Электронная библиотека » Нил Тайсон » » онлайн чтение - страница 3


  • Текст добавлен: 12 июня 2018, 11:40


Автор книги: Нил Тайсон


Жанр: Зарубежная образовательная литература, Наука и Образование


Возрастные ограничения: +12

сообщить о неприемлемом содержимом

Текущая страница: 3 (всего у книги 9 страниц) [доступный отрывок для чтения: 2 страниц]

Шрифт:
- 100% +

Без этого никакая наука не может считаться зрелой.

4. Между галактик

При масштабной инвентаризации Вселенной и ее составляющих в первую очередь обычно подсчитывают галактики. По последним оценкам, в наблюдаемой Вселенной их примерно сто миллиардов. Галактики – яркие, красивые, набитые звездами – украшают темные пустые бездны пространства, будто города – ночной пейзаж под крылом самолета. Но насколько на самом деле пусты эти пустые бездны? (Насколько пусты поля и луга между городами?) Если галактики бросаются в глаза и убеждают нас, что все остальное неважно, это не значит, что в пространстве между галактиками не таится много такого, что труднее пронаблюдать. Не исключено, что это даже интереснее или важнее для эволюции Вселенной, чем сами галактики.

Наша собственная спиральная галактика Млечный Путь названа так за то, что и правда похожа на молоко, пролитое на ночное небо, если смотреть на него с Земли невооруженным взглядом. Само слово «галактика» происходит от древнегреческого «галактос» – «молоко». Две наши ближайшие соседки-галактики, расстояние до которых меньше 200 000 световых лет, маленькие и неправильной формы. Эти космические объекты наблюдал Фернан Магеллан во время своего знаменитого кругосветного путешествия в 1519 году и написал об этом в своем судовом журнале. В честь великого мореплавателя мы назвали их Большое и Малое Магелланово облако, и видны они в основном в Южном полушарии в виде пары облачков на небе где-то за звездами. Ближайшая галактика больше нашей находится в двух миллионах световых лет от нас, за звездами, составляющими созвездие Андромеды. Эта спиральная галактика, исторически названная Великая туманность Андромеды, несколько массивнее и вдвое ярче Млечного Пути. Примечательно, что во всех этих названиях вовсе не говорится о звездах: Млечный Путь, Магеллановы облака, Туманность Андромеды. Все они были окрещены до изобретения телескопов, поэтому люди не могли разглядеть их в подробностях и не знали, что они состоят из звезд.

Галактики – яркие, красивые, набитые звездами – украшают темные пустые бездны пространства, будто города – ночной пейзаж под крылом самолета.


Галактики, запечатленные телескопом Хаббла

* * *

Как рассказано в главе 9, если бы не телескопы, работающие в различных диапазонах спектра, мы бы до сих пор считали, что в космосе между галактиками пусто. Однако при помощи современных детекторов и современных теорий мы исследовали космические луга и поля и обнаружили там самые разные «скрытые» объекты: темную материю, карликовые галактики, тусклые голубые галактики, убегающие из галактик звезды, в том числе взрывающиеся, вездесущие газовые облака, потрясающие высокоэнергичные частицы разного рода, загадочную квантовую энергию вакуума и раскаленный до миллионов градусов газ, испускающий рентгеновские лучи.

Впечатляющий список: можно сказать, что все самое интересное во Вселенной происходит между галактиками, а не в них самих.

Если тщательно исследовать любой объем пространства, окажется, что карликовых галактик в нем раз в десять больше, чем крупных. Моя первая научно-популярная статья, которую я написал в начале 80-х, называлась «Галактика и семь гномов» и была посвящена миниатюрному семейству, проживающему в ближайших окрестностях Млечного Пути. С тех пор поблизости от нас насчитали уже десятки карликовых галактик. Полнокровные большие галактики содержат сотни миллиардов звезд, а карликовые могут содержать всего-то миллион, а следовательно, зарегистрировать их в сто тысяч раз сложнее. Неудивительно, что мы до сих пор открываем их прямо у себя под носом.

Если тщательно исследовать любой объем пространства, окажется, что карликовых галактик в нем раз в десять больше, чем крупных.

Карликовые галактики, где больше не рождаются звезды, обычно похожи на крошечные скучные пятнышки. Если же в карликовой галактике еще возникают новые звезды, она обязательно будет иметь неправильную форму и, откровенно говоря, выглядеть не слишком привлекательно. У карликовых галактик есть три свойства, мешающие их обнаружить. Во-первых, они очень маленькие, и их легко затмевают соблазнительные спиральные галактики, которые соревнуются за наше внимание. Во-вторых, они тусклые, поэтому не попадают во многие исследования, где рассматриваются объекты с яркостью выше некоторого порога. А в-третьих, у них невысокая плотность звезд, поэтому они плохо видны на фоне свечения ночной атмосферы Земли и других источников. Все это так. Но поскольку карликовых галактик гораздо больше, чем «нормальных», наше определение нормального, пожалуй, стоит пересмотреть.

Большинство известных нам карликовых галактик держатся поблизости от более крупных галактик и вращаются вокруг них по орбите, будто спутники. Оба Магеллановых облака – это часть карликового семейства Млечного Пути. Однако жизнь галактик-спутников трудна и полна опасностей. Почти все компьютерные модели их орбит указывают на медленные изменения, которые в конце концов приведут к тому, что большая галактика сначала растерзает, а потом попросту съест незадачливого карлика.

Галактика Млечный Путь за последний миллиард лет лично участвовала по крайней мере в одном акте каннибализма – она поглотила карликовую галактику, чьи жалкие останки еще заметны в виде потока звезд, вращающегося вокруг галактического центра за звездами созвездия Стрельца. Эта система называется Карликовая эллиптическая галактика в Стрельце, но лучше было бы назвать ее просто Ужин.

В плотных недрах скоплений галактик то и дело сталкиваются две-три, а то и больше крупных галактик, после чего остается титаническая груда обломков: спиральные структуры, искаженные до полной неузнаваемости, свежие очаги звездообразования, порожденные яростными столкновениями газовых облаков, и сотни миллионов звезд, разбросанных во все стороны и только что вырвавшихся из тенет гравитации обеих галактик. Некоторые из этих звезд перегруппируются и образуют скопления неправильной формы, которые можно назвать карликовыми галактиками. Прочие так и остаются дрейфовать. Примерно 10 % всех крупных галактик носят следы серьезных гравитационных столкновений с другими крупными галактиками, а среди галактик в составе скоплений эта доля, вероятно, в пять раз больше.

Примерно 10 % всех крупных галактик носят следы серьезных гравитационных столкновений с другими крупными галактиками, а среди галактик в составе скоплений эта доля, вероятно, в пять раз больше.

Да уж, настоящая мясорубка. Сколько же галактических ошметков болтается по межгалактическому пространству, особенно в скоплениях? Неизвестно. Измерить это трудно, поскольку одиночные звезды тусклые, и по отдельности их не пронаблюдать. Приходится исходить из наблюдений слабого свечения, которое испускают все звезды вместе. В сущности, наблюдения скоплений галактик позволяют зарегистрировать именно такое свечение между галактиками, которое показывает, что бродячих бездомных звезд, возможно, столько же, сколько звезд в самих галактиках.

Подольем масла в огонь: мы обнаружили (не нарочно) более десятка сверхновых, взорвавшихся, как мы полагаем, далеко от своих «родных» галактик. В обычных галактиках на каждую взорвавшуюся звезду приходится от ста тысяч до миллиона звезд, которые не взрываются, поэтому одиночные сверхновые, вероятно, выдают существование целых популяций звезд, которых мы не видим. Сверхновые – это звезды, которые взорвались и разлетелись на мельчайшие кусочки, и при этом их светимость временно (на несколько недель) возросла в миллиард раз, так что их стало видно с другого конца Вселенной. Поскольку десяток бездомных сверхновых – это относительно немного, вероятно, многие из них еще ждут, когда мы их откроем, ведь большинство исследований сверхновых основано на систематических наблюдениях известных галактик, а не пустого пространства.

Сверхновые – это звезды, которые взорвались и разлетелись на мельчайшие кусочки, и при этом их светимость временно (на несколько недель) возросла в миллиард раз, так что их стало видно с другого конца Вселенной.

* * *

Скопления галактик – это не просто сумма составляющих их галактик и бродячих звезд.

Измерения при помощи рентгеновских телескопов показывают, что пространство внутри скоплений заполнено газом, раскаленным до десятков миллионов градусов. Этот газ такой горячий, что служит мощным источником рентгеновских лучей. Когда богатые газом галактики проходят через этот горячий газ, они лишаются большей части собственного газа, а значит, и способности создавать новые звезды, что объясняет многие наблюдательные особенности таких «ободранных» галактик. Но если подсчитать полную массу раскаленного газа, то в большинстве скоплений она окажется больше совокупной массы всех галактик в скоплении в целых десять раз. Хуже того, скопления погружены в темное вещество, масса которого в десять раз больше массы всех остальных (видимых) компонент. Иными словами, если бы в телескопы было видно не свет, а массу, наши драгоценные галактики в скоплениях показались бы невзрачными точечками в гигантской гравитирующей сфере.

Все остальное пространство вне скоплений населено галактиками, пик расцвета которых давно прошел. Как уже упоминалось, смотреть в дальний космос – все равно что геологу глядеть на слоистые осадочные породы, которые излагают всю историю формирования гор.

Галактики тусклые не только потому, что до них так далеко, но еще и потому, что доля ярких звезд в них невелика.

Расстояния в космосе так огромны, что свет долетает до нас за миллионы, а то и за миллиарды лет. Когда Вселенная была вдвое моложе, чем сейчас, была широко распространена очень тусклая разновидность очень голубых галактик среднего размера. Мы видим их. Они взывают к нам из далекого прошлого – те самые «далекие-далекие галактики». Голубой цвет – это свечение только что образовавшихся звезд, недолговечных, горячих, массивных и ярких. Галактики тусклые не только потому, что до них так далеко, но и потому, что доля ярких звезд в них невелика. Подобно динозаврам, которые пришли и ушли, и единственные их потомки в наши дни – это птицы, тусклые голубые галактики давно вымерли, но, вероятно, имеют аналог в современной Вселенной. Все ли их звезды выгорели? А вдруг они превратились в невидимые трупы, разбросанные по всей Вселенной? Или эволюционировали и стали привычными нам современными карликовыми галактиками? Или их всех поглотили крупные галактики? Этого мы не знаем, зато можем точно определить их место в космической хронологии.

Если между крупными галактиками в космосе находится так много вещества, можно ожидать, что оно будет отчасти заслонять от нас остальной пейзаж. Это и в самом деле мешает наблюдать самые далекие объекты во Вселенной, например, квазары. Квазары – это очень яркие ядра галактик, чей свет, как правило, добирается до наших телескопов, проделав по Вселенной путь в миллиарды лет. Поскольку квазары – необычайно далекие источники света, из них получаются идеальные подопытные кролики для обнаружения всяческого мусора в пространстве между нами.

Квазары – очень яркие ядра галактик, чей свет, как правило, добирается до наших телескопов, проделав по Вселенной путь в миллиарды лет.

И в самом деле, если разложить свет квазара на спектральные компоненты, в нем окажется полным-полно следов газовых облаков, через которые свет успел пройти. Все известные нам квазары, в какой бы части неба их ни обнаружили, содержат в своем спектре отпечатки изолированных водородных облаков, разбросанных в пространстве и времени.

Этот уникальный класс межгалактических объектов был обнаружен в восьмидесятые годы ХХ века и до сих пор остается предметом активных исследований. Откуда они взялись? Какова содержащаяся в них масса?

Спектры всех известных квазаров содержат следы водорода, а значит, облака водорода есть во Вселенной повсюду. И, как и ожидалось, чем дальше находится квазар, тем больше водородных облаков накладывают отпечатки на его спектр. Некоторые отпечатки (менее одного процента) – просто следствие того, что луч нашего зрения проходит через газ, содержащийся в обычной спиральной или неправильной галактике. Разумеется, можно ожидать, что по крайней мере некоторые квазары окажутся позади обычных галактик, которые мы не видим, потому что до них слишком далеко. Однако другие объекты, поглощающие свет квазаров, с галактиками не спутаешь.

Однако свет квазаров нередко проходит сквозь области пространства, содержащие чудовищные источники гравитации, отчего видимый облик квазара катастрофически искажается. Обнаружить эти источники зачастую непросто, поскольку они могут состоять из обычного вещества, которое находится слишком далеко от нас и потому очень тусклое, а могут представлять собой скопления темного вещества – например, около центров скоплений галактик. Так или иначе, где масса, там и гравитация. А где гравитация, там, согласно общей теории относительности Эйнштейна, и искривление пространства. А искривленное пространство вполне может вести себя как обычная стеклянная линза и изменить путь проходящего сквозь него света. И в самом деле, далекие квазары и целые галактики видны нам сквозь «линзу» из-за массивных объектов, оказавшихся на луче зрения земных телескопов. В зависимости от массы такой линзы и искривленной геометрии луча зрения гравитационная линза может увеличивать, искажать и даже расщеплять далекий источник света на несколько изображений – точь-в-точь кривые зеркала в парках развлечений.

Среди самых далеких из известных нам объектов во Вселенной есть даже не квазар, а обычная галактика, чей слабый свет существенно усилен под действием гравитационной линзы, находящейся между нами. Так что, если мы хотим заглянуть туда, куда не позволяют обычные телескопы, нам придется рассчитывать на эти «межгалактические» телескопы – и с их помощью обновлять рекорды дальности.

* * *

Межгалактическое пространство – это, конечно, очаровательно, но гулять там вредно для здоровья. Даже если пренебречь тем фактом, что вашему теплому организму придется замерзнуть насмерть, чтобы достичь равновесия с царящей во Вселенной температурой, равной 3 Кельвина (–270°С). И тем, что клетки вашей крови лопнут, когда вы задохнетесь от отсутствия атмосферного давления. Все это заурядные опасности, не требующие особого внимания. Есть и более экзотические: например, межгалактическое пространство постоянно прошивают высокоэнергичные скоростные заряженные субатомные частицы. Мы зовем их космическими лучами. Самые высокоэнергичные частицы обладают энергией в сто миллионов раз больше, чем можно достичь в самых крупных ускорителях на Земле. Откуда они берутся, остается загадкой, однако большинство из этих заряженных частиц – это протоны, ядра атомов водорода, и движутся они со скоростью 99,9999999999999999999 процента скорости света. Примечательно, что каждая из этих субатомных частиц иногда несет столько энергии, что ее хватит, чтобы забить в лунку мячик для гольфа с любой точки лужайки.

Но самое, пожалуй, экзотическое явление между (и среди) галактик в вакууме пространства-времени – это бурлящий океан виртуальных частиц, пар вещества и антивещества, которые невозможно зарегистрировать, поскольку они постоянно возникают и тут же аннигилируют. Этот поразительный феномен, предсказанный квантовой физикой, назвали «энергией вакуума», и она проявляется в виде направленного наружу давления, противодействующего гравитации, которое прекрасно себя чувствует даже при полном отсутствии вещества. Вероятно, расширение Вселенной – воплощение темной энергии – объясняется именно воздействием энергии вакуума.

Вероятно, расширение Вселенной – воплощение темной энергии – объясняется именно воздействием энергии вакуума.

Да, в межгалактическом пространстве и вправду происходит самое интересное. И так будет всегда.

5. Темное вещество

Самая знаменитая из сил природы – гравитация – отвечает и за самые понятные, и за самые загадочные природные явления. Чтобы понять, что загадочное «дистанционное воздействие» гравитации коренится в природных свойствах всех частиц вещества и силу притяжения между любыми двумя телами можно описать простым алгебраическим уравнением, потребовался самый блестящий и влиятельный ум тысячелетия – гений Исаака Ньютона. А чтобы показать, что еще точнее дистанционное воздействие гравитации описывается как искажение ткани пространства-времени, вызванное любым сочетанием вещества и энергии, потребовался самый блестящий и влиятельный ум прошлого столетия – гений Альберта Эйнштейна. Эйнштейн показал, что теория Ньютона нуждается в некотором видоизменении, чтобы описать гравитацию точно – то есть, например, предсказать, насколько искривится луч света, проходя мимо массивного тела. Уравнения Эйнштейна сложнее ньютоновых, зато они прекрасно описывают вещество, которое мы знаем и любим. Все то вещество, которое мы видим, ощущаем, осязаем, нюхаем и иногда пробуем на вкус.

Кто будет следующим в этой череде гениев, неизвестно, но мы уже почти сто лет ждем, когда появится кто-то, кто объяснит, почему подавляющее большинство гравитации, которую мы намеряли во Вселенной, – почти 85 процентов! – обеспечивается субстанцией, которая больше никак не взаимодействует с «нашими» веществом и энергией. А может, избыток гравитации вообще порожден не веществом и энергией, а чем-то концептуально иным? Так или иначе, мы не имеем об этом ни малейшего представления. И ни на шаг не приблизились к ответу с 1937 года, когда проблему «недостающей массы» впервые проанализировал американский астрофизик швейцарского происхождения Фриц Цвики. Он преподавал в Калифорнийском технологическом институте более сорока лет и сочетал глубочайшие познания в физике космоса с исключительным красноречием и поразительной способностью критиковать коллег.

Цвики исследовал движение отдельных галактик в пределах огромного скопления, расположенного на большом расстоянии за нашими соседками-звездами Млечного Пути, составляющими созвездие Волосы Вероники (в честь древнееврейской царевны). Скопление Волос Вероники, как мы называем его сегодня, – это изолированный густонаселенный ансамбль галактик примерно в 300 миллионах световых лет от Земли. Тысяча его галактик вращаются вокруг центра скопления на первый взгляд довольно суматошно, будто рой пчел вокруг улья. Цвики изучил движение нескольких десятков галактик в качестве меток гравитационного поля, которое связывает скопление воедино, и обнаружил, что их средняя скорость на удивление велика. Поскольку высокая скорость притягиваемых тел обычно объясняется большой гравитацией, Цвики предположил, что в центре скопления Волос Вероники находится какая-то гигантская масса. Чтобы сопоставить такую оценку с реальным положением дел, можно вычислить сумму масс всех видимых галактик в скоплении. И хотя Волосы Вероники считаются одним из самых крупных и массивных скоплений во Вселенной, видимых галактик в нем недостаточно, чтобы объяснить скорости, которые измерил Цвики.

Насколько все плохо? Неужели известные законы гравитации нас подвели? В Солнечной системе они, однако, действуют бесперебойно. Ньютон показал, что всегда можно однозначно рассчитать скорость, которую должна поддерживать планета, чтобы сохранять стабильную орбиту на той или иной дистанции от Солнца, не упасть на Солнце и не улететь на более далекую орбиту. Оказывается, если бы мы могли разогнать Землю по орбите со скоростью больше нынешней в корень квадратный из двух (1,4142…) раз, наша планета достигла бы «второй космической скорости» и покинула бы Солнечную систему. Те же расчеты можно применить к системам гораздо более крупным, например, к нашей галактике Млечный Путь, в которой звезды движутся по орбитам, соответствующим гравитации всех остальных звезд, и к скоплениям галактик, в которых каждая галактика ощущает гравитацию всех остальных галактик. Именно поэтому в записных книжках Эйнштейна на страничке с формулами появилась эпиграмма в честь Исаака Ньютона (она приведена в книге Károly Simonyi, A Cultural History of Physics (Boca Raton, FL: CRC Press, 2012)):

 
Seht die Sterne, die da lehren
Wie man soll den Meister ehren
Jeder folgt nach Newtons Plan
Ewig schwiegend seiner Bahn.
 

(Взгляните на звезды, которые учат, как надо слушаться учителя: каждая вечно и спокойно движется согласно расчетам Ньютона по своему предписанному пути.)


Если мы, как это сделал Цвики в 30-е годы, изучим скопление Волосы Вероники, то окажется, что все галактики, которые в него входят, движутся со скоростью больше второй космической для этого скопления. Оно должно было быстро разлететься на части, всего за несколько сотен миллионов лет не должно было остаться ни следа от нынешнего роя. Однако этому скоплению уже больше десяти миллиардов лет – они почти что ровесники с самой Вселенной. Так в астрофизике появилась самая старая на сегодня задача без ответа.

* * *

На протяжении десятилетий, прошедших после публикации работ Цвики, ту же особенность выявили и у других скоплений галактик, так что речь идет не о какой-то удивительной особенности Волос Вероники: это скопление ни в чем не виновато. А кто виноват? Или что? Ньютон? Он вне подозрений. По крайней мере, пока. Его теории изучались 250 лет и прошли все проверки. Эйнштейн? Нет. Колоссальная гравитация скоплений галактик все же не настолько велика, чтобы требовать полномасштабного применения общей теории относительности Эйнштейна, которой во времена Цвики исполнилось всего двадцать лет. Возможно, «недостающая масса», удерживающая галактики в скоплении Волосы Вероники, и в самом деле существует, просто в какой-то неизвестной невидимой форме. Сегодня мы довольствуемся выражением «темное вещество»: оно не намекает, что нам чего-то недостает, но все же предполагает, что должна существовать какая-то иная разновидность вещества, просто мы ее еще не открыли.

Едва астрофизики смирились с существованием темного вещества в скоплениях галактик, как загадка снова заявила о своем незримом присутствии. В 1976 году покойная Вера Рубин, астрофизик из Института Карнеги в Вашингтоне, открыла похожую аномалию масс внутри самих спиральных галактик. Она изучала скорости вращения звезд вокруг центров галактик и сначала обнаружила то, что и ожидала: внутри видимого диска каждой галактики звезды, находящиеся дальше от центра, движутся быстрее, чем ближние. Чем дальше звезды, тем больше вещества (звезд и газа) находится между ними и центром галактики, поэтому у них выше орбитальная скорость. Однако за пределами светящегося диска галактики можно обнаружить изолированные газовые облака и несколько ярких звезд. Вера Рубин проследила движение этих объектов, использовав их как метки гравитационного поля вне самых ярких частей галактик, где нет видимого вещества, вносящего вклад в общую массу, и обнаружила, что их орбитальные скорости, которые должны были здесь, в глухой провинции, постепенно уменьшаться с увеличением расстояния, оставались по-прежнему высокими.

Эти пустые по большей части объемы пространства – дальнее захолустье каждой галактики – содержат так мало видимого вещества, что аномально высокие орбитальные скорости звезд-меток невозможно объяснить. Вера Рубин совершенно законно предположила, что в этих дальних областях, далеко за пределами видимого края каждой спиральной галактики, находится какая-то разновидность темного вещества. Благодаря работам Рубин мы теперь называем эти загадочные области «гало темного вещества». Загадочные гало существуют у нас прямо под носом, здесь, около Млечного Пути. Расхождение между совокупной массой видимых объектов и массой, которая объясняла бы общую гравитацию, налицо во всех галактиках и во всех скоплениях; иногда они различаются в несколько раз, а иногда – в несколько сотен. В среднем по Вселенной получается, что темное вещество в космосе обеспечивает примерно в шесть раз больше гравитации, чем все видимое вещество.

Дальнейшие исследования показали, что темное вещество не может состоять из обычного вещества, которое почему-то светится тусклее или не светится вообще. К этому выводу подводят две логические цепочки. Во-первых, мы можем практически с полной уверенностью исключить всех знакомых нам кандидатов – в точности как подозреваемых при опознании. Может быть, темное вещество залегает в черных дырах? Нет, мы бы наверняка обнаружили такое большое количество черных дыр по гравитационному воздействию на ближайшие звезды. Может, это темные облака? Нет, они бы поглощали свет далеких звезд или еще как-то взаимодействовали с ним, а добропорядочное темное вещество так никогда не поступает. А может, это бродячие планеты, астероиды и кометы в межзвездном (или межгалактическом) пространстве, ведь все эти тела сами не светятся? Трудно поверить, чтобы во Вселенной производилось в шесть раз больше массы в виде планет, чем в виде звезд. Получается, что на каждую звезду в Галактике должно приходиться 6000 Юпитеров, хуже того – 2 000 000 Земель. Но, к примеру, в нашей Солнечной системе все вместе, кроме Солнца, весит меньше одной пятой процента от массы Солнца.

О странной природе темного вещества говорят и более прямые данные – например, соотношение гелия и водорода во Вселенной. Это число дает представление о том, как выглядела ранняя Вселенная. По достаточно точным оценкам, в процессе ядерного синтеза в первые несколько минут после Большого взрыва на каждые десять ядер водорода (которые представляют собой просто протоны) образовалось одно ядро гелия. Расчеты показывают, что если бы в ядерном синтезе участвовала значительная доля темного вещества, отношение гелия к водороду было бы гораздо выше. Из этого можно сделать вывод, что большая часть темного вещества, а следовательно, большинство массы во Вселенной не участвует в ядерном синтезе, а значит, не подходит под определение «обычного» вещества, которое по сути своей готово участвовать в атомных и ядерных взаимодействиях, формирующих вещество в том виде, в каком мы его знаем. Этот вывод – темное вещество и ядерный синтез никак не связаны – независимо подтверждают и тщательные наблюдения фонового микроволнового излучения.

Темное вещество – это не просто вещество, которое почему-то темное. Нет. Это что-то принципиально иное.

Таким образом, насколько мы можем судить, темное вещество – это не просто вещество, которое почему-то темное. Нет. Это что-то принципиально иное. Темное вещество создает гравитацию по тем же самым законам, что и обычное вещество, но больше никак себя не проявляет – не делает ничего такого, что мы могли бы зарегистрировать. Разумеется, эта логика ущербна, поскольку мы не знаем, что, собственно, темное вещество собой представляет. Если любая масса создает гравитацию, следует ли из этого, что за любой гравитацией стоит масса? Этого мы не знаем. Возможно, с веществом-то все нормально, просто мы не до конца понимаем, что такое гравитация.

* * *

В различных астрофизических средах различается и степень несоответствия между темным и обычным веществом, однако это несоответствие становится заметнее, когда имеешь дело с крупными объектами – галактиками и скоплениями галактик. У самых маленьких объектов – лун и планет – никакого несоответствия не наблюдается. Например, гравитация на поверхности Земли полностью объясняется обычным веществом, по которому мы ходим. Так что если у вас на Земле избыточный вес, темное вещество тут ни при чем. Оно никак не влияет ни на вращение Луны по орбите, ни на движение планет вокруг Солнца – но, как мы уже видели, его приходится учитывать при расчетах движения звезд вокруг центра Галактики.

Может быть, на галактических масштабах действуют иные законы гравитации? Едва ли. Скорее всего, темное вещество состоит из вещества, природу которого нам еще предстоит разгадать, вещества менее сконцентрированного, чем обычное. Иначе мы зарегистрировали бы гравитацию отдельных концентрированных сгустков темного вещества, испещряющих Вселенную: комет из темного вещества, планет из темного вещества, галактик из темного вещества. А насколько мы можем судить, это не так.

Зато мы знаем, что вещество, которое мы видим и любим, то самое, из которого состоят звезды, планеты и живые существа, – это лишь тоненькая глазурь на космическом торте, скромные льдинки в огромном космическом океане, состоящем из чего-то, которое выглядит как ничто.

* * *

В первые полмиллиона лет после Большого взрыва – сущий миг по сравнению с хронологией космической истории, насчитывающей 14 миллиардов лет, – вещество во Вселенной уже начало образовывать сгустки, которым предстояло превратиться в скопления и сверхскопления галактик. При этом в следующие полмиллиона лет космос увеличился вдвое и продолжал расти. Так что во Вселенной противоборствуют две силы: гравитация хочет, чтобы все слиплось, а расширение – чтобы все рассеялось. Если все сосчитать, становится понятно, что гравитация обычного вещества в одиночку не выиграла бы эту битву. Ей нужна помощь темного вещества, без которого мы жили бы – то есть не жили бы – во Вселенной, где не было бы никаких структур: ни скоплений, ни галактик, ни звезд, ни планет, ни людей.

Сколько же нужно было гравитации темного вещества? В шесть раз больше, чем дает обычное вещество само по себе. То есть именно столько, сколько мы обнаруживаем во Вселенной. Эта оценка не говорит нам, что такое темное вещество, а лишь подтверждает, что оно и в самом деле играет роль, которую не может сыграть одно лишь обычное вещество, как ни старайся.

Так что темное вещество – наш закадычный враг и лютый друг. Мы понятия не имеем, что это такое. Это несколько раздражает. Но без него наши расчеты не дают точной картины мироздания.

В общем и целом ученых смущает, что приходится опираться в расчетах на концепты, которых мы не понимаем, но надо – значит надо. Причем темное вещество – не первое препятствие такого рода на пути научного прогресса. Например, в XIX веке ученые измерили энергию солнечного света и показали, как именно она влияет на наш климат и смену времен года, не подозревая, что за выработку этой энергии отвечает термоядерный синтез. В то время в перечень самых лучших гипотез входила, например, смешная с нашей точки зрения идея, что Солнце – это горящая глыба угля. В том же XIX веке мы наблюдали звезды, измеряли их спектры и классифицировали их задолго до того, как появилась квантовая физика (это произошло уже в ХХ веке), которая позволила нам разобраться, почему эти спектры выглядят так, а не иначе.


Страницы книги >> Предыдущая | 1 2
  • 4.6 Оценок: 5

Правообладателям!

Данное произведение размещено по согласованию с ООО "ЛитРес" (20% исходного текста). Если размещение книги нарушает чьи-либо права, то сообщите об этом.

Читателям!

Оплатили, но не знаете что делать дальше?


Популярные книги за неделю


Рекомендации