-------
| Библиотека iknigi.net
|-------
| Илья Валерьевич Мельников
|
| Теxнология дуговой сварки в защитных газах
-------
Илья Мельников
Технология дуговой сварки в защитных газах
СУЩНОСТЬ ДУГОВОЙ СВАРКИ В ЗАЩИТНЫХ ГАЗАХ
При этом способе в зону дуги подается защитный газ, струя которого, обтекая электрическую дугу и сварочную ванну, предохраняет расплавленный металл от воздействия атмосферного воздуха, окисления и азотирования.
Сварку в защитных газах отличают следующие преимущества:
– высокая производительность (в 2-3 раза выше обычной дуговой сварки);
– возможность сварки в любых пространственных положениях, хорошая защита зоны сварки от кислорода и азота атмосферы, отсутствие необходимости очистки шва от шлаков и зачистки шва при многослойной сварке;
– малая зона термического влияния;
– относительно малые деформации изделий;
– возможность наблюдения за процессом формирования шва;
– доступность механизации и автоматизации.
Недостатками этого способа сварки являются необходимость принятия мер, предотвращающих сдувание струи защитного газа в процессе сварки, применение газовой аппаратуры, а в некоторых случаях и применение относительно дорогих защитных газов.
Разработаны следующие разновидности сварки в защитном газе: в инертных одноатомных газах (аргон, гелий), в нейтральных двухатомных газах (азот, водород), в углекислом газе. Наиболее широкое применение получили аргонодуговая сварка и сварка в углекислом газе. Инертный газ гелий применяется очень редко ввиду его большой стоимости. Сварка в двухатомных газах (водород и азот) имеет ограниченное применение, так как водород и азот в зоне дуги диссоциируются на атомы и активно взаимодействуют с большинством металлов.
Сварка в углекислом газе, благодаря его дешевизне, получила широкое применение при изготовлении и монтаже различных строительных конструкций из углеродистых и низколегированных сталей.
Углекислый газ, подаваемый в зону дуги, не является нейтральным, так как под действием высокой температуры он диссоциируется на оксид углерода и свободный кислород. При этом происходит частичное окисление расплавленного металла сварочной ванны и, как следствие, металл шва получается пористым с низкими механическими свойствами. Для уменьшения окислительного действия свободного кислорода применяют электродную проволоку с повышенным содержанием раскисляющих примесей (марганца, кремния). Шов получается беспористый, с хорошими механическими свойствами.
По способу защиты различают местную и общую защиту свариваемого узла (сварку в контролируемой атмосфере). Основным способом местной защиты является струйная, при которой защитная среда создается газовым потоком при центральной, боковой или комбинированной подаче газа. При центральной подаче газа дуга, горящая между электродом и основным металлом, со всех сторон окружена газом, подаваемым под небольшим избыточным давлением из сопла горелки, расположенного концентрично оси электрода. Это самый распространенный способ защиты. Иногда с целью экономии инертных газов, а также получения оптимальных технологических и метуллургических свойств защитной среды применяют горелки, конструкция которых обеспечивает комбинированную защиту двумя концентрическими потоками газов. Например, внутренний поток образется аргоном, а внешний – углекислым газом. При сварке высокоактивных металлов надо защищать не только расплавленный металл, но и зону металла, нагреваемую при всаврке до температуры более 300 °С с лицевой и обратной стороны шва. Для расширения струйной защиты с лицевой стороны шва применяют дополнительные колпаки-приставки, надеваемые на сопло горелки. Защита обратной стороны шва обеспечивается поддувом защитного газа. Боковую подачу газа применяют ограниченно.
Наиболее эффективная защита металла шва и зоны термического влияния обеспечивается при сварке в камерах с контролируемой атмосферой. Камеры предварительно продувают или вакуумируют, а потом заполняют защитным (инертным) газом под небольшим давлением.
Сварку в защитных газах можно осуществлять вручную, полуавтоматически и автоматически. Ручная сварка применяется при соединении кромок изделий толщиной до 25-30 мм и при выполнении коротких и криволинейных швов. Полуавтоматическая и автоматическая сварки применяются при массовом и крупносерийном производствах.
Сварка в защитных газах производится как неплавящимся, так и плавящимся электродом. Неплавящиеся электроды служат только для возбуждения и поддержания горения дуги. Для заполнения разделки кромок в зону дуги вводят присадочный металл в виде прутков или проволоки. Применяются такие неплавящиеся электроды: вольфрамовые, угольные и графитовые. Вольфрамовые электроды изготовляют из проволоки марки ВТ-15 диаметром 0,8-6 мм, содержащей 1,5-2,0 % диоксида тория. Торий способствует более легкому возбуждению и устойчивому горению дуги. Однако торий является радиоактивным веществом и его применение сопряжено с соблюдением специальных санитарных правил. Для сварки алюминия и его сплавов успешно применяют электроды из проволоки марки ВЛ-10 (вольфрам с присадкой лантана). Лантан снижает расход вольфрама и повышает устойчивость горения дуги. Расход вольфрама при сварке незначителен и составляет при сварочном токе 300-400 А около 0,05-0,06 г на метр сварного шва. Угольные и графитовые электроды применяют редко, так как они не обеспечивают достаточно устойчивое горение дуги и сварной шов получается пористым с темным налетом. Плавящиеся электроды применяют в виде соответствующей сварочной или порошковой проволок.
ЗАЩИТНЫЕ ГАЗЫ
Аргон – одноатомный инертный газ без цвета и запаха, тяжелее воздуха. Получают аргон из воздуха. Аргон поставляется двух сортов: высшего и первого. Высший сорт содержит 99,992 % аргона, не более 0,006 % азота и не более 0,0007 % кислорода. Первый сорт содержит аргона 99,987%, азота – до 0,01% и кислорода – не более 0,002 %. Аргон поставляется в газообразном виде в баллонах типа А под давлением 15 MПa. Баллоны окрашены в серый цвет с зеленой полосой и зеленой надписью «Аргон чистый».
Аргон применяют при сварке ответственных сварных швов и при сварке высоколегированных сталей, титана, алюминия, магния и их сплавов.
Гелий – одноатомный инертный газ без цвета и запаха. Газообразный гелий производится также двух сортов: гелий высокой чистоты (99,985 % гелия) и гелий технический (99,8 %). Транспортируется и поставляется в баллонах типа А при максимальном давлении 15 МПа. Баллоны окрашены в коричневый цвет белой надписью "Гелий". Гелий используют так же, как аргон, но значительно реже ввиду высокой стоимости.
Углекислый газ СО2 не имеет цвета и запаха. Получают его из газообразных продуктов сгорания антрацита или кокса, при обжиге известняка и т. д. Поставляется в сжиженном состоянии в баллонах типа А вместимостью 40 л, в который при максимальном давлении 7,5 МПа вмещается 25 кг углекислоты (при испарении образуется около 12750л газа). Для сварки используют сварочную углекислоту. Чистота углекислоты первого сорта должна быть не менее 99,5 %, а высшего сорта 99,8 %. Баллоны с углекислотой окрашивают в черный цвет с желтой надписью "СО2 сварочный". Применяется при сварке низкоуглеродистых и некоторых конструкционных и специальных сталей.
Для снижения влажности углекислого газа рекомендуется установить баллон вентилем вниз и после отстаивания в течение 15 мин осторожно открыть вентиль и выпустить из баллона влагу. Перед сваркой необходимо из нормально установленного баллона выпустить небольшое количество газа, чтобы удалить попавший в баллон воздух. Часть влаги задерживается в углекислоте в виде водяных паров, ухудшая при сварке качество шва. Кроме того, при выходе из баллона, от резкого расширения происходит снижение температуры углекислоты и влага, отлагаясь в редукторе, забивает каналы и даже полностью закрывает выход газа. Для предупреждения замерзания влаги между баллоном и редуктором устанавливают электрический подогреватель.
Окончательное удаление влаги после редуктора производится специальным осушителем, наполненным прокаленным медным купоросом, хромистым кальцием или другим осушительным веществом.
СВАРОЧНЫЕ ПОЛУАВТОМАТЫ И АВТОМАТЫ
Аргонодуговая сварка неплавящимся или плавящимся электродом производится на постоянном и переменном токе. Установка для ручной сварки постоянным током состоит из сварочного генератора постоянного тока или сварочного выпрямителя, балластного реостата, газоэлектрической горелки, баллона с газом, редуктора и контрольных приборов (амперметра, вольтметра и расходомера газа).
Источником питания дуги служат сварочные генераторы постоянного тока с жесткой или пологопадающей внешней характеристикой. Для регулирования и получения малых значений сварочного тока и повышения устойчивости горения дуги в сварочную цепь включают балластные реостаты.
Газоэлектрические горелки бывают различной конструкции. Наибольшее применение получила горелка типа ЭЗР. Выпускаются горелки типов ЭЗР-66 для сварки током до 150 А, ЭЗР-4-68 – до 500 А и ЭЗР-5-71 – до 80 А.
Электрододержатель типа ЭЗР-3-66 состоит из корпуса, сменного наконечника, рукоятки с устройством включения подачи газа и газотокоподводящего кабеля. Диаметр сопла сменных наконечников 8 и 10 мм. Они позволяют использовать электроды диаметром 1,5, 2 и 3 мм, рассчитанные на сварочные токи до 150 А. Расход аргона составляет 120-360 л/ч. Масса горелки с газотокопроводящим кабелем около 3 кг.
Для сварки при больших сварочных токах (до 450 А) применяют также горелки типов АР-10-3 (большая), АР-75, АР-9, снабженные системой водяного охлаждения.
Установка для ручной сварки переменным током состоит из источникам питания дуги, осциллятора, балластного реостата, газоэлектрической горелки, баллона с газом, редуктора и контрольных приборов.
Источники питания должны иметь повышенное вторичное напряжение, чтобы обеспечить устойчивое горение дуги. Для этого в сварочную цепь включают два сварочных трансформатора с последовательно включенными вторичными обмотками или применяют трансформатор типа ТСДА с повышенным вторичным напряжением холостого хода. Осциллятор обеспечивает быстрое и легкое возбуждение и устойчивое горение дуги. Применяют газоэлектрические горелки типов ГРАД-200 и ГРАД-400, отличающиеся легкостью. Горелка ГРАД-200 массой 0,2 кг допускает сварочные токи до 200 А, а горелка ГРАД-400 массой 0,4 кг – до 400 А. Применяются установки УДАР-300 и УДАР-500 (номинальный сварочный ток 300 и 500 А). Взамен этих установок выпускаются установки типов УДГ-301 и УДГ-501. Установки типов УДГ-301 и УДГ-501 применяют для сварки сплавов легких металлов в аргоне. Такие установки имеют однофазный силовой трансформатор с неподвижным подмагничиваемым шунтом. Сердечник шунта с обмоткой, питаемой постоянным током, расположен перпендикулярно стержням трансформатора, на которых находятся секции первичной и вторичной обмоток. Два диапазона регулирования сварочного тока получают при параллельном соединении секций обмоток – большие токи и при их последовательном соединении – малые токи. В пределах каждого диапазона плавное регулирование тока осуществляют подмагничиванием шунта, изменяя ток, питающий его обмотку.
Полуавтоматическая сварка неплавящимся электродом производится шланговым полуавтоматом типа ПШВ-1, состоящим из сопла; вольфрамового электрода; корпуса; сварочной проволоки; рукоятки; механизма подачи сварочной проволоки. ПШВ-1 предназначен для сварки металлов толщиной 0,5-5 мм. Полуавтомат снабжен электродвигателем, который через редуктор и гибкий вал, проходящий по шлангу, приводит во вращение ролики, расположенные на газоэлектрической горелке. Ролики протягивают по шлангу присадочную проволоку и подают ее в зону дуги. Скорость подачи проволоки диаметром 1-2 мм устанавливается в пределах 5-50 м/ч. Сварку осуществляют постоянным или переменным током с включением в сварочную цепь осциллятора. Полуавтомат позволяет выполнять сварку во всех пространственных положениях шва.
Полуавтоматическая сварка плавящимся электродом производится с помощью полуавтоматов типов ПШПА-6, ПШПА-7 и ПШП-9. Первые два типа предназначены для сварки электродной проволокой диаметром 1,6-2,5 мм при сварочном токе до 300 А, а последний тип – для сварки малых толщин проволокой диаметром 0,5-1,2 мм при сварочных токах до 180 А. Комплект полуавтомата состоит из переносного пульта управления, механизма подачи электродной проволоки с кассетой и газоэлектрической горелки в виде пистолета. Электродная проволока вытягивается из кассеты по шлангу роликами, расположенными в пистолете. Ролики вращаются электродвигателем через редуктор с помощью гибкого привода. Пистолет полуавтомата типа ПШПА-7 предназначен для сварки многослойных швов деталей из алюминия, магния и их сплавов с толщиной кромки до 100-150 мм. Для предохранения от нагрева пистолет имеет водяное охлаждение. Пистолет состоит: из сопла, механизма подачи проволоки, шланга для подачи проволоки, шланга для подвода аргона, проводов управления, рукоятки.
Для сварки в монтажных условиях рекомендуется ранцевый полуавтомат типа ПДГ-304, имеющий ремни для крепления на спине сварщика. Источником питания служат выпрямитель типа ВДГ-301. Сварочный ток – 315 А, диаметр сварочной проволоки 0,8-2,0 мм, скорость подачи проволоки 0,05-0,2 м/с. Масса механизма полуавтомата ПДГ-304 7 кг.
Автоматическая сварка может производиться неплавящимся и плавящимся электродами.
Автомат типа УДПГ-300 служит для сварки в защитном газе. В его комплект входят: сварочная головка, механизм подачи проволоки, электродная проволока, кассета с электродной проволокой, кнопка управления, электродвигатель механизма подачи.
Применяются специализированные сварочные тракторы типа АДСП-2 для сварки черных и цветных металлов толщиной 0,8 мм и более. Автоматы типа АТВ предназначены для сварки труб различного диаметра неплавящимся вольфрамовым электродом и присадочной проволокой диаметром 1,6-2,0 мм.
Сварка в углекислом газе производится полуавтоматическими и автоматическими аппаратами. Полуавтоматическая установка состоит из сварочного преобразователя постоянного тока, газоэлектрической горелки, механизма подачи электродной проволоки, аппаратного шкафа, баллона с углекислым газом, осушителя, подогревателя, редуктора и расходомера. Применяют сварочные преобразователи типов ПСГ-350 или ПСГ-500-2.
Газоэлектрические горелки служат для подвода газа и подачи электродной проволоки в зону дуги и для подвода сварочного тока к электродной проволоке. Они выпускаются различных типов для малых сварочных токов (до 300 А) и для сварки на больших токах (до 1000 А). Последние снабжены водяным охлаждением. Механизм подачи электродной проволоки используется от полуавтоматов типов ПШПА-6, ПШПА-7. Подача электродной проволоки производится с постоянной скоростью независимо от напряжения дуги. Аппаратный шкаф содержит электрооборудование, необходимое для подвода сварочного тока и тока цепей управления к соответствующей аппаратуре установки. Осушитель газа типа РОК-1, начиненный обезвоженным медным купоросом, применяют для удаления влаги из углекислого газа. Подогреватель с электронагревательным элементом служит для подогрева углекислоты. Это необходимо для предупреждения замерзания редуктора, которое может произойти от понижения температуры газа при редуцировании.
Широкое применение получил полуавтомат типа А-547ум (ПДГ-309), предназначенный для сварки листового материала толщиной до 3 мм во всех пространственных положениях электродной проволокой диаметром 0,8-1,2 мм с постоянным током обратной полярности. Источниками питания дуги являются выпрямители типа ВС-ЗООБ или ВДГ-301. Сварочный ток устанавливается в пределах 60-300 А. Механизм подачи электродной проволоки вмонтирован в чемоданчик и состоит из электродвигателя постоянного тока, роликов и катушки с проволокой. Реостат, включенный в обмотку двигателя, позволяет плавно изменять скорость вращения электродвигателя и тем самым изменять скорость подачи электродной проволоки в пределах 100-340 м/ч. Электродная проволока применяется марок Св-12ГС, Св-08ГС и Св-08Г2С.
Для автоматической сварки применяют специальные сварочные аппараты типов АДПГ-500, АСУ-6 или сварочные тракторы типов АДС-1000-2, ТС-17М, переоборудованные для сварки в углекислом газе.
АРГОНОДУГОВАЯ СВАРКА
При аргонодуговой сварке постоянным током неплавящимся электродом используют прямую полярность. Дуга горит устойчиво, обеспечивая хорошее формирование шва. При обратной полярности устойчивость процесса снижаемся, вольфрамовый электрод перегревается, что приводит к необходимости значительно уменьшить сварочный ток. Вследствие этого производительность процесса снижается. При автоматической и полуавтоматической сварках плавящимся электродом применяется постоянный ток обратной полярности, при котором обеспечивается высокая производительность процесса. Кроме того, при сварке алюминия, магния и их сплавов происходит мощная бомбардировка поверхности сварочной ванны положительными ионами, что наряду с процессом катодного распыления приводит к разрушению пленки оксидов алюминия и магния, облегчая процесс качественной сварки без применения флюсов.
При сварке переменным током неплавящимся электродом необходимо, чтобы источник тока имел более высокое напряжение холостого хода, что обеспечивает устойчивое горение дуги и стабилизирует процесс сварки. Однако в связи с ограничением напряжения по условиям безопасности применяют ток допускаемого напряжения, на который накладывается ток высокой частоты, включая в сварочную цепь осциллятор.
При сварке переменным током происходит частичное выпрямление тока вследствие различной электронной эмиссии вольфрамового электрода и свариваемого изделия. В периоды, когда вольфрамовый электрод является катодом, электронная эмиссия имеет большую интенсивность, проводимость дугового промежутка повышается, а напряжение на дуге понижается. Вследствие этого сварочный ток увеличивается. В периоды, когда катодом является изделие, электронная эмиссия менее интенсивна, в результате чего сварочный ток уменьшается. Ввиду этого появляется некоторая составляющая постоянного тока, что приводит к уменьшению тепловой мощности дуги и значительно затрудняет разрушение оксидной пленки при сварке алюминиевых и магниевых сплавов и тем самым способствует образованию поверхностных и внутренних дефектов. Поэтому при сварке переменным током принимают меры по устранению или снижению составляющей постоянного тока. Для этой цели в сварочную цепь включают последовательно конденсаторную батарею 100 мкФ на 1 А сварочного тока или аккумуляторную батарею (положительный полюс батареи присоединяют к электроду). Применяется также последовательное включение в сварочную цепь активного сопротивления, но такая мера снижает устойчивость горения дуги и поэтому при такой схеме сварочной цепи приходится использовать источники питания дуги с повышенным напряжением холостого хода до 120 В.
При ручной сварке неплавящимся электродом возбуждение дуги производят на угольной или графитовой пластинке и некоторое время разогревают электрод, а затем быстро переносят дугу в начало разделки кромок. При сварке переменным током возбуждение дуги осуществляют с помощью осциллятора без короткого замыкания электрода на изделие.
При полуавтоматической и автоматической сварке возбуждение дуги производят путем касания электродной проволокой вводной планки, которую устанавливают для предупреждения дефекта в начале свариваемого шва.
Аргонодуговой сваркой можно выполнять швы стыковых, тавровых и угловых соединений. При толщине листов до 2,5 мм рекомендуется сварку производить с отбортовкой кромок. При малом зазоре порядка 0,1-0,5 мм можно сваривать тонколистовой материал толщиной 0,4-4 мм без отбортовки и разделки кромок. При этом чем меньше толщина свариваемых встык листов, тем меньше допустимый зазор. Листы толщиной 4-12 мм сваривают с V-образной разделкой кромок при угле разделки 50-70°. Допустимый зазор в стыке составляет не более 1,0 мм. Расход аргона должен обеспечить надежную защиту электрода и металла сварочной ванны от воздействия воздуха. Следует учитывать конфигурацию свариваемого изделия, чтобы при экономном расходовании газа создать хорошую защиту шва.
Рекомендуются следующие соотношения:

Перед началом сварки следует продуть шланг и горелку небольшой порцией аргона. Возбуждение дуги следует производить спустя 3-4 с после подачи аргона в горелку. Струя аргона должна защищать не только сварочную ванну, но и обратную сторону шва. Если доступ к обратной стороне шва затруднен, то применяют подкладки или флюсовую подушку.
Ручную сварку листов малой толщины производят левым способом, при котором горелка перемещается по шву справа налево. Листы большой толщины (более 12 мм) сваривают правым способом, т. е. горелку ведут слева направо. Ось мундштука горелки при сварке тонких листов (толщиной до 4 мм) должна составлять с поверхностью свариваемых листов 75-80°. Присадочный пруток вводится в зону дуги под углом 10-15° к поверхности свариваемых листов, т. е. почти перпендикулярно оси мундштука горелки. При сварке листов большей толщины ось мундштука горелки располагают почти перпендикулярно к поверхности свариваемых листов. Длина дуги при аргонодуговой сварке небольшая и составляет 1,5-2,5 мм при длине выступающего вольфрамового электрода в пределах 6-12 мм. Дугу следует гасить постепенно, увеличивая дуговой промежуток. Подачу аргона в зону дуги следует прекратить лишь спустя 10-15 с после гашения дуги, чтобы защитить металл шва от воздействия воздуха до его затвердевания.
Автоматическая и полуавтоматическая сварка плавящимся электродом производится при постоянной скорости подачи электродной проволоки независимо от напряжения дуги. Постоянство длины дуги поддерживается автоматическим саморегулированием. Применяется электродная проволока диаметром 0,5-2,0 мм. Листы толщиной до 5 мм соединяют стыковой сваркой без разделки кромок, а при толщине листов более 5 мм произнодят У-образную разделку шва с углом разделки 30-50°.
Сварочный ток влияет на характер переноса металла в шов. С увеличением тока капельный перенос металла электрода сменяется струйным и глубина проплавления увеличивается. Значение тока, при котором металл электрода начинает стекать в сварочную ванну в виде тонкой струи, называют критическим. Практика показала, что при сварке алюминиевых сплавов критический ток составляет 70 А на 1 мм -------
| Библиотека iknigi.net
|-------
|
-------
сечения электродной проволоки, при сварке сталей – 60-120 А на 1 мм -------
| Библиотека iknigi.net
|-------
|
-------
сечения проволоки.
Подготовка поверхностей под сварку включает обезжиривание растворителями, бензином авиационным или ацетоном техническим, а затем удаление оксидной пленки механической зачисткой или химическим способом. Механическую зачистку производят металлическими щетками из проволок диаметром до 5 мм. Химический способ включает травление в течение 0,5-1,0 мин раствором, состоящим из 45-55 г едкого натра технического и 40-50 г фтористого натрия технического на 1 л воды, промывку проточной водой, нейтрализацию в 25-30 %-ном водном растворе азотной кислоты в течение 1-2 мин, промывку в проточной воде, затем в горячей воде, сушку до полного испарения влаги. Обработку рекомендуется выполнять не более чем за 2-4 ч до сварки.
СВАРКА В УГЛЕКИСЛОМ ГАЗЕ
Сварку в углекислом газе производят почти во всех пространственных положениях. Сварку осуществляют при питании дуги постоянным током обратной полярности. При сварке постоянным током прямой полярности снижается стабильность горения дуги, ухудшается формирование шва и увеличиваются потери электродного металла на угар и разбрызгивание. Однако коэффициент наплавки в 1,6-1,8 раза выше, чем при обратной полярности. Это качество используют при наплавочных работах. Сварку можно производить и на переменном токе при включении в сварочную цепь осциллятора.
Источниками питания дуги постоянным током служат сварочные выпрямители с жесткой внешней или универсальной характеристиками.
Листовой материал из углеродистых и низколегированных сталей успешно сваривают в углекислом газе. Листы толщиной 0,6-1,0 мм сваривают с отбортовкой кромок. Допускается также сварка без отбортовки, но с зазором между кромками не более 0,3-0,5 мм. Листы толщиной 1,0-8,0 мм сваривают без разделки кромок, при этом зазор между свариваемыми кромками должен быть не более 1 мм. Листы толщиной 8-12 мм сваривают V-образным швом, а при больших толщинах – Х-образным швом. Перед сваркой кромки изделия должны быть тщательно очищены от грязи, краски, окислов и окалины.
Наилучшие результаты дает сварка при больших плотностях тока, обеспечивающих более устойчивое горение дуги, высокую производительность процесса и снижение потерь металла на разбрызгивание. Для этого при сварке в углекислом газе применяют электродную проволоку диаметром 0,5-2,0 мм и выполняют сварку при плотности тока не менее 80 А/мм -------
| Библиотека iknigi.net
|-------
|
-------
.
Сварочная проволока применяется из низкоуглеродистой стали с повышенным содержанием кремния и марганца марок Св-08ГС, Св-08Г2С. Поверхность проволоки должна быть чистой от смазки, антикоррозионных покрытий, ржавчины и загрязнений, нарушающих устойчивость режима сварки.
Режим сварки выбирается в зависимости от толщины свариваемых кромок.
Сварочный ток и скорость сварки в значительной степени зависят от размеров разделки свариваемого шва, т. е. от количества наплавляемого металла. Напряжение устанавливается таким, чтобы получить устойчивый процесс сварки при возможно короткой дуге (1,5-4,0 мм). При большей длине дуги процесс сварки неустойчивый, увеличивается разбрызгивание металла, возрастает возможность окисления и азотирования наплавляемого металла.
Скорость подачи электродной проволоки зависит от сварочного тока и напряжения. Практически она устанавливается так, чтобы процесс протекал устойчиво при вполне удовлетворительном формировании шва и незначительном разбрызгивании металла.
Расход углекислого газа устанавливается так, чтобы обеспечить полную защиту металла шва от воздействия атмосферного воздуха. При сварке толстых изделий сварочными токами 500-1000 А расход газа достигает 15-20 л/мин.
Расстояние от торца мундштука горелки до сварного соединения должно быть при сварочных токах до 150 А в пределах 7-15 мм, а при токах до 500 А – в пределах 15-25 мм.
Полуавтоматическую сварку можно вести углом вперед, перемещая горелку справа налево, и углом назад, перемещая горелку слева направо. При сварке углом вперед глубина проплавления меньше, наплавляемый валик получается широкий. Такой метод применяют при сварке тонкостенных изделий и при сварке сталей, склонных к образованию закалочных структур. При сварке углом назад глубина проплавления больше, а ширина валика несколько уменьшается. Угол наклона горелки относительно вертикальной оси составляет 5-15°.
Перед началом сварки следует отрегулировать расход углекислого газа и только спустя 30-40 с возбудить дугу и приступить к сварке. Это необходимо, чтобы газ вытеснил воздух из шлангов и каналов сварочной горелки.
Вылет электродной проволоки устанавливается в пределах 8-15 мм при диаметре проволоки 0,5-1,2 мм и 15-35 мм при диаметре проволоки 1,2-3 мм.
В процессе сварки электроду сообщается такое движение, чтобы получилось хорошее заполнение металлом разделки свариваемых кромок и удовлетворительное формирование наплавляемого валика. Эти движения аналогичны движениям электрода при ручной дуговой сварке качественными электродами. Рекомендуется для снижения опасности образования трещин первый слой сваривать при малом сварочном токе. Заканчивать шов следует заполнением кратера металлом. Затем прекращается подача электродной проволоки и выключается ток. Подача газа на заваренный кратер продолжается до полного затвердевания металла.
При сварке в углекислом газе следует помнить об отравляющих действиях оксида углерода СО, выделяющегося при сварке. Поэтому при сварке в резервуарах и закрытых помещениях необходимо иметь хорошую вентиляцию.
КОНТАКТНАЯ СВАРКА
СУЩНОСТЬ КОНТАКТНОЙ СВАРКИ
Контактной сваркой называется сварка с применением давления, при которой нагрев производится теплотой, выделяющейся при прохождении электрического тока через находящиеся в контакте соединяемые части. Количество выделяющейся теплоты (Дж) может быть определено по формуле Q = 0,24IRt, где I – ток (A); R – сопротивление участка цепи в месте контакта деталей (Ом); t – продолжительность действия тока, с.
Из формулы видно, что количество теплоты зависит от тока в сварочной цепи. Поэтому для быстрого нагрева свариваемых кромок применяют большие токи, достигающие нескольких десятков тысяч ампер. Так как электрическое сопротивление прохождению тока в месте контакта свариваемых деталей велико, то на этом малом участке выделяется большое количество теплоты, которое вызывает быстрый нагрев металла. С повышением температуры металла в зоне контакта его сопротивление возрастает, следовательно, еще более возрастает количество выделяющейся теплоты и ускоряется процесс нагрева металла. Таким образом, применение больших сварочных токов позволяет осуществить быстрый нагрев металла и выполнить сварку за десятые и даже сотые доли секунды. Режим контактной сварки характеризуется совместным действием основных параметров: тока и времени его протекания, силы сжатия и времени ее действия.
По основным параметрам контактной сварки – тока и времени его действия – различают два режима процесса сварки: жесткий и мягкий. Жесткий режим характеризуется применением больших токов и малым временем процесса сварки. Такой режим применяется для сталей, чувствительных к нагреву и склонных к образованию закалочных структур, а также при сварке легкоплавких цветных металлов и их сплавов. Мягкий режим характеризуется большей продолжительностью процесса и постепенным нагревом свариваемого металла. Таким режимом пользуются при сварке углеродистых сталей, обладающих низкой чувствительностью к тепловому воздействию.
Машины контактной сварки состоят из двух основных частей: электрической и механической. Электрическая часть машин состоит из трансформатора, переключателя ступеней (или регулятора тока), регулятора времени, прерывателя тока и токоподводящих проводов и устройств. Трансформатор однофазный с секционированной первичной обмоткой, позволяющей с помощью переключателя ступеней изменять значение напряжения во вторичной обмотке. При первичном (220 или 380 В) и вторичном (1-20 В) напряжениях сварочный ток достигает нескольких десятков килоампер. Вторичная обмотка трансформатора у машин малой мощности состоит из отдельных гибких медных полос, охлаждаемых воздухом, у машин средней и большей мощности – из пустотелых медных витков, охлаждаемых проточной водой.
График изменения сварочного тока и усилия сжатия, совмещенные во времени, называют циклограммой. Для управления циклом работы машины применяют устройство, называемое регулятором времени. В практике применяют четырехпозиционный регулятор времени типа РВЭ-7, имеющий четыре последовательные выдержки времени для каждого элемента цикла сварки: сжатие, сварка, проковка и пауза. Регулятор имеет металлический корпус с выведенными наружу регулировочными ручками. Длительность времени всех элементов плавно регулируется: три диапазона в пределах 0,03-1,35 с и один для периода сварки в пределах от 0,03-6,75 с.
Включение и выключение машин контактной сварки производится со стороны первичной обмотки сварочного трансформатора. В процессе сварки необходимо включать и выключать большой ток десятки раз в секунду. Для этой цели машины оборудованы прерывателями. Машины небольшой мощности и неавтоматического действия имеют простые механические или электромагнитные контакторы. При больших мощностях такие контакторы имели бы большие габариты и низкую производительность. Они конструктивно не смогли бы обеспечить точное дозирование и стабильность подачи энергии. Поэтому в машинах средней и большой мощности устанавливают игнитронные и тиристорные прерыватели, выполняющие синхронное включение и выключение тока с определенной продолжительностью импульсов тока.
Механическая часть состоит из станины, механизмов и узлов, обеспечивающих точную фиксацию и необходимое давление для сжатия свариваемых деталей.
Контактная сварка является высокопроизводительным процессом и легко поддается механизации и автоматизации. Это способствует широкому применению контактной сварки в строительстве и промышленности, например для сварки стыковых и крестообразных соединении арматуры железобетонных конструкций, элементов листовых конструкции из углеродистой стали или алюминиевых сплавов, для соединения элементов стальных конструкций, для сварки труб, а также при электромонтажных работах для сварки медных и алюминиевых проводов.
Основными видами контактной сварки являются стыковая, точечная и шовная.
ВИДЫ КОНТАКТНОЙ СВАРКИ
Стыковая контактная сварка – это сварка, при которой соединение свариваемых частей происходит по всей поверхности стыкуемых торцов. Сварка может быть выполнена сопротивлением и оплавлением (непрерывным и прерывистым).
Сварка сопротивлением. Обработанные поверхности двух деталей приводят в плотное соприкосновение и включают сварочный ток. После нагрева стыкуемых поверхностей до пластического состояния производят осадку (сжатие) и одновременно выключают ток. Таким способом сваривают детали из низкоуглеродистых сталей, имеющих круглое или прямоугольное сечение с площадью до 1000 мм, и легированные стали площадью до 20 мм -------
| Библиотека iknigi.net
|-------
|
-------
. Цветные металлы и их сплавы хорошо свариваются сваркой сопротивлением. Этим способом можно сваривать и разнородные металлы (сталь с медью, латунь с медью, различные сорта сталей).
Сварка сопротивлением требует высокой чистоты свариваемых поверхностей и строгого контроля температуры нагрева. Поэтому этот способ не получил большого применения.
Сварка непрерывным оплавлением выполняется в такой последовательности. Детали, закрепленные в зажимах машины, плавным перемещением подвижного зажима приводят в соприкосновение при включенном сварочном токе. При этом происходит оплавление свариваемых торцов деталей. Затем производят осадку на установленную величину и выключают ток. Такой способ применяют при сварке тонкостенных труб, листов, рельсов и др. Допускается сварка разнородных металлов.
Достоинством сварки с непрерывным оплавлением является высокая производительность, недостатком – значительные потери металла на угар и разбрызгивание.
Сварка прерывистым оплавлением производится чередованием плотного и неплотного контакта свариваемых поверхностей деталей при включенном сварочном токе. Небольшие возвратнопоступательные движения подвижного зажима периодически замыкают сварочную цепь в месте контакта деталей до тех пор, пока торцы их не нагреются до температуры 800-900 °С. Затем производят оплавление и осадку. Прерывистым оплавлением сваривают низкоуглеррдистые стали в тех случаях, когда мощность машины недостаточна для производства сварки с непрерывным оплавлением. Этот способ также связан с дополнительным расходом металла, поэтому иногда подогрев производят способом сопротивления (включают ток при замкнутой сварочной цепи), а затем разводят детали и переходят к оплавлению и осадке.
Подготовка деталей к сварке зависит от принятого способа сварки. Сварка сопротивлением требует высокой точности обработки и плотности прилегания свариваемых поверхностей. Недостатки подгонки (перекос, зазор) приводят к неравномерному прогреву деталей, образованию оксидов и тем самым снижению качества сварного соединения. Допустимые отклонения размеров стыкуемых поверхностей круглых сечений – не более 2 %, прямоугольных – не более 1,5 %. Свариваемые торцы деталей подвергают тщательной механической или химической очистке. Должны быть хорошо очищены также поверхности соприкосновения деталей с зажимным устройством стыковой машины для получения хорошего контакта.
Установочная длина – длина конца свариваемой детали, выступающего из зажима машины, значительно влияет на сварочный процесс. Чем больше установочная длина, тем выше сопротивление контура с деталями и больше потребляемая мощность; детали разогреваются на большой длине, поэтому осадка, а отсюда и сварка получается некачественная. При малой установочной длине детали нагреваются неравномерно и недостаточно, так как значительная часть теплоты теряется через зажимы машины.
При сварке сплошных сечений установочная длина должна составлять 0,4-0,7 от диаметра заготовки (или от стороны квадрата). При сварке листов эта величина зависит от толщины металла и протяженности стыка. Например, при толщине листа 2-8 мм и длине стыка до 200 мм установочная длина составляет 10-12 мм; при длине стыка 400-800 мм – 13-16 мм, а при длине стыка 800-1000 мм – 14-17 мм.
Припуск на сварку берется небольшой, так как он расходуется только на осадку. Для деталей диаметром (или со стороной квадрата) до 50 мм припуск на осадку составляет 0,3-0,5 от диаметра, а для деталей диаметром до 100 мм – 0,15-0,2 от диаметра.
Давление осадки при сварке низкоуглеродистых сталей определяют исходя из значений удельного давления и площади сечения контакта сварки. На автоматических машинах удельное давление осадки составляет 40-60 МПа, а на неавтоматических машинах – 30-40 МПа.
Электрические параметры процесса сварки определяют в зависимости от материала свариваемых деталей и площади сечений стыкуемых поверхностей. Напряжение холостого хода составляет 1,5-3 В. При этом большие значения принимают для больших сечений – 500-1000 мм -------
| Библиотека iknigi.net
|-------
|
-------
. Плотность тока принимается для низкоуглеродистых сталей в пределах 20-60 А/мм -------
| Библиотека iknigi.net
|-------
|
-------
, для цветных металлов и сплавов – 60-150 А/мм -------
| Библиотека iknigi.net
|-------
|
-------
. Удельная мощность при сварке сталей сплошного сечения составляет 0,12-0,15 кВ•А/мм -------
| Библиотека iknigi.net
|-------
|
-------
. Для меди удельная мощность достигает 0,5-1,6 кВ•А/мм -------
| Библиотека iknigi.net
|-------
|
-------
, для алюминия – 0,2-0,6 кВ•А/мм -------
| Библиотека iknigi.net
|-------
|
-------
.
Сварка оплавлением допускает менее тщательную обработку свариваемых торцов, чем при сварке сопротивлением, так как часть металла зоны сварки оплавляется. Детали под сварку могут нарезаться пресс-ножницами и даже кислородной резкой (с последующей очисткой от окалины и шлака). Допускаются большие отклонения размеров сечений (круглых – до 15%, прямоугольных – до 12 %). Припуск расходуется на оплавление и осадку. Для углеродистых и низколегированных сталей величину припуска принимают в зависимости от площади сечения свариваемого металла. При сечениях до 200 мм -------
| Библиотека iknigi.net
|-------
|
-------
припуск составляет примерно 60% от диаметра (или стороны квадрата), а более 200 мм -------
| Библиотека iknigi.net
|-------
|
-------
– до 50 % от диаметра свариваемых поверхностей. При определении припуска необходимо учитывать также зазор между свариваемыми поверхностями. Зазор при площади сечения 100-1000 мм -------
| Библиотека iknigi.net
|-------
|
-------
составляет 1,5-4 мм, свыше 1000 мм -------
| Библиотека iknigi.net
|-------
|
-------
– до 8 мм. Плотность тока, расход электроэнергии и необходимая мощность меньше, чем при сварке сопротивлением. Для поверхностей площадью сечения 100-200 мм -------
| Библиотека iknigi.net
|-------
|
-------
плотность сварочного тока составляет 10-25 А/мм -------
| Библиотека iknigi.net
|-------
|
-------
. Удельная мощность при сварке углеродистой стали составляет 0,04-0,07 кВ•А/мм -------
| Библиотека iknigi.net
|-------
|
-------
.
Стыковая сварка применяется при соединении арматурных стержней железобетонных изделий. Металл заготовки почти полностью используется, так как из коротких отрезков можно сваривать стержни требуемой длины. Для получения качественной сварки выбирают практически наилучший режим и производят контрольную проверку сваренных стыков на разрыв и угол загиба. Участки свариваемых стержней, зажимаемые в электродах стыковой машины, должны быть очищены до металлического блеска. Для этого используют установку с вращающимися стальными щетками, шарошами или абразивными кругами. Торец должен иметь прямой срез. Это обеспечивает хорошую центровку, уменьшает расход времени и металла на оплавление.
Точечная контактная сварка – это сварка, при которой соединение элементов происходит на участках, ограниченных площадью торцов электродов, подводящих ток и передающих усилие сжатия.
Свариваемые листы накладывают друг на друга и зажимают между металлическими электродами, к которым от трансформатора подводится сварочный ток. Нагрев металла происходит при замыкании сварочной цепи. Наибольшее количество теплоты выделяется на участке наибольшего сопротивления цепи, т. е. в зоне соединения свариваемых листов. Здесь металл расплавляется. После выключения тока и осадки из образовавшейся жидкой металлической ванны кристаллизуется сварная точка.
Подготовка поверхностей к сварке заключается в тщательной механической (абразивными материалами, пескоструйным аппаратом, металлической щеткой) или химической (травлением) очистке с обеих сторон от грязи, масла, оксидов. Хорошая очистка и плотное прилегание поверхностей обеспечивают высокое качество сварной точки.
Цикл сварки состоит из сжатия свариваемых заготовок, включения и выключения сварочного тока и снятия усилия сжатия. Применяют различные способы совмещения периодов действия сварочного тока и действия давления сжатия. Например, после выключения сварочного тока усилие сжатия увеличивают. Это обеспечивает хорошее формирование металла и позволяет получить сварную точку повышенной прочности. Этот спсоб применяют для сварки изделий из низкоуглеродистой стали повышенной толщины. Листы обжимают большим усилием перед сваркой или сваривают при меньшем давлении с последующим обжатием повышенным усилием при выключенном токе. Этот способ применяется при сварке листов больших толщин, когда необходимо обеспечить формирование и отвердевание сварной точки.
Размеры сварной точки зависят от диаметра электрода сварочного тока и продолжительности цикла сварки. Процесс сварки может быть выполнен при жестком и мягком режимах. Мягкий режим определяется относительно малой плотностью тока (70-160 А/мм -------
| Библиотека iknigi.net
|-------
|
-------
) и большей длительностью цикла (2-3 с) при сравнительно малом удельном давлении. Жесткий режим выполняют при больших плотностях тока (160-360 А/мм -------
| Библиотека iknigi.net
|-------
|
-------
) и удельных давлениях и малой длительности процесса (0,2-1,5 с). Диаметр сварной точки зависит от толщины свариваемых листов и составляет 1-1.5 от диаметра электрода. Диаметр электрода принимается на 3-4 мм больше суммарной толщины свариваемых листов.
Рекомендуются следующие режимы точечной сварки. Для низкоуглеродистых сталей толщиной до 4 мм, используемых в строительных конструкциях, применяют жесткий режим при плотности сварочного тока до 300-360 А/мм -------
| Библиотека iknigi.net
|-------
|
-------
и продолжительности цикла сварки 0,8-1,1 с. Удельное давление составляет 15,0-70,0 МПа. При толщине металла более 4 мм рекомендуются мягкие режимы, осуществляемые при плотности тока до 160 А/мм -------
| Библиотека iknigi.net
|-------
|
-------
и продолжительности цикла до 2,5-3 с. Удельное давление достигает 100-120 МПа. При сварке алюминия и его сплавов применяют жесткие режимы при высоких плотностях тока, достигающих 1600 А/мм -------
| Библиотека iknigi.net
|-------
|
-------
, удельных давлениях до 150 МПа при продолжительности цикла 0,1-0,25 с. При этом свариваемые поверхности должны быть особенно тщательно очищены от пленки оксидов.
Точечная сварка применяется при изготовлении арматуры железобетонных изделий, плоских и угловых сеток, а также различных пространственных каркасов. Сваривают пересекающиеся стержни или стержни с плоскими элементами – листом, полосой, швеллером и др. В начальный момент контактируют небольшие поверхности и для быстрого разогрева достаточна небольшая мощность. Пластическая деформация контактируемых поверхностей приводит к увеличению площади соприкосновения. Вместе с этим происходит выдавливание из зоны контакта шлака и других неметаллических включений. Такое течение процесса позволяет при сварке стержней диаметром до 60 мм использовать машины относительно небольшой мощности.
Шовная контактная сварка – это сварка, при которой соединение элементов выполняется внахлестку в виде непрерывного или прерывистого шва вращающимися дисковыми электродами, к которым подведен ток и приложено усилие сжатия.
Применяют три способа шовной сварки: непрерывную, прерывистую с непрерывным вращением роликов и прерывистую с периодическим вращением роликов.
Непрерывную шовную сварку выполняют сплошным швом при постоянном давлении роликов на свариваемые листы заготовки и при постоянно включенном сварочном токе в течение всего процесса сварки. При этом способе имеют большое значение тщательная зачистка свариваемых поверхностей, равномерная толщина листов и однородность химического состава металла. Даже при небольших нарушениях подготовки свариваемых кромок сварной шов получается низкого качества с прожогами и непроварами. По этим причинам метод не получил широкого применения.
Прерывистую сварку с непрерывным вращением роликов также выполняют при постоянном давлении сжатия, но сварочная цепь периодически замыкается и размыкается. При этом способе шов формируется в виде сварных точек, перекрывающих друг друга. Шов получается более высокого качества.
Прерывистую сварку с периодическим вращением роликов выполняют при постоянном давлении сжатия, но сварочная цепь замыкается в момент остановки роликов (шаговая сварка). Такой способ дает более качественный шов, так как обеспечивает хорошее формирование сварочной точки. Однако машины для такого способа отличаются сложностью конструкции и малой производительностью.
Большое применение получила прерывистая шовная сварка с непрерывным вращением роликов при постоянном давлении сжатия в течение процесса сварки. Этим способом сваривают швы различных резервуаров и емкостей, а также конструкций из листового металла. Наиболее часто применяют швы с отбортовкой и внахлестку. При соединении с отбортовкой листов толщиной до 1 мм ширина отбортовки берется до 12 мм, при толщине листов до 2 мм – 20 мм. При нахлесточном соединении ширину нахлеста берут в пределах 10-20 мм.
Низкоуглеродистая сталь и тонкая нержавеющая сталь (типа Х18Н9) хорошо свариваются шовной сваркой. Сварку листов из низкоуглеродистой стали при суммарной толщине до 2 мм производят роликами с шириной контактной поверхности б мм. Давление сжатия достигает 4 кН, продолжительность импульсов тока в сварочной цепи составляет 0,04-0,06 с, перерыв между импульсами тока – 0,02-0,04 с. Сварочный ток достигает 8-16 кА, скорость сварки – 2 м/мин. При суммарной толщине листов до 4 мм ширина контактной поверхности роликов составляет 8,5-10 мм, давление сжатия находится в пределах 6,5-8,4 кН, продолжительность сварки – 0,08-0,12 с, а перерывов – 0,06-0,10 с. Сварочный ток достигает 20 кА, скорость сварки – 1,4-1,6 м/мин. При сварке нержавеющих сталей сварочный ток берется меньше указанных норм на 35-40 %. Сварка листов из алюминия и его сплавов выполняется при сварочных токах 22-40 кА. Скорость сварки не превышает 1 м/мин, давление сжатия достигает 2,5-5,4 кН, продолжительность импульсов сварочного тока составляет только 15-30 % времени одного цикла.
Разновидностью шовной сварки является шовно-стыковая сварка труб с продольным сварным швом. Из стальной ленты необходимой ширины специальными формирующими роликами подготавливают трубную заготовку с верхним расположением стыка кромок заготовки. Заготовка подается стыком под сварочные ролики, к которым подводится сварочный ток от трансформатора. Давление сжатия передается заготовке через нажимные ролики. После заварки шва производится его обработка фрезой, правка и разрезка заготовки на трубы заданных размеров. Этим способом изготовляют трубы диаметром 14-400 мм при толщине стенок 0,5-12,5 мм. Скорость сварки достигает 10-15 м/мин.
ОБОРУДОВАНИЕ ДЛЯ КОНТАКТНОЙ СВАРКИ
Для стыковой контактной сварки используют контактные машины общего назначения (универсальные) и специальные (для сварки арматуры, трубопроводов и др.).
В строительной промышленности для стыковой сварки применяются машины типов АСИФ, МСР, МСМ и МСГ.
Машины стыковой сварки оборудованы механизированным приводом осадочноподающего механизма и пневматическими зажимными устройствами. Так, машины типа МСМУ-150 (выпускается взамен машины типа МСМ-150), предназначены для сварки труб, стержней и других заготовок из низкоуглеродистой стали с площадью сечения до 2000 мм -------
| Библиотека iknigi.net
|-------
|
-------
. Машина производит сварку непрерывным оплавлением в автоматическом режиме и полуавтоматическом с предварительным подогревом торцов свариваемых деталей (вручную). Машина имеет станину из двух стоек и горизонтальной плиты, зажимы радиального типа с пневматическим приводом. Левый неподвижный зажим изолирован от станины, правый подвижный зажим закреплен на двух направляющих. При оплавлении и осадке перемещение подвижного зажима производится электромеханическим приводом.
В настоящее время взамен машин МСМУ-150 выпускаются конструктивно улучшенные машины того же назначения марки МС-2008.
Для сварки оплавлением и оплавлением с подогревом деталей больших сечений из низкоуглеродистой и низколегированной сталей применяются машины марок МСГА-300 (до 3000 мм -------
| Библиотека iknigi.net
|-------
|
-------
), МСГА-500 и МСГУ-500 (до 8000 мм -------
| Библиотека iknigi.net
|-------
|
-------
), отличающиеся мощностью сварочного трансформатора. Машины снабжены гидравлическим приводом, допускающим получать различные скорости при подогреве, оплавлении и осадке. Контактные плиты имеют пневмогидравлические зажимы, позволяющие закреплять детали практически любой длины. Управление процессом автоматическое электронным реле времени. Машины могут выполнить до 20 сварок в час.
Машины для точечной сварки делятся:
– по назначению на машины общего назначения (универсальные) и специализированные;
– по конструктивным особенностям – двухэлектродные и многоэлектродные, стационарные, передвижные и подвесные;
– по приводу сжатия – педальные, с электроприводом, пневматическим, гидравлическим и комбинированным механизмом сжатия;
– по характеру действия – автоматические и неавтоматические.
Машина АТП-50 имеет педальный механизм сжатия, состоящий из пружины и системы коленчатых рычагов. При нажатии на педаль тяга, перемещаясь вверх, поворачивает коленчатый рычаг на оси. При этом рычаги выпрямляются и сближают электроды. Когда электроды приходят в соприкосновение со свариваемыми листами, пружина оказывает давление на свариваемые листы через электроды. Для включения тока служит механический контактор, укрепленный на верхней плите. Включение производится собачкой она находит на ролик и через него включает контактор. При дальнейшем движении педали собачка проскакивает и контактор размыкает сварочный ток.
Машина имеет переключатель с восемью ступенями регулирования вторичного напряжения. Недостатком машины с педальным механизмом сжатия является ее низкая производительность.
При изготовлении строительных конструкций и арматуры железобетонных изделий применяются более совершенные машины типов МТМ (с электродвигательным механизмом сжатия) и МТП (с пневматическим механизмом сжатия). Эти машины используют в массовом производстве. Они обладают широким диапазоном продолжительности цикла (0,05-0,75 с), давлением сжатия, достигающим 58,8 кН, высокой производительностью, стабильностью режима.
Точечную сварку плоских арматурных сеток железобетонных конструкций производят на многоэлектродных машинах полуавтоматического действия. Машины для изготовления сеток шириной до 2000 мм из стержней диаметром 3-12 мм оборудованы десятью трансформаторами по 35 кВ•А каждая. Сетки шириной до 3800 мм, сваренные из стержней диаметром 3-12 мм, изготовляют на многоэлектродном автомате, имеющем восемнадцать трансформаторов мощностью 75 кВ•А каждая. Плоские арматурные каркасы шириной до 775 мм из продольных стержней диаметром до 25 мм и поперечных стержней до 12 мм сваривают на многоэлектродной машине полуавтоматического действия, оборудованной тремя трансформаторами мощностью по 100 кВ•А.
Наиболее распространены подвесные машины типа МТПГ-75-6, позволяющие сваривать внахлестку листы толщиной до 3 мм и пересечения арматурных стержней диаметром до 16 мм, а также машины типа МТПГ-150-2 для сварки листов толщиной до 4 мм и пересечений арматурных стержней диаметром до 18 мм.
Подвесные машины имеют сварочные клещи с рычажным, пневматическим или гидравлическим приводом сжатия. Они служат для сварки крупногабаритных изделий, пространственных каркасов и арматуры железобетонных изделий. Для комплектования подвесных машин применяют клещи типов КТГ-75-1, КТГ-75-2 и КТГ-75-3, оборудованные электронным регулятором, позволяющим устанавливать продолжительность цикла сварки в пределах 0,04•1,5 с. Сварочные клещи связаны с машиной гибкими токоподводящими кабелями и шлангами для подвода к электродам воздуха или воды (для охлаждения электродов и создания необходимого давления сжатия). Давление сжатия достигает 10 МПа.
Машина марки МТПП-75 имеет подвесной сварочный трансформатор, состоящий из сердечника, первичной и вторичной обмоток. От первичной обмотки сделаны отводы к переключателю для ступенчатого регулирования вторичного напряжения. Вторичная обмотка имеет два витка, которые с помощью двух медных планок могут быть соединены параллельно или последовательно, что позволяет изменять вторичное напряжение в пределах 5-19 В. Рабочим инструментом машины являются сварочные клещи, которые соединены со вторичной обмоткой двумя кабелями, состоящими из гибких медных проводов и заключенных в резинотканевый шланг. Кабели имеют внутреннее водяное охлаждение, позволяющее работать при высоких плотностях тока. Для создания усилия в клещах применяют пневматические цилиндры.
Выпускаются подвесные машины марок МТП-806 и МТП-807 с технической характеристикой, близкой маркам МТПП-75 и МТПГ-75. Управление этими машинами осуществляется аппаратурой на полупроводниках и тиристорах. Кроме этих машин используются более мощные (170 кВ•А) и быстродействующие подвесные машины типа МТП-1203 с клещами типов КТГ-12-3-1 и КТГ-12-3-2.
Для выполнения шовной сварки применяются машины общего назначения (универсальные) и специализированные различной конструкции. Так, универсальная машина марки МШ-2001-1 предназначенна для сварки прочноплотных швов изделий из низкоуглеродистых и легированных сталей. Машина состоит из станины, на которой укреплены нижняя и верхняя электродные головки. Вращение верхнего ролика осуществляется приводом. Над приводом вращения расположены переключатель скорости и регулятор цикла сварки. Внутри корпуса находятся сварочный трансформатор, автоматический выключатель и игнитронный контактор. Усилие сжатия создается пневматическим устройством и регулируется воздушным редуктором. Номинальная мощность машины 130 кВ•А, сварочный ток 20 кА, скорость сварки в пределах 0,4-4,5 м/мин. На машине можно сваривать сталь толщиной в пределах 0,5 + 0,5-1,8 + 1.8 мм.
Машина марки МШ-3201 аналогична по конструкции, но более мощная (323 кВ-А). При сварочном токе 32 кА допускает сварку стали толщиной 0,8 + 0,8-2,5 4 + 2,5 мм при скорости сварки 0,4-4,5 м/мин.
Для сварки крупногабаритных деталей из легированных сталей, жаропрочных и титановых сплавов применяются машины марки МШВ-1601, в конструкции которой предусмотрена возможность привода вращения верхнего или нижнего ролика. Это позволяет в зависимости от формы, габаритов и сочетаний толщин изделий выбирать оптимальный вариант привода. При номинальной мощности 130 кВ•А и сварочном токе 16 кА машина допускает сварку прочноплотным швом детали толщиной 0,3-3 мм со скоростью 0,2-8 м/мин. Синхронный игнитронный прерыватель тока типа ПИШ позволяет получать равные по числовому значению длительности импульсы тока через одинаковые паузы. Длительность импульса и паузы регулируются независимо в пределах 0,02-0,38 с. Таким образом, прерыватель одновременно выполняет роль регулятора времени. В настоящее время на машинах устанавливают более совершенные прерыватели тока типа ПСЛ на полупроводниковых элементах. Длительность импульса тока и пауз регулируется дискретно в пределах 1-20 периодов с частотой питающей сети. Это обеспечивает практически абсолютно точный отсчет времени.