-------
| Библиотека iknigi.net
|-------
| Илья Валерьевич Мельников
|
| Электротехнические материалы и оборудование
-------
Илья Мельников
Электротехнические материалы и оборудование
Введение
Строительные материалы являются основой строительства. Для возведения зданий и сооружений требуется большое количество разнообразных строительных материалов, стоимость которых достигает почти 60 % всей стоимости строительно-монтажных работ. Промышленность строительных материалов представляет собой сложный комплекс специализированных отраслей производства, изготовляющих большое количество продукции.
Качество строительных, в том числе и отделочных работ, зависит от тщательного выполнения их технологии, от того, насколько правильно применены строительные материалы. Знание возможностей и эффективности использования конкретных строительных материалов позволяет проектировать и возводить долговечные сооружения, удовлетворяющие современным техническим требованиям и эстетическим запросам. Виды строительных материалов и технология их изготовления изменялись вместе с развитием производственных сил и сменой производственных отношений в обществе. Простейшие материалы и примитивные технологии заменялись более совершенными, на смену ручному изготовлению пришло машинное.
За тысячи лет до нашей эры в массовом строительстве использовали кирпич-сырец, в монументальных постройках – горный камень и лишь в конструкциях перекрытий и опор долгое время применяли дефицитное дерево. Так, для строительства в странах Востока в основном использовали, предварительно обработанную и для придания прочности смешанную с рубленой соломой, глину. Такой глиной обмазывали стены, из нее лепили крыши.
Качество и долговечность сооружения существенно повышало применение высушенных или обожженных глиняных кирпичей. Со временем ассортимент строительных материалов расширялся и видоизменялся. Так, вместо традиционных мелкоштучных тяжелых материалов было организовано массовое производство относительно легких крупноразмерных строительных деталей и конструкций из сборного железобетона, гипса, бетонов с легкими заполнителями, ячеистых бетонов, бесцементных силикатных автоклавных бетонов и др. Широкое развитие получило производство гипсокартонных материалов улучшенного качества, звукопоглощающих и декоративных материалов, гидроизоляционных материалов и изделий. В современном строительстве расширяется использование эффективных видов металлопроката, изделий из древесины, керамических и неметаллических материалов.
Быстрыми темпами развивается производство и применение в строительстве полимерных материалов различного назначения, пластмасс и смол. Создаются предприятия по выпуску теплоизоляционных материалов и легких заполнителей. Все больше в строительстве используется для наружной и внутренней отделки зданий стекло и изделия из него. Для этих целей изготавливают стекломрамор, цветное стекло, ситаллы, шлакоситаллы, мозаичные стеклянные плитки широкой цветовой гаммы. Растет выпуск и применение керамических облицовочных материалов за счет внедрения новых процессов декорирования, расширения гаммы цветных глазурей, создания рельефных рисунков и орнаментов. Увеличивается производство крупноразмерных плиток.
Разнообразие конструктивных типов зданий и сооружений требует, чтобы сырье для производства строительных материалов было недорогим и пригодным для изготовления широкого диапазона изделий. Таким требованиям отвечают многие виды нерудного минерального сырья, занимающего по объему запасов значительное место среди полезных ископаемых, например, силикаты, алюмосиликаты и др. Добыча нерудного строительного сырья, залегающего в основном в верхней части осадочного покрова, является технологически несложной. По сравнению с другими обрабатывающими отраслями невысок и уровень затрат на переработку этого сырья из расчета на единицу массы готовой продукции.
Наиболее эффективным является комплексное использование одного вида добываемого нерудного сырья для производства продукции различного назначения. Это подтверждается, например, внедрением метода переработки нефелинового сырья в глинозем для получения алюминия, содопродуктов и цемента. Значительный эффект дает и комплексная переработка сланцев в бензин, фенолы, цемент и серу. Промышленная отрасль производства строительных материалов является единственной отраслью, которая не множит, а потребляет промышленные отходы, такие как зола, шлаки, древесные и металлические отходы для получения изделий различного назначения. При изготовлении строительных материалов используют также побочные продукты – глину, щебень, песок и др., полученные при добыче руд и угля. Комплексное использование сырья является безотходной технологией. Эта технология позволяет осуществить природоохранные мероприятия и многократно увеличить эффективность производства.
Постоянно возрастающий объем строительства, все возрастающие требования к его качеству требуют от строителей разных специальностей высококвалифицированного подхода, высокого уровня теоретических знаний и профессиональной подготовки, а также умелого сочетания их в повседневной работе.
Целью книги является ознакомление специалистов в области строительства с основными строительными материалами, их многогранными свойствами и характеристиками, технологией изготовления, а также опытом использования для применения в практических делах. Материал изложен на базе последних достижений в сфере технологии изготовления строительных материалов и изделий, освещены основные направления их совершенствования.
СТРОИТЕЛЬНЫЕ МАТЕРИАЛЫ И ИЗДЕЛИЯ
КЛАССИФИКАЦИЯ И ОСНОВНЫЕ СВОЙСТВА СТРОИТЕЛЬНЫХ МАТЕРИАЛОВ
В настоящее время с возрастанием экономического потенциала страны строительству и строительным материалам уделяется очень много внимания. Современное строительство характеризуется высоким развитием научно-технической базы, обеспечивающей быстрый рост разработки новых эффективных строительных материалов, совершенствования технологии их производства, стремлением перенести значительную часть строительных процессов в условия производства, что позволяет значительно облегчить и улучшить условия труда, сократить его затраты и снизить стоимость продукции. Чем шире ассортимент, выше качество и ниже стоимость строительных материалов, тем успешнее осуществляется строительство. В процессе строительства и эксплуатации зданий и сооружений строительные материалы, изделия и конструкции, из которых они возводятся, подвергаются различным физико-механическим, технологическим и химическим воздействиям. Поэтому от специалиста требуется умение со знанием дела правильно выбирать строительные материалы, изделия или конструкции, обладающие достаточной стойкостью, надежностью и долговечностью в конкретных условиях эксплуатации. Для этого необходимы специальные знания используемых материалов и изделий, перечень контролируемых свойств, их показатели, виды и классификации выпускаемой продукции.
Чтобы легче разобраться в многообразии материалов, применяемых в строительстве, их классифицируют (разделяют) на группы, обладающие одним общим признаком. В основном применяют классификацию по технологическому признаку. В основу такой классификации положены вид сырья, из которого изготовляют материалы и производственная технология, обеспечивающая получение материала. Строительные материалы классифицируют:
– по назначению (отделочные, конструкционные, гидроизоляционные, теплоизоляционные, акустические, герметизирующие, антикоррозионные);
– по виду материала (древесные, каменные, полимерные, металлические, стеклянные, керамические и др.);
– по способу получения (природные и искусственные).
Природные строительные материалы добывают в местах их естественного образования (горные породы), или роста (древесина). Состав и свойства этих материалов в основном зависят от происхождения исходных пород и способа их обработки и переработки.
Искусственные строительные материалы изготавливают из природного минерального и органического сырья (песка, глины, нефти, газа, известняка и т.д.) и промышленных отходов (шлаков, золы и др.) по специальной технологии. Полученные искусственные материалы приобретают новые свойства, отличные от свойств исходного сырья.
Возможность использования материалов в строительных конструкциях и изделиях в значительной степени определяется его свойствам. Свойства материалов определяются составом и структурой материала. Структуру материала изучают на микроуровне при помощи микроскопов и на макроуровне – визуально.
Микроструктура зависит от состава и может быть нестабильной, оцениваемой по вязкости и пластичности (лакокрасочные материалы, цементное тесто). Со временем она переходит в более устойчивую структуру: аморфную (стекло), характеризующуюся однородностью и хаотичным расположением молекул, или стабильную – кристаллическую (металлы, камень).
Кристаллическая структура представляет собой кристаллическую решетку со строго определенным расположением атомов. Одним из основных показателей кристаллических решеток является прочность. На свойства материалов большое влияние оказывают форма, размеры и расположение кристаллов. Мелкокристаллические более однородны и стойки к внешним воздействиям. Крупнокристаллические материалы, например металлы, имеют большую прочность. Слоистое расположение кристаллов, как у сланцев, обеспечивает легкое раскалывание по плоскостям, что используется при получении отделочных плиточных материалов.
Микроструктуру искусственно полученных материалов можно целенаправленно регулировать в зависимости от задаваемых свойств и назначений изделий.
Макроструктура материала зависит от технологии получения материала и сырья. Так, стекло обладает плотной макроструктурой, пеносиликат – ячеистой, пластики – слоистой, песок и гравий – рыхлозернистой. Однако, имея одно и то же основное исходное сырье, например, глину, и изменяя технологию, можно получить облицовочные плитки плотной структуры, стеновой мелкопористый кирпич и теплоизоляционный ячеистый материал – керамзит.
Свойства материалов условно разделяют на физические, механические, химические и технологические.
Физические свойства характеризуют вещество и структуру материала, а также его способность реагировать на внешние воздействия, не вызывающие изменения химического состава и структуры материала. Основными из них являются:
– общефизические свойства: плотность (истинная, средняя, насыпная), объемная масса, относительная плотность, пористость (общая, открытая, замкнутая);
– гидрофизические свойства: влагоотдача, водопоглощение, морозостойкость, воздухостойкость, гигроскопичность, гидрофобность, гидрофильность, межзерновая пустотность, гидрофобность, влажность, водонепроницаемость, водостойкость, фильтрационная способность (водопроницаемость);
– теплофизические свойства: теплопроводность, теплоемкость, термостойкость, жаростойкость, огнеупорность, огнестойкость;
– акустические свойства: звукопоглощение, звукоизоляция, виброизоляция, вибропоглощение;
– механические свойства: предел прочности на сжатие, растяжение, изгиб, твердость, износ, сопротивление удару, упругость, истираемость;
– химические свойства: коррозионная стойкость, химическая активность, растворимость, кристаллизация;
– технологические свойства: вязкость, пластичность, ковкость, свариваемость, гвоздимость, набухание и усадка, хрупкость и др.
Кроме того, физические свойства включают и механические свойства, которые характеризуют поведение материала при действии на него различных нагрузок. К механическим свойствам относятся: сопротивление материала сжатию, растяжению, изгибу, упругость, пластичность, хрупкость и др.
Физические свойства строительных материалов
Плотность. Плотность может быть истинной, средней, насыпной, относительной. Под истинной плотностью (кг/м куб.) понимают массу единицы объема абсолютно плотного материала без трещин, пор и пустот. Истинная плотность (кг/м куб.) для основных строительных материалов следующая: сталь, чугун 7800…7900; портландцемент 2900…3100; гранит 2700…2800; песок кварцевый 2600…2700; кирпич керамический 2500…2800; стекло 2500…3000; известняк 2400…2600; древесина 1500…1600.
Средняя плотность – это масса единицы объема материла или изделия в естественном состоянии, то есть с пустотами и порами. Средняя плотность одного и того же материала может быть разной в зависимости от пористости и пустотности. Сыпучие материалы (цемент, щебень, песок и др.) характеризуются насыпной плотностью – отношением массы зернистых и порошкообразных материалов в свободном без уплотнения насыпном состоянии ко всему занимаемому ими объему, включая пространство между частицами.
От плотности материала в значительной степени зависят его прочность, теплопроводность и другие свойства. Этими данными пользуются при определении толщины ограждающих конструкций отапливаемых зданий, размера строительных конструкций, расчетах транспортных средств и др. Значения средней плотности строительных материалов находятся в широких пределах.
Средняя плотность (кг/м куб.) для некоторых строительных материалов следующая: сталь – 7800…7850; гранит – 2600…2800; бетон тяжелый – 1800…2500; кирпич керамический – 1600…1800; песок – 1450…1650; вода – 1000; бетон легкий – 500…1800; керамзит – 300…900; сосна – 500…600; минеральная вата – 200…400; поропласты – 20…100.
Плотность материала зависит от его пористости и влажности. С увеличением влажности плотность материала увеличивается.
Относительная плотность – это степень заполнения веществом объема материала. Относительную плотность выражают отвлеченным числом или в процентах.
Пористость. Пористость материала характеризует объем, занимаемый в нем порами – мелкими ячейками, заполненными воздухом. Мелкие поры, заполненные воздухом, придают строительным материалам теплоизоляционные свойства. По величине пористости можно судить о примерной прочности, плотности, водопоглощении, долговечности и др. Для конструкций, от которых требуется высокая прочность или водонепроницаемость, используют плотные материалы, для стен зданий используют материалы со значительной пористостью. Такие материалы обладают хорошими теплоизоляционными и звукопоглощающими свойствами.
Для рыхлых материалов при расчетах учитывают насыпную объемную массу. Пористость и относительная плотность в значительной степени определяют эксплуатационные качества материалов (прочность, водопоглощение, морозостойкость, теплопроводность). Значение показателя пористости строительных материалов колеблется от 0 (стекло, сталь) до 90 % (минеральная вата).
Пустотность. Пустотность представляет собой количество пустот, образующихся между зернами рыхлонасыпного материала. Выражается в процентах по отношению ко всему занимаемому объему. Этот показатель важен для керамзита, песка, щебня при изготовлении бетона. В некоторых строительных материалах (кирпич, панели) имеются полости, также образующие пустоты. Пустотность пустотелого кирпича составляет от 15 до 50 %, песка и щебня – 35…45 %.
Гидрофизические свойства материалов
Гигроскопичность. Гигроскопичность представляет собой свойство материала поглощать водяные пары из воздуха и удерживать их на своей поверхности. Она зависит от вида, количества и размера пор, от природы материала, от температуры воздуха и его относительной влажности. Когда влажность снижается, часть гигроскопичной влаги испаряется. Чем мельче поры, тем больше общая площадь поверхности, и следовательно, выше гигроскопичность. Материалы, притягивающие своей поверхностью воду, называют гидрофильными; материалы, отталкивающие воду называют гидрофобными.
Водопоглощение. Водопоглощение является способностью материала впитывать и удерживать воду. Величина водопоглощения характеризуется разностью между массой образца, насыщенного водой и массой сухого образца. Водопоглощение строительных материалов изменяется в зависимости от объема пор, их размеров и вида. Различают объемное водопоглощение, когда указанная разность отнесена к объему образца, и массовое водопоглощение, когда эта разность отнесена к массе сухого образца.
Массовое водопоглощение различных материалов колеблется в широких пределах. Так, массовое поглощение обыкновенного кирпича составляет от 8 до 20 %, бетона – 2 – 3 %, торфоплит – 100 % и больше. Вода, попавшая в поры материала, увеличивает его объемную массу и теплопроводность, уменьшает морозостойкость и прочность. Некоторые материалы, в частности, затвердевшие глиняные растворы, разрушаются в воде.
Водопроницаемость. Водопроницаемость является свойством материала, характеризующим его способность пропускать воду под давлением. Она характеризуется количеством воды, прошедшей в течение 1 ч через 1 м кв. площади испытуемого материала при давлении 1 МПа. Это свойство учитывают при строительстве дамб, мостов, плотин и других гидротехнических сооружений. Сталь, стекло, большинство пластмасс, битум и другие плотные материалы водонепроницаемы.
Влагоотдача. Влагоотдача представляет собой способность материала отдавать влагу при снижении влажности воздуха. Скорость влагоотдачи зависит от разности между влажностью материала и относительной влажностью воздуха. Чем разность больше, тем интенсивнее происходит высушивание. На влагоотдачу влияют свойства самого материала, характер его пористости, природа вещества. Материалы с крупными порами, а также гидрофобные материалы легче отдают воду, чем гидрофильные и мелкопористые. Влагоотдача строительного материала в естественных условиях характеризуется интенсивностью потери влаги при относительной влажности воздуха 60 % и температуре 20 0С.
Воздухостойкость. Воздухостойкостью называется способность материала длительно выдерживать многократное увлажнение и высушивание без деформаций и потери механической прочности. Бетон, керамика и другие природные и искусственные каменные материалы, а также надводные части гидросооружений, дорожные покрытия, сжимающиеся при высыхании и расширяющиеся при увлажнении, разрушаются из-за возникновения растягивающих напряжений.
Теплофизические свойства
Теплопроводность материала. Теплопроводностью называют свойство материала пропускать тепло через свою толщину. Теплопроводность материала принято характеризовать величиной коэффициента теплопроводности. Этот коэффициент показывает количество тепла в в килокалориях, проходящего за 1 ч через 1 м кв. материала толщиной 1 м при разности температур на ее противоположных поверхностях в 1 0С. Как правило, коэффициент теплопроводности выше для плотных материалов и ниже для пористых. Влажность материала резко (до 10 раз) увеличивает его теплопроводность, что объясняется значительной теплопроводностью воды. Когда влажные материалы замерзают, их теплопроводность возрастает еще значительнее.
Морозостойкость. Под морозостойкостью понимают способность насыщенного водой материала выдерживать многократное попеременное замораживание и оттаивание без признаков разрушения, то есть не образуя трещин, выкрашивания, расслаивания, не теряя значительно прочности и массы. Вода, находящаяся в порах материала, превратившись в лед, увеличивается в объеме примерно на 10 %. При этом в материале возникают большие внутренние напряжения, которые постепенно его разрушают. Способность материала противостоять морозному разрушению зависит от присутствия в его структуре определенного объема замкнутых пор, в которые под давлением растущих кристаллов льда вода отжимается.
Морозостойкость материала в строительстве количественно оценивается маркой F – числом циклов попеременного замораживания и оттаивания, которые выдерживают образцы без снижения прочности на 5…25 % и массы на 3…5 % в зависимости от назначения материала. По морозостойкости установлены следующие марки: тяжелый бетон – F50…F500, легкий бетон – F25…F500, стеновые керамические камни, кирпич – F15…F100.
Морозостойкими являются плотные или с малым водопоглощением (до 0,5 %) материалы. Морозостойкость характеризуется количеством циклов попеременного замораживания материала до температуры – 15 0С и оттаивания его в воде при температуре 20 0С. Прочность материала в результате этого понизиться не должна более чем на 20 %, а потеря массы – превысить 5 %.
Огнестойкость. Огнестойкость является способностью материала выдерживать, не разрушаясь, воздействие огня и воды в условиях пожара. К строительным материалам (стены, перекрытия, колонны и др.) предъявляют требования по огнестойкости, которые зависят от категории здания по пожаробезопасности. Огнестойкость оценивают по показателю возгораемости. Этот показатель основан на нескольких признаках предельного состояния: потере несущей способности, которая выражается в снижении прочности и увеличении деформаций, а также теплоизолирующих свойств и сплошности.
Предел огнестойкости материалов и конструкций характеризуется временем, выраженном в часах с начала теплового воздействия и до появления одного из признаков предельного состояния. По степени огнестойкости различают сгораемые, трудносгораемые и несгораемые материалы.
Сгораемыми называют материалы, которые под действием огня или высокой температуры воспламеняются и продолжают гореть после удаления источника огня (например, древесина, рубероид).
Трудносгораемыми являются материалы, способные гореть, тлеть и обугливаться только при непосредственном действии на них источника огня или высокой температуры и прекращающие гореть после удаления этого источника (например, фибролит).
Несгораемыми считаются материалы, которые не воспламеняются под действием огня или высокой температуры, а только разрушаются. К ним относятся бетоны, строительные растворы, кирпич, стеклянные и керамические плитки.
Огнеупорность является свойством материала противостоять длительному воздействию высоких температур, не деформируясь и не расплавляясь. По степени огнеупорности строительные материалы подразделяют на огнеупорные, тугоплавкие и легкоплавкие. К огнеупорным относятся материалы, выдерживающие продолжительное воздействие температуры от 1580 0С и выше. Тугоплавкие выдерживают температуру 1350 – 1580 0С, огнеупорность легкоплавких материалов ниже 1350 0С.
Жаростойкость. Жаростойкость – это способность материала выдерживать без разрушений определенное количество резких колебаний температуры – теплосмен. Теплосмены являются единицей измерения этого свойства.
Механические свойства строительных материалов
Прочность. Прочность – способность материала сопротивляться разрушению под влиянием внутренних напряжений, возникающих в результате действия на материал внешних нагрузок или других факторов. В построенном здании почти все конструкции испытывают нагрузки (вес частей здания, вес оборудования, вес мебели и др.), вследствие чего в материалах конструкций возникают напряжения, противодействующие внешним силам.
Основными показателями, характеризующими прочность материала, являются сопротивление сжатию, растяжению, изгибу. Прочность материала при сжатии и растяжении характеризуется его пределом прочности. Предел прочности, или временное сопротивление, – напряжение в материале образца, соответствующее нагрузке, при которой он разрушается.
Предел прочности различных материалов при сжатии и растяжении меняется в широких пределах – от 0,5 до 1000 МПа и более. Для многих материалов предел прочности при сжатии резко отличается от предела прочности при растяжении. Одинаково хорошо сопротивляются сжатию и растяжению такие материалы, как сталь, древесина. Плохо сопротивляются растяжению каменные материалы: природный камень, кирпич, бетон и т.п.
Примером прочности конструкции при изгибе может служить мост, доска через канаву, а также балка, на которую опираются плиты перекрытия, стропила крыши.
Твердость. Твердость – это способность материалов сопротивляться проникновению в него другого более твердого тела. Твердость не всегда соответствует прочности материала. Существуют несколько способов определения твердости. Например, твердость каменных материалов оценивают шкалой Мооса, состоящей из десяти минералов, расположенных по степени возрастания их твердости. Показатель твердости испытуемого материала находится между показателями твердости двух соседних минералов, из которых один чертит, а другой сам чертится этим материалом.
Шкала твердости Мооса
1 Тальк или мел (легко чертится ногтем).
2 Гипс или каменная соль (чертится ногтем).
3 Кальцит или ангидрит (легко чертится стальным ножом).
4 Плавиковый шпат (чертится стальным ножом под небольшим нажимом).
5 Апатит (сталь) (чертится стальным ножом под большим нажимом).
6 Полевой шпат (слегка царапает стекло, стальным ножом не чертится).
7 Кварц (легко чертит стекло, стальным ножом не чертится).
8 Топаз.
9 Корунд.
10 Алмаз.
Износ. Износ – это разрушение материала при совместном действии истирания и удара. Прочность при износе оценивается потерей в массе, выраженной в процентах. Износу подвергаются материалы дорожных покрытий, полов промышленных предприятий, аэродромов и др.
Сопротивление удару. Сопротивление удару имеет большое значение для материалов, применяемых в дорожных покрытиях и полах. Испытание материалов на удар производят на специальном приборе – копре.
Технологические свойства строительных материалов
Технологические свойства характеризуют способность материала подвергаться тому или иному виду обработки. Так, древесина хорошо обрабатывается инструментами. Технологические свойства некоторых полимерных материалов включают способность сверлиться, обтачиваться, свариваться, склеиваться. Глиняные, бетонные и иные смеси обладают пластичностью, вязкостью, которые обеспечивают заполнение определенного объема.
Вязкость. Вязкость – это сопротивление жидкости передвижению одного ее слоя относительно другого. Когда какой-либо слой жидкости приводится в движение, то соседние слои также вовлекаются в движение и оказывают ему сопротивление, величина которого зависит от температуры и вещественного состава. Вязкостные свойства важны при использовании органических вяжущих веществ, природных и синтетических полимеров, красочных составов, масел, клеев. При нагревании вязкость этих материалов снижается, при охлаждении – повышается.
Упругость. Упругость является свойством материала восстанавливать после снятия нагрузки свою первоначальную форму и размеры. Пределом упругости считается напряжение, при котором остаточные деформации впервые достигают некоторой очень малой величины.
Пластичность – способность материала деформироваться без разрыва сплошности под влиянием внешнего механического воздействия и сохранять полученную форму, когда действие внешней силы закончится. Все материалы делятся на пластичные и хрупкие. К пластичным относят сталь, медь, глиняное тесто, нагретый битум и др.
Акустические свойства строительных материалов
Акустические свойства проявляются при действии звука на материал. Акустические материалы по назначению могут быть звукопоглощающие, звукоизолирующие, вибропоглощающие и виброизолирующие.
Звукопоглощающие материалы. Звукопоглощающие материалы предназначены для поглощения шумового звука. Их акустической характеристикой является величина коэффициента звукопоглощения, равная отношению количества поглощенной материалом звуковой энергии к общему количеству звуковой энергии, падающей на поверхность материала в единицу времени. Как правило, такие материалы имеют большую пористость или шероховатую, рельефную поверхность, поглощающую звук. Строительные материалы, у которых коэффициент звукопоглощения выше 0,2, называют звукопоглощающими.
Звукоизолирующие материалы. Звукоизолирующие материалы применяют для ослабления ударного звука, передающегося через строительные конструкции здания из одного помещения в другое. Звукоизоляционные материалы оценивают по двум показателям: относительной сжимаемости под нагрузкой в процентах и динамическому модулю упругости.
Вибропоглощающие и виброизолирующие материалы предназначены для предотвращения передачи вибрации от машин и механизмов к строительным конструкциям.
Ниже приводятся некоторые свойства строительных материалов.

Химические свойства строительных материалов
Химические свойства характеризуют способность материалов реагировать на внешние воздействия, ведущие к изменению химической структуры, а также воздействовать в этом отношении на другие материалы. Основные химические свойства: растворимость и стойкость к коррозии (кислотостойкость, щелочестойкость, газостойкость).
Растворимость. Растворимость – это способность материала растворяться в жидких растворителях: воде, керосине, бензине, масле и других, образовывая новые растворы. Растворимость зависит от химического состава веществ, давления и температуры. Показателем растворимости является произведение растворимости, представляющее собой предельное содержание растворенного вещества в граммах на 100 мл раствора при нормальном давлении и заданной температуре.
Стойкость к коррозии. Стойкость к коррозии является свойством материала сохранять свои качества в условиях агрессивной среды. Такой средой могут быть вода, газы, растворы солей, щелочей, кислот, органические растворители, а также биологические организмы (бактерии, водоросли и т.п.). Древесина, пластмассы, битумы и некоторые другие органические материалы при обычных температурах относительно стойки к действию кислот и щелочей средней и слабой концентрации.
Адгезия. Адгезия представляет собой соединение, сцепление твердых и жидких материалов по поверхности. Это свойство обусловлено межмолекулярным взаимодействием. Адгезионные силы сцепления очень важны при получении строительных материалов, состоящих из многих компонентов, например железобетон.
Кристаллизация. Кристаллизия представляет собой процесс образования кристаллов из паров, растворов, расплавов при электролизе и химических реакциях, который сопровождается выделением тепла.
Долговечность. Долговечность представляет собой способность материала сопротивляться комплексному действию атмосферных и других факторов в условиях эксплуатации. Старение – это процесс постепенного изменения, ухудшения свойств материалов в условиях эксплуатации.
Знание этих и других свойств позволяет сравнивать материалы между собой и определять область их применения с учетом технико-экономической целесообразности. Так, в условиях эксплуатации гидротехнических сооружений строительные материалы, изделия и конструкции, из которых они построены, подвергаются периодическому или постоянному воздействию воды и агрессивных сред, поэтому к ним предъявляются повышенные требования по водостойкости, морозостойкости, водонепроницаемости, корроизонной стойкости и др.
Многие материалы под влиянием водопоглощения ярко проявляют повышенные пластические свойства. Практика строительства показывает, что выбор технически целесообразного материала обосновывают не только его прочностные характеристики, но стойкость к воздействию внешней среды, в которой работает конструкция. Обычно эта стойкость материала во времени (долговечность) неразрывно связана с его химическими и физико-химическими свойствами. Физико-химические в свою очередь тесно связаны со структурой материала и зависят от ее изменения под влиянием внешних и внутренних факторов.
Вследствие проникновения химических реагентов из внешней среды внутренние химические реакции с образованием новых соединений могут значительным образом отразиться на структуре. Изменение структуры (микроструктуры и макроструктуры) в первый период может привести к псевдоупрочнению, а в дальнейшем – к сокращению долговечности материала. Применяемый в строительстве материал обычно подвергают технологической обработке. Cпособность поддаваться такой обработке является порой решающим показателем при выборе материала. Так, при массовой заготовке щебня для бетонных работ учитывается способность горной породы дробиться без образования плоских щебенок, поэтому при выборе материалов всегда учитывают его способность реагировать на отдельные или взятые в совокупности следующие факторы: физические, механические, внешнюю среду, температуру и ее колебания, химические реагенты, технологические операции и т.д. Эта способность материала реагировать на указанные факторы определяется его свойствами.
Оценить технические свойства и сравнить материалы между собой возможно по показателям, которые получают при испытании материалов в полевых, производственных или лабораторных условиях. Полученные знания основных технических свойств строительных материалов и изделий дают возможность рационально их использовать в строительстве. Например, по известным значениям истинной и средней плотности строительных материалов можно рассчитать, какой плотностью (или пористостью) обладают эти материалы, и составить достаточно полное представление о прочности, теплопроводности, водопоглощении и других важных характеристиках строительных материалов, чтобы в дальнейшем на этом основании решать вопрос об их применении в тех или иных сооружениях и конструкциях.
Для расчета нагрузок при определении массы сооружений для транспортных расчетов и выбора емкости складских помещений необходимо знать величину средней плотности строительных материалов. Без данных о прочности применяемых материалов невозможны расчеты прочности и устойчивости сооружений и конструкций. Прогноз их долговечности невозможен без знания таких свойств материала, как отношение к влаге, воздействию окружающей среды, смене температур и др.
Свойства материалов не остаются постоянными, а изменяются во времени в результате механических, физико-химических и биохимических воздействий среды, в которой эксплуатируется строительная конструкция или изделие. Эти изменения могут протекать и медленно (разрушение горных пород), и быстро (вымывание из бетона растворимых веществ). Следовательно, каждый материал должен обладать не только свойствами, позволяющими применять его по назначению, но и определенной стойкостью, обеспечивающей долговечную эксплуатацию изделия или конструкции.
Знание основных свойств строительных материалов необходимо также для выполнения расчетов, позволяющих оценить их качество, соответствие техническим требованиям, возможность применения в конкретных условиях эксплуатации.
Употребляемые в строительстве материалы должны удовлетворять определенным требованиям, которые устанавливаются государственными стандартами (ГОСТами). В строительстве соответствие поступающих материалов требованиям ГОСТа проверяют специальные лаборатории.
Любой вид продукции обладает определенными свойствами, представляющими интерес для потребителей. Для строительных материалов важны такие качества, как прочность, плотность, теплопроводность, морозостойкость, стойкость по отношению к действию воды, агрессивных сред и др. Качеством называется сумма свойств, определяющих пригодность материала и изделия для использования по назначению. Так, для кровельных материалов оценка их качества производится по сумме таких свойств, как водостойкость, водонепроницаемость, термостойкость, прочность на изгиб, атмосферостойкость и др.
Контроль качества строительных материалов и изделий проводят по разработанным нормам, требованиям и правилам. В зависимости от контролируемого производственного этапа различают контроль входной, технологический и приемочный.
Входной контроль включает проверку соответствия поступающих материалов и изделий установленным требованиям. Например, на предприятиях сборного железобетона проверяют качество поступающих исходных материалов: заполнителей и цемента для бетона, арматурной стали, закладных деталей, отделочных и других материалов.
Технологический контроль состоит в проверке соответствия установленным требованиям температуры, давления, времени выдерживания, тщательности перемешивания и других показателей технологического процесса.
Приемочный контроль заключается в проверке соответствия готовых изделий требованиям стандартов или технических условий.
Все материалы и изделия выпускают по государственным и межгосударственным стандартам – ГОСТ, СТ СЭВ, ИСО, СТБ, СНБ. Деятельность стандартизации существует для повышения качества продукции, безопасности ее получения и безопасности. Методы испытаний также стандартизированы. Кроме этого, в строительстве существуют «Строительные нормы» и «Технические нормативные правовые акты», представляющие собой объединенные нормативные документы по проектированию, строительству и строительным материалам.
ЭЛЕКТРОТЕХНИЧЕСКИЕ МАТЕРИАЛЫ И ОБОРУДОВАНИЕ
Электрооборудование
Работы по строительству современных зданий и сооружений, монтажу электротехнического оборудования, технологического, санитарно-технического оборудования, автоматике и слаботочным устройствам выполняют в соответствии со специально разрабатываемой на каждый объект документацией. При строительстве промышленных объектов рабочие чертежи должны содержать комплекты электротехнической, технологической, архитектурно–строительной и санитарно-технической документации.
Рабочие чертежи электротехнической части проекта, включающие техническую документацию на внешние и внутренние электрические сети, подстанции и другие устройства электроснабжения, силового и осветительного оборудования используют при электромонтажных работах. Для монтажа силового электрооборудования разрабатываются поэтажные планы здания и цехов с указанием и координацией на них трасс прокладки питающих и распределительных силовых сетей и размещения шинопроводов, силовых питающих пунктов и шкафов, электроприемников и пускорегулирующих аппаратов, для монтажа электрического освещения – с указанием и координацией на них питающих и групповых сетей, светильников и щитков.
Для производственных помещений со сложными коммуникациями при открытой или скрытой прокладке больших потоков труб электропроводок разрабатывается план разводки труб с маркировкой, привязкой и отметкой их выходов, а также мест заложения по трассе. Чертежи распределительных устройств, подстанций содержат план и разрезы объекта с указанием размещения узлов и блоков электрооборудования, прокладки сетей заземления, принципиальные и монтажные схемы главных и вторичных цепей, кабельные журналы.
Электромонтажные работы выполняют в соответствии с проектом производства работ, включающим в себя:
– проверку технологичности устанавливаемых в проектное положение электромонтажных и электротехнических конструкций;
– отбор существующих приспособлений и устройств для безопасного выполнения работ.
Для повышения качества и сокращения сроков монтажа большое внимание уделяют приемке зданий и сооружений под электромонтажные работы. К помещениям, предназначенным для установки электрических машин, при приемке под монтаж предъявляют следующие требования:
– все строительные и отделочные работы должны быть закончены до начала электромонтажа, убраны опалубки, излишние леса и строительный мусор, осушены и накрыты щитами кабельные каналы;
– фундаменты под монтаж принимают только при полном соответствии их проектным геометрическим размерам и схеме расположения закладных деталей и отверстий. Приемку готовности фундаментов оформляют актом.
В помещениях распределительных устройств, сдаваемых под монтаж, проверяют размеры постоянных или временных монтажных проемов, возможность монтажа блоков для прокладки токоподводов. Перед началом монтажа проверяют правильность хранения панелей и шкафов, демонтированных реле, приборов и шин, комплектность и соответствие маркировки проекту. На поверхности панелей и шкафов не должно быть трещин, вмятин и повреждений лакокрасочного покрытия. Двери шкафов должны открываться свободно, на угол не менее 120 градусов.
В процессе приемки закрытых распределительных устройств и подстанций под монтаж электрооборудования контролируют наличие постоянных или временных монтажных проемов, размеры которых зависят от габаритов электрооборудования, оценивают качество штукатурных и отделочных работ, полов и водонепроницаемость кровли. При осмотре полов учитывают, что некоторые материалы выделяют цементную пыль, присутствие которой в действующих электроустановках недопустимо (бетонные шлифованные полы с мраморной или гранитной крошкой цементной пыли не образуют). Водонепроницаемость кровли проверяют во время осмотра помещений после дождя.
Открытые распределительные устройства принимают под монтаж электрооборудования после установки, выверки и окончательного закрепления всех металлических и железобетонных конструкций.
Железобетонные изделия, изготовленные из ненапряженного бетона, проверяют на отсутствие обнаженной арматуры, раковин и выбоин, усадочных трещин шириной 0,005 мм при одной трещине на 1 м элемента.
Параллельно с производством строительных работ подготавливается под монтаж электрооборудование, электроконструкции и электропроводки, предусматривается производство всех подготовительных и заготовительных работ. Внутри сооружений и зданий выполняется монтаж опорных конструкций для установки электрооборудования, прокладки кабелей, проводов, шинопроводов, тролеев, монтаж стальных и пластмассовых труб для электропроводок, прокладку проводов скрытой проводки до штукатурных и отделочных работ. Вне зданий и сооружений ведется монтаж кабельных сетей и заземления. Перечисленные работы выполняют в сооружениях и зданиях по совмещенному графику – совместно с проведением основных строительных работ. На этой же стадии заготавливают узлы и пакеты силовых и осветительных электропроводок; собирают блоки электрооборудования, производят предварительную регулировку электрооборудования, проверяют и испытают аппаратуру и машины на стендах и т.п.
Далее начинают монтаж электрооборудования (укрупненные узлы и блоки), прокладывают кабели и провода (узлы и пакеты), шинопроводы и подключают кабели и провода к выводам электрооборудования. В электротехнических помещениях (машинных залах, помещениях распределительных щитов, постов и станций управления, камерах трансформаторов, кабельных полуэтажах, туннелях и каналах) работы выполняют после завершения комплекса общестроительных, отделочных работ и монтажа санитарно–технических устройств.
Материалы для электротехнических работ. В процессе монтажа электроустановок применяют материалы и изделия, которые условно разделяют на следующие группы:
– конструкционные материалы;
– трубы, провода, шнуры, электрические кабели;
– электроизоляционные материалы и изделия;
– монтажные и электроустановочные изделия.
Конструкционные материалы. Конструкционные материалы используют при изготовлении корпусов шкафов, щитов, пультов и щитков.
Для различных типовых поддерживающих конструкций (рам, кронштейнов, скоб) применяют холодногнутую профильную (угловую, корытную) и листовую сталь. Угловую, швеллерную, тавровую фасонную сталь горячего проката в настоящее время применяют в основном для изготовления рам и других поддерживающих конструкций. Полосовую и круглую сталь используют для выполнения сетей заземления и изготовления простых конструкций небольшого размера.
Сетчатые ограждения токоведущих частей изготавливают из стальной плетеной одинарной сетки с квадратными ячейками размером 10 и 20 мм, из проволок толщиной 1 – 2 мм. Металлические и пластмассовые трубы, гибкие металлические рукава применяют в основном для электропроводок.
Провода, шнуры, электрические кабели. Провода, шнуры, электрические кабели представляют собой изделия, содержащие одну или более изолированных жил, поверх которых, в зависимости от конструкции, имеются обмотки, оплетки и другие защитные оболочки. Установочным называют провод для электрических сетей низкого напряжения.
Электрическим шнуром называют провод с изолированными жилами повышенной гибкости, который служит для соединения с подвижными устройствами.
Марки провода (кабеля) – это буквенное обозначение, характеризующее материал токопроводящих жил, изоляцию, степень гибкости и конструкцию защитных покровов.
Для электромонтажных работ широко используют изолированные провода марок АПВ, ПВ1, ПВ2, ПВ3, ПВ4, АППВ, ППВ, ВПП, ПВКВ, РКГШ, РПШ, для внутриприборного и межприборного монтажа – МГШВ, НВ, НВМ.
Для передачи и распределения электроэнергии в стационарных установках используют кабели силовые с пластмассовой изоляцией. Кабели изготавливают в трех– и четырехжильном исполнении, с жилами одинакового или одной жилой меньшего сечения.
Для передачи и распределения электроэнергии в стационарных установках напряжением 1 кВ; 6 кВ; 10 кВ часто применяют кабели силовые с пропитанной бумажной изоляцией ААШвУ сечением жил 50 – 185 мм кв, ААБлУ – 50 – 240 мм кв. и АашвУнг – 50 – 240 мм кв. Для присоединения различных подвижных механизмов широко применяют кабели с резиновой изоляцией гибкие марок КГ, КГхл сечением 0,75 – 70 мм кв. Эти кабели изготавливают с одной, двумя, тремя и четырьмя жилами. Для соединения электросварочных аппаратов с электродержателем используют кабели марок КОГ, КГ сечением жил 10 – 120 мм кв.
Контрольные кабели с пластмассовой изоляцией марок АКВВГ, АКПсВГ сечением жил 2,5 – 6 мм кв. и количеством жил от 4 до 37 часто применяют для присоединения к электрическим приборам, аппаратам в электрических распределительных устройствах. Для воздушных линий электропередач и электрифицированного транспорта находят применение неизолированные провода марок А, АС, АСКС, АСУ сечением жил 16 – 450 мм кв.
Электротехнические предприятия производят провода неизолированные марки М сечением жил 4 – 400 м кв. и марки МФ – 65 – 150 мм кв.
Электроизоляционные материалы
Надежная работа электрических установок зависит в первую очередь от состояния электрической изоляции токопроводящих частей. Изоляция препятствует образованию токов утечки и электрических разрядов между отдельными частями установки. Кроме того, к изоляции предъявляются ряд требований, определяемых условиями работы (теплоустойчивость, гибкость, механическая прочность и др.).
Электроизоляционные материалы подразделяют на твердые (наиболее распространенные), жидкие и газообразные.
К твердым электроизоляционным материалам относятся следующие электроизоляционные материалы:
– волокнистые материалы;
– слюда и изделия из слюды;
– изделия из пластмассы;
– асбест;
– мрамор;
– фарфор;
– асбоцемент;
– битумы;
– бумага;
– лакоткани;
– текстолит.
К жидким материалам относится трансформаторное масло. К газообразным – азот и др.
В качестве изоляционных материалов при производстве электромонтажных работ применяют лаки, краски и эмали.
Изоляционные лаки делят на пропиточные, покровные и клеящие. Покровные лаки, содержащие пигменты, называют эмалями. Пигменты придают лаковой пленке значительную механическую твердость, плотность, улучшают ее адгезийную способность и теплопроводность, позволяют получить необходимый цвет. Лаки общего назначения используют для защиты изделий от коррозии, а также для придания им хорошего внешнего вида. По химическому составу изоляционные лаки делят на несколько групп: лаки на основе растительных масел, синтетических полимеров, природных смол.
При производстве электромонтажных работ наиболее широко применяют следующие лаки:
– битумно-покровный лак БТ577;
– масляно-битумные БТ 987 и БТ98.0;
– глифталево-масляный ГФ–95;
– лак электроизоляционный пропиточный БТ-987, БТ-988, БТ-980 (влагостойкий, теплостойкий, противостоит слабым кислотам и щелочам, немаслостойкий. Используется для пропитки секций машин, катушек аппаратов и покраски бетонных реакторов). Лак БТ-980 используется в тех же целях, но для покрытия и пропитки обмоток электрических машин и катушек аппаратов, работающих в воздухе с повышенной влажностью;
– лак электроизоляционный покровный БТ-99 (прочный, эластичный, не маслостойкий, влагоупорный. Используется при изготовлении составной изоляции, при склейке якорей, для покрытия пропитанных обмоток стататоров);
– лак электроизоляционный пропиточный ГФ-95 (маслостойкий, влагостойкий, механически прочный. Используется для пропитки обмоток машин, аппаратов, трансформаторов, лакотканей и бумаги с изоляцией класса нагревостойкости В);
– лак электроизоляционный пропиточный ФЛ-98 (маслостойкий, термостойкий, влагостойкий. Для пропитки обмоток электродвигателей с изоляцией класса нагревостойкости В);
– лак электроизоляционный МЛ-92 (маслостойкий и нагревостойкий. Для пропитки обмоток электрических машин, аппаратов, трансформаторов и изоляционных деталей);
– лаки бакелитовые ЛБС-1 и ЛБС-2 (маслостойкие, теплостойкие. Для склейки пропитки и покрытия бакелитовых изделий).
По своим свойствам эмали разделяются на электроизоляционные и окрасочные.
Лаки, эмали и растворители выделяют вредные пары, поэтому их следует хранить в герметически закрытой таре и отдельных, хорошо вентилируемых помещениях. Лаки и нитроэмали пожароопасны. При работе с ними запрещается курить, а в помещениях, где их применяют, не разрешается пользоваться паяльными лампами, производить газосварку и электросварку.
В электротехническом облуживании и производстве часто применяют электроизоляционные и полупроводящие ленты ЛХМ и ЛСК, особенно ленты на основе кремнийорганических каучуков. Эти ленты имеют высокие электрические и физико-механические свойства – повышенную теплоустойчивость (до 150 0С) и устойчивость к воздействию агрессивных сред.
Техническое обслуживание электрооборудования. Электроустановки представляют собой совокупность машин, аппаратов, линий и вспомогательного оборудования, предназначенных для производства, трансформации, передачи, распределения электрической энергии и преобразования ее в другой вид энергии. Основной задачей эксплуатации электроустановок является организация такого обслуживания электрических сетей и электрооборудования, при котором отсутствуют простои из-за неисправности электроустановок, поддерживается должное качество электроэнергии и сохраняются паспортные параметры электрооборудования в течение максимального времени при минимальном расходе электрической энергии и материалов.
Электрические источники света. Установки электрического освещения используются во всех производственных и бытовых помещениях, общественных и других зданиях и т.д. Различают несколько видов электрического освещения: рабочее освещение, аварийное и охранное.
Рабочее освещение предназначается для нормальной деятельности во всех помещениях и на открытых участках при недостаточном естественном освещении. Оно должно обеспечивать нормируемую освещенность в помещении на рабочем месте.
Аварийное освещение предназначается для создания условий безопасной эвакуации людей при аварийном отключении рабочего освещения в помещениях или продолжении работ на участках, где работа не может быть прекращена по условиям технологического процесса. Аварийное освещение должно создавать освещенность не менее 5 % общего для продолжения работы.
Охранное освещение вдоль границ охраняемой территории является составной частью рабочего освещения, создает освещенность зоны с обеих сторон ограды.
Общее освещение в помещениях может быть равномерным или локализованным, когда светильники размещаются так, чтобы на необходимых местах создавалась повышенная освещенность. Местная система обеспечивает освещение рабочих мест, предметов и поверхностей. Комбинированной называют такую систему освещения, при которой к общему освещению помещения или пространства добавляется местное, создающее повышенную освещенность на рабочем месте.
Основным элементом осветительной электроустановки является источник света – лампа, преобразующая электроэнергию в световое излучение. Большое распространение получили два класса источников света – лампы накаливания и газоразрядные (люминесцентные, ртутные, натриевые, ксеноновые и др.). Основными характеристиками лампы являются следующие:
– номинальное значение напряжения;
– мощность светового потока (иногда – силы света);
– срок службы;
– габариты (полная длина, диаметр, высота светового центра от центрального контакта резьбового или штифтового цоколя до центра нити).
Наиболее употребительные типы цоколей: Е – резьбовой; Вs – штифтовой одноконтактный; Вd – штифтовой двухконтактный (последующие буквы обозначают диаметр резьбы или цоколя). Кроме того, используют фокусирующие (Р), гладкие цилиндрические софитные (SV) и некоторые другие цоколи.
В маркировке ламп общего назначения буквы означают: В – вакуумные, Г – газонаполненные, Б – биспиральные газонаполненные, БК – биспиральные криптоновые.
Большое значение имеет зависимость характеристик ламп накаливания (ЛН) от фактически подводимого напряжения. С повышением напряжения увеличивается температура накала нити, свет становится белее, быстро возрастает поток и медленнее световая отдача, в результате этого резко уменьшается срок службы лампы.
В осветительных установках трубчатые люминесцентные ртутные лампы низкого давления (ЛЛ) имеют следующие преимущества по сравнению с лампами накаливания:
– высокую световую отдачу, достигающую 75 лм/Вт;
– большой срок службы, доходящий у стандартны ламп до 10000 ч.;
– возможность применения источника света различного спектрального состава при лучшей для большинства типов цветопередаче, чем у ламп накаливания;
– относительно малую яркость, что в ряде случаев является достоинством.
Основными недостатками люминесцентных ламп являются:
– сложность схемы включения;
– ограниченная единичная мощность и большие размеры при данной мощности;
– невозможность переключения ламп, работающих на переменном токе, на питание от сети постоянного тока;
– зависимость характеристик от температуры внешней среды.
Для обычных ламп оптимальная температурная окружающего воздуха 18 – 25 0С, при отклонении температуры от оптимальной световой поток и световая отдача снижаются. При температуре менее 10 0С зажигание не гарантируется. У этих ламп к концу службы значительно снижается поток света. Вредные для зрения пульсации светового потока с частотой 100 Гц при переменном токе 50 Гц могут быть устранены или уменьшены только при совокупном действии нескольких ламп и соответствующих схемах включения.
При нормах, которые действуют в настоящее время, разрыв между значениями освещенности для ламп накаливания и газоразрядных ламп в большинстве случаев не превышает двух ступеней, высокая световая отдача и большой срок службы люминесцентных ламп также, как ламп ДРЛ (дуговые ртутные лампы), делают их в большинстве случаев более экономичными, чем лампы накаливания.
Недостатками ламп ДРЛ считаются следующие:
– преобладание в спектре лучей сине-зеленой части, ведущих к неудовлетворительной цветопередаче, что исключает применение ламп в случаях, когда объектами различения являются лица людей или окрашенные поверхности;
– возможность работы только на переменном токе;
– необходимость включения через балластный дроссель;
– длительность разгорания при включении (7 минут);
– начало повторного зажигания даже после очень кратковременного перерыва питания лампы после остывания (примерно 10 минут);
– пульсации светового потока существенно большие, чем у люминесцентных ламп;
– значительное снижение светового потока к концу срока службы.
Лампы накаливания изготавливают на напряжения 127 – 220 В мощностью 15 – 1500 Вт. Срок службы ламп накаливания общего назначения составляет 1000 ч, световой поток, измеряемый в люменах, на 1 Вт потребляемой лампой мощности колеблется от 7 (для ламп малой мощности) до 20 лм/Вт (для ламп большой мощности). Колбы ламп накаливания наполняют нейтральным газом (азотом, аргоном, криптоном), что увеличивает срок службы вольфрамовой нити накала и повышает экономичность ламп.
В настоящее время выпускают зеркальные лампы накаливания на повышенное напряжение: 220 – 230, 235 – 245 В.
Галогенные лампы накаливания типа КГ-240 трубчатой формы с вольфрамовой нитью в кварцевой колбе мощностью 1000, 1500 и 2000 Вт получили распространение в связи с повышенной светоотдачей.
Люминесцентные лампы представляют собой заполненную газом аргоном стеклянную трубку, внутренняя поверхность которой покрыта люминофором. В трубке имеется также капля ртути. При включении в электрическую сеть в лампе образуются пары ртути и возникает свет, близкий к дневному.
Электротехническая промышленность выпускает серию энергоэкономичных люминесцентных ламп, предназначенных для общего и местного освещения промышленных, общественных и административных помещений (ЛБ18–1, ЛБ36 и др.). Для жилых помещений применяют лампы ЛЕЦ18, ЛЕЦ36, ЛЕЦ 58, которые по сравнению со стандартными люминесцентными лампами мощностью 20, 40, 65 Вт имеют повышенный кпд, уменьшенное на 7 – 8 % потребление электроэнергии, меньшую материалоемкость, повышенную надежность при хранении и транспортировании.
Для административных помещений выпускают люминесцентные лампы с улучшенной цветопередачей мощностью 8 – 40 Вт. Лампы имеют линейную и фигурную форму (U и W-образную, кольцевую). Все лампы, кроме кольцевых, имеют на концах двухштыревые цоколи. По спектру излучаемого света люминесцентные лампы (ЛЛ) разделяют на типы: ЛБ (белая), ЛХБ (холодно-белая), ЛТБ (тепло-белая), ЛД (дневная), ЛДЦ (дневная правильной цветопередачи).
Дуговые ртутные лампы ДРЛ высокого давления с исправленной цветностью состоят из стеклянной колбы, покрытой люминофором, внутри которой помещена кварцевая газоразрядная трубка, наполненная ртутными парами.
Натриевые лампы ДнаТ мощностью 400 и 700 Вт излучают золотисто-белый свет. Их световая отдача 90 – 120 лм/Вт, продолжительность горения – более 2500 часов.
Газоразрядные металлогалоидные лампы ДРИ выпускают со световой отдачей 75 – 100 лм/Вт продолжительностью горения – 2000 – 5000 часов. Эти лампы обеспечивают лучшую цветопередачу, чем лампы ДРЛ.
Для освещения сухих, пыльных, влажных помещений выпускают металлогалоидные зеркальные лампы – светильники типа ДРИЗ.
Осветительное оборудование. При строительстве современных зданий, особенно крупнопанельных, в них, как правило, предусматривают все отверстия, ниши и закладные части для установки осветительного оборудования и прокладки осветительных сетей. Выключатели и штепсельные розетки при скрытой проводке устанавливают в готовых нишах, коробках или стаканах, с креплением шурупами, винтами или имеющимися на них распорными лапками. Надплинтусные штепсельные розетки и потолочные выключатели имеют металлические основания и, как правило, их крепят непосредственно к стене пристреливанием. Выключатели и штепсельные розетки для открытой проводки, потолочные и настенные ламповые патроны устанавливают на деревянных розетках и крепят шурупами.
Операции по установке светильников состоят из установки деталей крепления и конструкций, подвески и крепления светильников, присоединения к электросети и сети заземления. Светильники для ламп накаливания и ламп ДРЛ одинаковы по конструкции, но лампы ДРЛ имеют более сложную конструкцию. Корпуса светильников снабжены блоком устройства для ввода провода и различными подвесками. Современные светильники имеют штепсельные соединения или зажимы для присоединения к стационарной электросети.
Светильник состоит из лампы и осветительной арматуры. Арматура служит для перераспределения светового потока лампы или ламп, предохранения зрения от чрезмерной яркости, крепления и подключения лампы к системе питания, защиты ее от повреждений и изоляции от окружающей среды. Осветительная арматура газоразрядных ламп может иметь устройство для зажигания и стабилизации их работы. Отражатели и рассеиватели, которыми снабжены светильники, предохраняют зрение от чрезмерной яркости лампы перераспределением потока в нужном направлении.
Осветительная арматура состоит из следующих элементов:
– корпус (металлический или пластмассовый);
– отражатель;
– патрон (ламподержатель);
– рассеиватель или защитное стекло;
– пускорегулирующий аппарат (для газоразрядных ламп);
– узлы подвески и подключения к системе питания.
Основными параметрами, характеризующими светильник, являются: класс светораспределения, кривая силы света, кпд, защитный угол, конструкция. Отношение светового потока, выходящего из светильника, к световому потоку лампы называют кпд светильника. От колеблется в пределах 60 – 90 %.
Степень защиты глаз от яркости зависит от размера защитного угла. По характеру светораспределения светильники подразделяют на следующие группы:
– прямого света (световой поток не менее 80 % излучается в нижнюю полусферу);
– преимущественно прямого света (излучается 60 – 80 %);
– рассеянного света (излучается 40 – 60 %);
– преимущественно отраженного света (излучается 20 – 40 %);
– отраженного света (в нижнюю полусферу излучается менее 20 % светового потока).
По степени защиты от воздействия внешней среды светильники классифицируются на:
– открытые пылезащитные (токоведущие части и лампа не защищены от попадания пыли);
– перекрытые пыленезащищенные (попадание пыли ограничивается неуплотненными светопропускающими оболочками);
– полностью пылезащищенные (токоведущие части и лампа защищены от попадания пыли в количествах, которые могли бы повлиять на работу светильника);
– полностью пыленепроницаемые (токоведущие части полностью защищены от попадания пыли).
В зависимости от степени защиты от проникновения воды светильники подразделяют на водозащищенные, брызгозащищенные, струезащищенные, водонепроницаемые, герметичные.
В зависимости от способа установки и назначения светильники классифицируют следующим образом:
– для промышленных зданий при нормальной среде используют светильники общего применения с лампами накаливания;
– ДРЛ и люминесцентные;
– при тяжелых условиях среды – специальные светильники УПН, УПД, ПВАМ, во взрывоопасных зонах промышленных предприятий – светильники с лампами накаливания НОБ; НЧБ и др.;
– для общественных зданий общего применения при нормальной среде используют светильники с лампами накаливания и люминесцентными;
– для бытовых помещений при нормальной среде – светильники с люминесцентными лампами;
– для наружного освещения – светильники всех источников света типа СКЗЛ; СПО и др.
ВЛИЯНИЕ ЭКОЛОГИЧЕСКИХ УСЛОВИЙ НА ЗАЩИТНЫЕ И ДЕКОРАТИВНЫЕ ПОКРЫТИЯ
В настоящее время главными факторами, отрицательно влияющими на защитные и декоративные покрытия зданий и сооружений, являются солнечная радиация, резкие колебания температуры окружающей среды, влажность, коррозионно-активные соединения (сернистые газы, окислы азота, хлор и его производные, пылевидные частицы и т.п.), попадающие в атмосферу. Интенсивное загрязнение атмосферы вредными и коррозионно-активными веществами разрушающим образом влияет на защитные и декоративные покрытия зданий и сооружений.
Особенно много выделяется в атмосферу вредных веществ вблизи тепловых электростанций, металлургических предприятий, предприятий химической промышленности, а также предприятий по производству удобрений, кислот, цемента. В сельских районах агрессивность окружающей среды может усиливаться пылевидными удобрениями при неправильном их транспортировании, использовании или хранении, газообразными выделениями работающих сельскохозяйственных машин и т.д.
В районах, расположенных вблизи морей, рек, озер, искусственных морей, агрессивность окружающей среды обуловлена повышенной влажностью воздуха, содержащего различные соли. Быстрое развитие всех видов автомобильного транспорта (общественного, грузового, индивидуального) сопровождается повышением содержания в воздухе окислов азота, соединений углерода, мелкой пыли. Газообразные загрязнения, растворяясь в осадках, превращаются в слабые растворы кислот и щелочей. Так как окружающий воздух постоянно находится в движении, коррозионно-активные и вредные соединения перемещаются на значительные расстояния. Попадая на поверхность, нагретую солнечными лучами, осадки легко проникают в защитные покрытия зданий и сооружений, вызывая их быстрое разрушение.
Особенно интенсивно разрушаются неокрашенные кровли, трубы, подоконники и т.п. из оцинкованного железа, грунтовки и покрытия, содержащие металлические порошки (алюминий, цинковый и др.), защитные покрытия, не обладающие химической стойкостью, конструкции из бетона, каркасы и оборудование, находящееся на открытом воздухе.
Современные мероприятия по борьбе с загрязнением атмосферы промышленностью, транспортом и электрическими станциями сводятся к следующему:
– увеличение высоты труб на электростанциях и металлургических производствах с целью обеспечения нормы выбросов для сернистых отходов и рассеяния окислов азота до требуемых норм;
– применение ротоклонов, электрофильтров и механических золоуловителей, обеспечивающих улавливание до 99 – 99,5 %;
– удаление оксидов серы из дымовых газов;
– улучшение сжигания топлива;
– переход на малосернистое топливо;
– переход в городах на централизованное теплоснабжение, чтобы избегать загрязнения от мелких котельных;
– переход в больших городах на электрификацию быта, включая отопление;
– внедрение безотходных технологий в промышленности и транспорте;
– строгое соблюдение санитарных норм для всех источников, загрязняющих атмосферу. Охрана воды, почвы и ландшафта также является важным звеном комплексной проблемы охраны окружающей среды.
Различные условия эксплуатации поверхностей и покрытий зданий, сооружений, строительных конструкций и изделий обусловливают необходимость применения комплексных мероприятий для их эффективной защиты. Так, для уменьшения загрязнения окрестностей ТЭС твердыми отходами предпринимаются меры к поставке на электростанции топлива с меньшим содержанием породы, а также всемерно увеличиваются масштабы использования золы и шлака для строительства.
КАЧЕСТВО СТРОИТЕЛЬНЫХ МАТЕРИАЛОВ
В строительном деле важно знать, как практически, не прибегая порой к лабораторным проверкам, определить качество строительных материалов. Знание простых приемов ведет к экономии строительных материалов, улучшает качество строительства и, как следствие удешевляет его.
Лесоматериалы. Качество древесины можно определить внешним осмотром и простукиванием. Трещины и торцовые расколы свидетельствуют о снижении прочности бревен. При простукивании обухом топора глухой звук является признаком внутренней гнили или поражения древоточцами.
Влажность древесины проверяется на ощупь. Сухая на ощупь древесина имеет влажность до 25 %.
Кирпич. Бледно–розовый или коричневый цвет кирпича свидетельствует о недожоге, такой кирпич непрочен, сильно впитывает воду, пачкает руки, при ударе издает глухой звук. Он применяется там, где не подвержен атмосферным осадкам.
Красный кирпич – нормально обожженный, твердый и прочный, мало впитывает воду, при ударе издает чистый звук. Такой кирпич хорошо тешется, на изломе имеет однородное строение без пустот, камешков, извести. Используется для кладки стен, печей и каминов.
Темно-бурый цвет говорит о том, что кирпич пережженный, так называемый железняк. Поверхность пережженного кирпича стекловидная, с глубокими трещинами. Кирпич-железняк очень твердый, почти не впитывает воду, поэтому плохо вяжется с раствором. Хорошо сопротивляется сырости и морозу, употребляется для кладки фундаментов.
Качество кирпича можно определить пробой на удар. Кирпич низких марок (до 75) от одного удара молотком весом 1 кг разбивается в щебень. Кирпич марки 100 разрушается на более мелкие куски от нескольких ударов. Кирпич марки свыше 100 при скользящих ударах молотка искрит и отбивается мелкими кусками.
Известен и такой простой способ определения качества: кирпич низких марок при падении с высоты 1,2 – 1,5 метра на твердое каменное основание разбивается на мелкие кусочки. Если кирпич разобьется на 2 – 3 крупных куска, он считается хорошего качества.
Камень бутовый. Качество бутового камня определяется ударом молотка: звонкий звук издает бут хорошего качества, глухой – при наличии примесей глины и других пород. Бутовый камень низких марок от одного удара молотком весом в 1 кг разбивается в щебень. Качество камня можно определить и другим способом: если куски после насыщения их водой разбиваются на части, то камень считается непригодным для кладки.
Глина. Качество глины зависит от ее жирности. Жирность проверяется на ощупь растиранием между пальцами. В жирной глине песок не ощущается. Кроме того, жирность глины можно определить следующими методами.
1 метод. Глина раскатывается в руке жгутиком толщиной 1,5 – 2 см и длиной 15 – 20 см и вытягивается за оба конца. Жгутик из тощей глины (суглинка) мало растягивается и дает неровный разрыв. Глина средней пластичности вытягивается плавно и обрывается, когда толщина в месте разрыва достигает 15 – 20 % от первоначального диаметра. Жгутик из пластичной глины вытягивается плавно, постепенно утончается, образуя в месте разрыва острые концы.
2 метод. Глины разных сортов скатываются в шарики диаметром 4 – 5 см и высушиваются в одинаковых условиях. Максимальное количество трещин на поверхности шарика указывает на наиболее жирную глину.
3 метод. Широко распространен способ определения жирности глины отмучиванием. Он основан на разном весе частиц (песок тяжелее глины). В пол-литровую стеклянную банку кладут 200 г глины, наливают воду, чтобы она покрывала глину на 4 – 5 см, тщательно все перемешивают и дают отстояться. Песок осаживается на дно, сверху – глина. Примерное количество (процент) песка в глине определяется на глаз.
Цемент. Цемент считается качественным, если не имеет признаков окомкования. Если хороший цемент взять в руку и сжать ее, то он сразу просыплется между пальцами. Если в ладони останутся мелкие кусочки, величиной с горошину и больше, это свидетельствует о том, что в нем начался процесс окомкования. Такой цемент имеет пониженную активность и соответственно прочность материалов на его основе. Во время хранения цемента его активность как связующего вещества падает примерно на 5 % в месяц. Так, при хранении в течение 3 месяцев активность уменьшается до 15 – 20 %, в течение 6 месяцев – до 25 – 50 %, в течение 1 года – до 30 – 40 %, в течение 2 лет – до 40 – 50 %.
Цементное основание. Цементное основание (стяжка) под линолиум считается пригодной, если имеет влажность не более 8 %. Проверка влажности основания производится с помощью промокательной бумаги. Ее кладут на основание, а сверху плотно прикрывают полиэтиленовой пленкой с нахлестом по 10 см каждую сторону (с грузом по всему периметру или с проклейкой резиновым клеем). Через 16 часов промокательную бумагу проверяют. Если она влажная, то основание для настилки линолеума еще непригодно.
Кровельный асбестоцементный шифер. Кровельный шифер проверяется внешним осмотром. Листы не должны иметь продольных трещин. Шифер, долгое время хранившийся под открытым небом, под воздействием влаги приобретает темный цвет, что говорит о пониженной прочности.
Для проверки отбирают из стопы третий лист сверху. Сухой лист волнистого шифера, уложенный на ровное основание, выдерживает вес вставшего на него человека и не разрушается.
Кровельная сталь. Качество листов кровельной стали проверяется осмотром. Особое внимание обращается на следы ржавчины. Ржавчину можно снять 5 – 10 % раствором технической соляной кислоты с последующей тщательной промывкой водой и просушкой. Для работы с кислотой следует использовать шерстяную тряпку, руки необходимо защитить резиновыми перчатками.
Песок. Песок должен быть чистым, без примесей глины, земли и пыли. Чистый песок не пачкает руки. Мелкий песок имеет зерна менее 1,5 мм, песок средней крупности – от 2 до 2,5 мм, крупный – более 2,5 мм.
Шлак топливный, котельный. Топливный шлак считается пригодным для теплоизоляционной засыпки и устройства шлакоблочных стен, если он пролежал не менее года в отвале. Если он пролежал дольше, это лучше, так как из шлака будут вымыты и выветрены вредные примеси. Лучшим считается шлак из котельных. Для затопления каркасно–засыпных стен следует применять просеянный шлак, без примесей золы, земли, камней и другого мусора. Влажность шлака должна быть не более 10 %.
Гипсовые вяжущие материалы. Свежеизготовленный гипс не должен иметь комков. Даже при хранении в сухих условиях он быстро скомковывается и теряет свою активность примерно на 10 % в месяц. По наружному виду гипсовое вяжущее вещество похоже на мел. Чтобы отличить гипс от мела, нужно растереть его между пальцами. Мел кажется мягким, а гипс – зернистым. Быстрое схватывание (твердение) также может служить признаком принадлежности материала к гипсу.
Стекло. Оконное стекло считается хорошего качества, если оно имеет голубоватый или зеленоватый оттенок. Желтый оттенок говорит о плохом качестве – такое стекло плохо сварено. Цвет стекла определяют, наложив три листа на белую бумагу.
Битумные материалы. Прежде всего необходимо выяснить, к какому виду они относятся – к битумному или дегтевому. Это необходимо для того, чтобы соблюсти принцип «подобное с подобным». Дегтевые материалы обладают резким запахом фенола (карболки), а нефтяные битумы обладают запахом минерального масла. Иногда нефтяные битумы вообще не имеют запаха. При подогревании запах всегда усиливается. Дегти и битумы отличаются истинной плотностью – соответственно 1 и 1,25 г/см. куб.
Для твердых битумных материалов (пеков и битумов) характерным признаком является также цвет. У каменноугольных пеков цвет иссиня–черный, у нефтяных битумов – черный с коричневым оттенком. Кроме этого, у пеков более блестящая поверхность, чем у битумов, и они значительно жестче, что особенно заметно при низких температурах. В изломе каменноугольные пеки имеют роговистую глянцевую поверхность.
Марки битумов ориентировочно можно определить по внешним признакам, температуре размягчения. Если битум марки БН–90/10 при комнатной температуре разбить молотком, то образуются осколки с блестящей поверхностью. Битум марки БН-70/30 при ударе молотком разбивается на крупные куски без осколков. Битумы марки БН-50/50 при ударе сминаются.
Битум следует хранить под навесом в плотной таре. В этом случае битум трех–четырехлетней давности годен к применению.
Как определить марку бетона
Марку бетона (затвердевшего) можно определить с помощью зубила и молотка весом 300 – 400 г. Если лезвие погружается на глубину 5 мм, то марка бетона 70 – 100. Отделяющиеся от поверхности тонкие листочки свидетельствуют о том, что его марка 100 – 200. Неглубокий след зубило оставляет на бетоне марки свыше 200.
Масляная краска. При хорошем качестве краски ее слой высыхает за одни сутки, при удовлетворительном – за двое суток. Если нажать пальцем на слой в течение 5 секунд и палец не испачкается, краска считается высохшей.
Олифа.Хорошая олифа прозрачна, после суточного отстоя может иметь небольшой осадок (не более 10 %). Наиболее надежным способом определения качества олифы является проба на высыхание: полное высыхание слоя должно наступать не позже 24 часов. Качественная олифа соскабливается со стекла ножом эластичной полоской и не крошится под ножом.
Столярный клей. Качественный клей, сожженный на огне спички, рассыпается в мелкую золу. Это мездровый клей. Клей более низкого качества спекается в темный шлак. Это так называемый костный клей, приготовленный из костей, рогов и копыт.
Замазка. Замазка должна быть пластичной и не прилипать к рукам.