца. При сокращении сердца возникают колебания звуковой частоты (15–400 Гц), передающиеся на грудную клетку, где их можно выслушать ухом, стетоскопом или зарегистрировать с помощью микрофона. Различают четыре тона: I и II тоны называют облигатными, т. к. они выслушиваются постоянно, III и IV тоны относят к факультативным, они не всегда выявляются. Первый тон (систолический) возникает в результате закрытия предсердно-желудочковых клапанов, колебания их сухожильных нитей и напряжения стенок желудочков. Второй тон (диастолический), более короткий, связан с закрытием полулунных клапанов. Третий тон возникает в результате быстрого наполнения кровью желудочков и отражает вибрацию их стенок. Четвертый тон возникает в момент систолы предсердий, предшествует первому тону и связан с выбросом крови из предсердий в желудочки.

Сердце выполняет резервуарную и нагнетательную функции. В период диастолы в нем накапливается очередная порция крови. Во время систолы часть этой крови выбрасывается в большой или малый круги кровообращения. В среднем сердце сокращается 60–80 раз в минуту. Максимальный объем крови перед началом сокращения составляет 140–180 мл – это «конечно-диастолический объем». В период систолы выбрасывается 60–80 мл крови, что составляет «систолический объем». После изгнания крови в сердце остается в среднем 70 мл – «конечно-систолический объем». Конечно-систолический объем делится на остаточный – который остается после самого мощного сокращения и резервный – который может выбрасываться дополнительно при усиленной работе. За 1 мин у взрослого человека сердце перекачивает 4,5–5 л крови – это «минутный объем».


Страницы книги >> 1 2 | Следующая
  • 0 Оценок: 0

Правообладателям!

Данное произведение размещено по согласованию с ООО "ЛитРес" (20% исходного текста). Если размещение книги нарушает чьи-либо права, то сообщите об этом.

Читателям!

Оплатили, но не знаете что делать дальше?


Популярные книги за неделю


Рекомендации