Электронная библиотека » Джеймс Уотсон » » онлайн чтение - страница 5


  • Текст добавлен: 26 октября 2018, 19:20


Автор книги: Джеймс Уотсон


Жанр: Биология, Наука и Образование


Возрастные ограничения: +16

сообщить о неприемлемом содержимом

Текущая страница: 5 (всего у книги 39 страниц) [доступный отрывок для чтения: 11 страниц]

Шрифт:
- 100% +

На следующий день Уилкинс и Франклин явились посмотреть на результаты наших трудов. Опасаясь конкуренции с нашей стороны, они ненадолго объединились ради общей цели. Франклин не стала размениваться на придирки к нашей базовой концепции. Помню только, она отметила, что вода в кристаллической структуре ДНК практически отсутствует, хотя на самом деле все оказалось в точности наоборот. Я был не слишком подкован в кристаллографии, поэтому перепутал термины «элементарная ячейка» и «независимая область». В действительности кристаллическая ДНК богата водой. Следовательно, сказала Франклин, остов должен располагаться с внешней стороны молекулы, а не в центре нее, хотя бы с учетом того, сколько молекул воды она наблюдала в своих кристаллах.

Этот злосчастный ноябрьский день повлек за собой целый шлейф последствий. Франклин лишь уверилась в своем нежелании заниматься моделированием. Она собиралась продолжать эксперименты, а не играть в конструктор. Хуже того, сэр Лоуренс Брэгг передал нам с Криком, чтобы мы воздержались от всяких попыток собрать модель ДНК. Впоследствии было предписано передать все исследования ДНК в лабораторию Кингс-Колледжа, а в Кембриджской лаборатории сосредоточиться сугубо на работе с белками. Не было смысла в такой конкуренции между двумя подразделениями, финансируемыми Лабораторией молекулярной биологии. Поскольку у нас с Криком не осталось блестящих идей, мы нехотя отступили, по крайней мере на время.

Был не лучший момент, чтобы перебираться в научные дисциплины, смежные с исследованием ДНК. Полинг написал Уилкинсу и попросил у того копию узора кристаллографической дифракции ДНК. Пусть Уилкинс и отказал, сославшись на то, что ему требуется дополнительное время, чтобы самому проанализировать полученные данные, Полинг отнюдь не был обязан, сложа руки, ждать информации из Кингс-Колледжа. При желании он мог и сам приступить к серьезным исследованиям рентгеновской дифракции в Калифорнийском технологическом институте.

Следующей весной я послушно отложил занятия ДНК и принялся за доработку довоенных исследований, посвященных вирусу палочковидной табачной мозаики, вооружившись новым мощным кавендишским генератором рентгеновских лучей. Это была несложная экспериментальная работа, оставлявшая мне массу времени для библиографических поисков в разнообразных кембриджских библиотеках. Так, в зоологическом корпусе я прочел статью Эрвина Чаргаффа, в которой тот описывал свое открытие. Оказалось, что основания аденин и тимин содержатся в ДНК в приблизительно равных объемах и гуанин и цитозин – тоже в приблизительно равных. Крик, узнав об этих соотношениях «1:1», заинтересовался, а могут ли адениновые остатки при репликации ДНК быть комплементарны тимину, и, наоборот, может ли аналогичное сродство существовать между гуанином и цитозином. В таком случае последовательности оснований из «исходных» цепочек (например, А-Т-Г-Ц) должны быть комплементарны последовательностям «конечных» последовательностей (в данном случае Т-А-Ц-Г).

Эти мысли так бы и оставались только теоретическими умозаключениями, если бы Эрвин Чаргафф не заглянул в Кембридж летом 1952 года, направляясь на Международный биохимический конгресс в Париж. Чаргафф расстроился, что ни я, ни Крик даже не пытались определить химический состав этих четырех оснований. Он еще более разочаровался, когда мы сказали, что ведь можно просто проверить их состав по справочнику, если возникнет подобная необходимость. Нам оставалось только надеяться, что данные Чаргаффа окажутся нерелевантны. Однако Крик всерьез собрался поставить несколько экспериментов и поискать молекулярные «сэндвич-структуры», которые могли бы образовываться при смешивании в растворе аденина и тимина (либо, напротив, гуанина и цитозина). Но эти эксперименты не дали результатов.

Полинг, как и Чаргафф, также присутствовал на Международном биохимическом конгрессе, где главной новостью стали последние результаты, полученные группой «Фейдж». Альфред Херши и Марта Чейз из Колд-Спринг-Харбора как раз подтвердили описанный Эвери принцип трансформации: да, наследственная информация передается именно через ДНК! Херши и Чейз доказали, что, как только ДНК бактериофага попадает в бактериальные клетки, белковая оболочка остается снаружи. Стало совершенно очевидно: чтобы докопаться до сущности генов, необходимо понять ДНК на молекулярном уровне. Теперь, когда результаты Херши и Чейз превратились в тему для всеобщего обсуждения, я не сомневался, что Полинг употребит свой интеллект титана науки и мудрость химика на решение проблемы ДНК.

В начале 1953 года Полинг действительно опубликовал статью с описанием структуры ДНК. Прочитав ее взахлеб, я обнаружил, что он предлагает модель из трех молекулярных цепочек с сахарофосфатными остовами, образующими плотное ядро. На первый взгляд, эта модель походила на ту модель, которую мы буквально сотворили «на коленке» и предложили пятнадцатью месяцами ранее. Однако в модели Полинга для стабилизации отрицательно заряженных участков не использовались положительно заряженные атомы, например ионы Mg2+, а было предложено нетривиальное решение: он предположил, что фосфаты удерживаются вместе благодаря водородным связям. Однако мне, биологу, казалось, что такие водородные связи могли существовать лишь в условиях исключительной кислотности, которая никогда не наблюдалась в живых клетках. Я опрометью ринулся в химическую лабораторию Александера Тодда и убедился: да, произошло невозможное. Известнейший, а может, и величайший химик в мире напутал с химией. Фактически Полинг вышиб из ДНК букву «К». Мы исследовали дезоксирибонуклеиновую кислоту, но предложенная Полингом формула даже не была кислотной.

Я прихватил рукопись и поспешил в Лондон, чтобы сообщить Уилкинсу и Франклин, что мы по-прежнему в игре. Франклин была уверена, что ДНК никакая не спираль, и не захотела даже читать статью и забивать себе голову идеями Полинга, несмотря на то что я изложил ей весомые аргументы Крика в пользу спиральности ДНК. А вот Уилкинс живо заинтересовался новостями, которые я привез; теперь он был как никогда уверен в том, что ДНК именно спираль. В качестве подтверждения он показал мне фотоснимок, сделанный более полугода назад аспирантом Франклин по имени Раймонд Гослинг, который облучал рентгеном так называемую В-форму ДНК. Франклин просто отложила в сторону этот снимок, который впоследствии стал известен под названием «Фото 51», и предпочла вплотную исследовать A-форму, которая, на ее взгляд, могла дать больше полезной информации. B-форма в рентгеновских лучах имела отчетливую крестовидную форму. Поскольку Крик и другие исследователи уже определили, что такой рисунок будет давать именно спиралевидная структура, это стало весомым доказательством в пользу того, что ДНК просто обязана быть спиралью! На самом деле, несмотря на сомнения Франклин, никакого сюрприза здесь не крылось. По законам геометрии спираль представлялась наиболее логичным вариантом укладки длинной нити из повторяющихся элементов, таких как нуклеотиды ДНК. Однако мы все еще не знали, как выглядит эта спираль и сколько в ней цепочек.

Настало время вернуться к сборке спиралевидных молекул ДНК. Полинг рано или поздно все равно бы убедился, что ошибся с формой молекулы. Я убеждал Уилкинса не терять времени. Однако он хотел дождаться, пока Франклин вернется из отъезда. Той весной у нее была плановая командировка в другую лабораторию. Она решила продолжать работу там, поскольку в Кингс-Колледже она чувствовала себя некомфортно. Перед отъездом она получила распоряжение приостановить исследования ДНК и уже успела передать Уилкинсу многие из своих дифракционных снимков.


Снимки A– и B-форм ДНК, сделанные в рентгеновском диапазоне соответственно Уилкинсом (слева) и Франклин (справа). Различия в молекулярной структуре обусловлены разным содержанием воды в первой и во второй формах молекулы ДНК


Когда я вернулся в Кембридж и сообщил сенсационные новости о B-форме ДНК, Брэгг уже не видел никаких причин запрещать нам с Криком исследовать эту молекулу. Поэтому мы вернулись к сборке моделей и поиску того, как могут складываться в спираль базовые компоненты ДНК – остов молекулы и четыре разных основания: аденин, тимин, гуанин и цитозин. Я заказал в кавендишской мастерской набор оловянных моделей этих оснований, но мастера не успели изготовить их достаточно быстро; пришлось довольствоваться грубыми вырезками из плотного картона.

К тому моменту я осознал, что результаты измерения плотности ДНК свидетельствуют в пользу двух, а не трех цепочек. Поэтому решил рассмотреть правдоподобные варианты двойных спиралей. Мне как биологу было логичнее представить, что генетическая молекула должна состоять из двух, а не из трех частей. В конце концов, число хромосом (как и клеток) при делении удваивается, а не утраивается.

Я знал об ошибочности нашей предыдущей модели, где остов располагался внутри, а основания торчали от него в стороны. Данные от химиков из Ноттингемского университета, которые я так долго игнорировал, показывали, что основания должны быть сцеплены водородными связями. Они могли складываться на основе таких связей в стройную структуру, соответствующую данным рентгеновской дифракции, лишь если бы находились в центре молекулы. Однако как в таком случае они могли быть парными? На протяжении двух недель я находился в тупике из-за ошибки в учебнике по химии. К счастью, 27 февраля в Кавендишскую лабораторию заехал Джерри Донохью, химик-теоретик из Калифорнийского технологического института. Он и указал мне на ошибку в учебнике. Так что я поменял положения атомов водорода на картонных моделях молекул.


Химический остов ДНК


На следующее утро, 28 февраля, все ключевые компоненты модели ДНК наконец встали на свои места. Две цепочки удерживались вместе благодаря крепким водородным связям между парами оснований аденин – тимин и гуанин – цитозин. Подтвердились выводы, которые сделал Крик еще год назад на основании результатов исследований Чаргаффа. Аденин действительно связывается с тимином, а гуанин – с цитозином, но не плоскими гранями, как булочки в молекулярном «сэндвиче». Прибыл Крик, все это быстро осмыслил и одобрил мою схему парных оснований. Он сразу понял, что в таком случае возникает двойная спираль, нити которой идут в противоположных направлениях.

Это был знаковый момент. Мы чувствовали, что это оно, то самое открытие. Нечто столь простое и красивое должно было оказаться верным. Нас особенно потрясло, как основания из двух цепочек дополняют друг друга. Если знать последовательность, то есть порядок оснований, в одной цепи, то сразу открывается и последовательность оснований в другой цепи. Сразу становилось ясно, что именно эта структура обеспечивает такую точность при репликации хромосом перед делением клеток. Молекула «расстегивается» на две самостоятельные спирали. Каждая одиночная спираль служит своеобразным шаблоном для сборки второй спирали, из одной двойной спирали получаются две.

В книге «Что такое жизнь?» Шрёдингер предположил, что язык, на котором написана жизнь, может напоминать азбуку Морзе, состоящую из точек и тире. Он был почти прав. Код ДНК состоит из линейных последовательностей А, Т, Г и Ц. Точно так же, как при копировании книжной страницы вручную может возникнуть странная опечатка, так и при копировании всех этих А, Т, Г и Ц по всей длине хромосомы изредка вкрадываются ошибки. Это и есть мутации, о которых генетики рассуждали уже почти полвека. Заменим «о» на «ы» – и «дом» превратится в «дым». Заменим «Т» на «Ц» – и основание АТГ в ДНК превратится в АЦГ.

Двойная спираль была логична как с химической, так и с биологической точки зрения. Теперь можно было забыть о шрёдингеровской гипотезе по поводу иных законов физики, которые могли бы понадобиться, чтобы понять, как копируется наследственный генетический код. Гены укладывались в обычную химию. Позднее в тот же день мы обедали в пабе «Игл», буквально примыкающем к Кавендишской лаборатории, и Крик, у которого рот не закрывался, все-таки не удержался и объявил во всеуслышание, что мы открыли «тайну жизни». Меня эта мысль волновала не меньше, но я бы предпочел подождать, пока мы сделаем красивую трехмерную модель и сможем с нею покрасоваться.


Наше озарение, благодаря которому все сложилось: пары оснований комплементарны


Основания и остов на месте: получается двойная спираль. А. Схематичное изображение пар оснований, связывающих нити двойной спирали. B. Масштабная пространственная модель, демонстрирующая атомный состав молекулы


Одним из первых, кто услышал о нашей модели, был Майкл, сын Френсиса Уотсона. Майклу тогда было двенадцать, и он учился в школе-пансионе. Френсис написал Майклу семистраничное письмо о «важнейшем открытии», приложив к нему весьма качественный набросок двойной спирали. Он описал структуру ДНК как «длинную цепочку, из которой торчат пластинки», и предложил Майклу взглянуть на эту модель, когда тот в следующий раз приедет домой. Подписал весточку «сильно-сильно люблю тебя. Папа». (Майкл поступил достойно: он много лет хранил это письмо, а в 2013 году продал с аукциона за рекордную сумму 5,3 миллиона долларов, и половину этой суммы Майкл пожертвовал Институту Солка, где Френсис, скончавшийся в 2004 году, спокойно провел последние годы.)

Среди первых, кому мы показали нашу демонстрационную модель двойной спирали, был химик Александер Тодд. Он одновременно удивился и обрадовался, что ген устроен так просто. Правда, впоследствии он, должно быть, задумывался, почему в его лаборатории, где был определен общий химический состав ДНК, никто даже не попытался построить трехмерную модель укладки цепочек ДНК. Нет, суть молекулы довелось открыть двум парням, биологу и физику, и оба они не владели химией даже на университетском уровне. Однако, как ни парадоксально, отчасти именно этим и объясняется наш успех: мы с Криком первыми докопались до структуры двойной спирали, поскольку большинство химиков считали молекулу ДНК слишком крупной, чтобы подступиться к ней на уровне химического анализа.


За пять недель до того, как модель двойной спирали была опубликована в журнале Nature, Крик признался в нашем открытии своему сыну Майклу в рукописном письме (вы видите отрывки из него). В 2013 году письмо было продано с аукциона за рекордные 5,3 миллиона долларов


В то же время те двое химиков, которые пытались вообразить трехмерную структуру ДНК, допустили крупные тактические ошибки. Розалинд Франклин упрямо не хотела собирать объемные модели, а Лайнус Полинг просто не потрудился почитать имевшуюся литературу по ДНК, в частности данные о составе оснований, опубликованные Чаргаффом. По иронии судьбы, Полинг и Чаргафф отправились через Атлантику на Парижский биохимический конгресс 1952 года на одном и том же корабле, но так и не наладили контакт друг с другом. Полинг привык к тому, что он всегда прав. Считал, что нет такой химической задачи, которую он не смог бы самостоятельно решить, исходя из чисто теоретических принципов. В обычной ситуации такая уверенность была уместна. Во время холодной войны он проявил себя как авторитетный критик американской ядерной программы, и после одной из лекций его даже допросили сотрудники ФБР. Их интересовало, откуда он знает, сколько плутония в атомной бомбе. Полинг ответил: «Никто мне не рассказывал. Сам определил».

В течение нескольких следующих месяцев Крик и я, хотя и в меньшей степени, с упоением хвастались нашей моделью перед любопытными учеными, которые шли к нам сплошным потоком. Однако биохимики из Кембриджа даже не предложили нам выступить с официальной лекцией в биохимическом корпусе. Нас даже прозвали «WC» – подкалывали, ведь такой аббревиатурой в английском языке обозначается туалет. Их раздражало, что мы открыли двойную спираль без всяких экспериментов.

Мы послали рукопись в журнал Nature в начале апреля, но статью опубликовали лишь три недели спустя, 25 апреля 1953 года. Одновременно с нашей работой были опубликованы две более объемные статьи – от Франклин и Уилкинса; обе они в общих чертах подкрепляли нашу модель. Лишь показав им нашу рукопись, мы осознали, что примерно двумя неделями ранее Розалинд принялась пристально исследовать B-форму ДНК и практически сразу пришла к выводу, что эта молекула имеет форму двойной спирали. Но она не догадалась, что такая спираль скреплена парами оснований А – Т и Г – Ц.

В июне я впервые презентовал нашу модель в Колд-Спринг-Харборе на семинаре по вирусологии. Макс Дельбрюк похлопотал, чтобы меня пригласили выступить там. Но позвали в последний момент. Я принес на это крайне интеллектуальное мероприятие объемную модель, собранную в Кавендишской лаборатории. Пары аденин – тимин были красными, а гуанин – цитозин – зелеными.


Коротко и ясно: статья из журнала Nature с анонсом нашего открытия. Той же проблеме были посвящены две более объемные статьи – Розалинд Франклин и Мориса Уилкинса


Расплетаю двойную спираль: моя лекция в лаборатории Колд-Спринг-Харбор, июнь 1953


В аудитории присутствовал Сеймур Бензер, бывший физик, который развивал идеи из книги Шрёдингера. Он сразу же понял всю важность нашего исследования для изучения мутаций у вирусов. Он осознал, что теперь с коротким фрагментом ДНК бактериофага можно сделать то же самое, что ученики Моргана пятьюдесятью годами ранее проделывали с хромосомами дрозофил. Он собирался картировать мутации, то есть определять их последовательность, в рамках гена, так же как первые исследователи плодовых мушек картировали порядок генов в пределах хромосомы. Сеймур Бензер, как и Морган, считал, что каждый новый генетический набор должен образовываться путем рекомбинации. Однако если Морган в своей работе мог опираться на готовый механизм рекомбинации, отвечающий за образование половых клеток у дрозофилы, то Бензеру приходилось запускать рекомбинацию путем введения в бактерию, выступающую в роли клетки хозяина, двух разных бактериофагов, которые бы различались одной или более мутациями в исследуемом фрагменте ДНК. Внутри бактериальной клетки иногда могла происходить рекомбинация – обмен фрагментами молекул – между двумя разными вирусными ДНК. В результате возникали новые наборы мутаций, так называемые рекомбинанты. Всего за один год ошеломительно плодотворной работы в своей лаборатории в Университете Пердью Сеймур Бензер составил карту одного бактериального гена, rII, продемонстрировав, что в вирусной ДНК одна за другой упорядочиваются последовательные мутации, каждая из которых – очередная ошибка в генетическом сценарии. Этот язык оказался простым и линейным, все равно что строка текста на странице.


Репликация ДНК: двойная спираль расстегивается, как молния, и обе нити копируются


Венгерский физик Лео Сцилард отреагировал на мою лекцию о ДНК, прочитанную в Колд-Спринг-Харборе, не столь академично. Он поинтересовался: «Вы можете это запатентовать?» Некоторое время основным источником доходов Сциларда был полученный совместно с Эйнштейном патент, который Сцилард впоследствии безуспешно пытался повторно заявить вместе с Энрико Ферми, – речь шла о ядерном реакторе, который они совместно сконструировали в 1942 году в Университете Чикаго. Однако как тогда, как и сейчас патенты выдавались лишь на те изобретения, которые имели практическую пользу, а в те времена никто не мог даже помыслить, каким образом можно было бы практически применять ДНК.

Однако в головоломке двойной спирали оставался еще один незавершенный фрагмент: нашу версию о том, что ДНК при репликации расстегивается, как молния, предстояло проверить экспериментально. Например, Максу Дельбрюку версия казалась неубедительной. Сама модель двойной спирали ему нравилась, но он опасался, что при расстегивании по принципу молнии она может спутываться в ужасные узлы. Пять лет спустя эти опасения были развеяны после публикации работы Мэтта Мезельсона, бывшего ученика Лайнуса Полинга, и Франка Шталя, молодого перспективного сотрудника группы «Фейдж». Они опубликовали результаты одного очень красивого эксперимента.


Эксперимент Мезельсона – Шталя


Мэтт Мезельсон и Франк Шталь познакомились летом 1954 года в Лаборатории морской биологии в Вудс Холле, штат Массачусетс, где я в ту пору читал лекции, и – после изрядного количества джина с мартини – условились, что им следует вместе заняться наукой. Результат их сотрудничества был охарактеризован как «самый красивый биологический эксперимент».

Они воспользовались методом центрифугирования и смогли отсортировать молекулы по весу, хотя разница и была минимальной. Благодаря вращению центрифуги сравнительно тяжелые молекулы скапливались на дне пробирки, а более легкие – над ними. Поскольку в состав ДНК входят атомы азота (N) и поскольку есть два изотопа азота – один тяжелее, другой легче, – Мезельсон и Шталь смогли пометить сегменты ДНК и таким образом отследить процесс их репликации у бактерий. Исходно все бактерии выращивались в среде, содержащей тяжелый азот, и, таким образом, его атомы встраивались в обе нити ДНК. Ученые взяли образец этой культуры, перенесли его в среду, содержащую только легкие атомы азота, и при репликации в ДНК стал попадать только легкий азот. Если мы с Криком были правы относительно того, что ДНК при репликации расстегивается, как молния, и обе нити копируются, то две образующиеся в результате «дочерние» молекулы ДНК должны бы были получиться гибридными. В каждой была бы одна нить с тяжелыми атомами азота, послужившая шаблоном и взятая из исходной молекулы, и одна нить с легким азотом (собранная уже в новой среде). Центрифугирование, проведенное Мезельсоном и Шталем, дало именно такой результат. В цен-трифужных пробирках они обнаружили три четких слоя ДНК. Молекулы с сочетанием тяжелых и легких атомов азота расположились посередине; над ними были молекулы только с легким азотом, а под ними – только с тяжелым. Репликация ДНК происходила именно так, как описано в нашей модели.

Примерно в то же время биохимический механизм репликации ДНК анализировали в лаборатории Артура Корнберга в Университете им. Дж. Вашингтона в Сент-Луисе. Разработав новую, «внеклеточную» систему синтеза ДНК, Корнберг открыл особый фермент – ДНК-полимеразу, – скрепляющий элементы ДНК и обеспечивающий образование химических связей в остове ДНК. Выполненный Корнбергом синтез ДНК с использованием фермента ДНК-полимеразы оказался столь неожиданным и важным событием, что уже в 1959 году, менее чем через два года после ключевых экспериментов, Корнберг был удостоен Нобелевской премии по физиологии и медицине. После объявления о том, что Корнберг стал лауреатом этой премии, он сфотографировался с копией той модели двойной спирали, которую я возил в Колд-Спринг-Харбор в 1953 году.


Артур Корнберг на момент присуждения ему Нобелевской премии


Мэтт Мезельсон с ультрацентрифугой – аппаратом, в котором был проведен «самый красивый биологический эксперимент»


Вошла в роль: Николь Кидман снискала восторженные отзывы за роль Розалинд Франклин в театральной постановке «Фотография 51» компании Уэст-Энд (2015) по одноименной пьесе Анны Циглер (Anna Ziegler). Здесь Кидман рассматривает красивое рентгенографическое изображение, в честь которого и названа пьеса


Лишь в 1962 году Френсис Крик, Морис Уилкинс и я сам получили Нобелевскую премию по физиологии и медицине. Розалинд Франклин четырьмя годами ранее безвременно скончалась от рака яичников – ей было всего тридцать семь лет. Незадолго до того они с Криком хорошо сработались и стали настоящими друзьями. После двух онкологических операций, которые так и не остановили рост раковой опухоли, Франклин любила прогуливаться в Кембридже с Криком и его женой Одиль.

В Нобелевском комитете существовало и продолжает соблюдаться строгое правило: никогда не делить одну премию более чем натрое. Если бы Франклин выжила, то возникла бы дилемма, кому присудить часть премии: ей или Морису Уилкинсу. Шведы могли бы решить эту проблему, удостоив в тот год их обоих Нобелевской премии по химии. Однако в данном случае эту премию по химии получили Макс Перуц и Джон Кендрю, выяснившие соответственно объемные структуры гемоглобина и миоглобина.

Меня много критиковали за то, как я охарактеризовал Розалинд Франклин в моей опубликованной в 1968 году книге «Двойная спираль», повествующей о событиях того времени. Хотя Розалинд долгое время отказывалась признавать, что ДНК – это двойная спираль, благодаря ее работе мы получили абсолютно незаменимые научные данные. К счастью, в настоящее время ее заслуги оценены по достоинству, в том числе и с моей стороны, в послесловии к книге «Двойная спираль». Бренда Мэддокс написала о ней душевную биографическую книгу «Розалинд Франклин: темная леди ДНК». Не менее талантливо образ Розалинд воссоздала Николь Кидман, завораживающе сыгравшая ее в пьесе «Фотография 51» (компания Уэст-Энд, 2015). Так называлась одна из фотографий B-формы ДНК, полученных методом рентгеновской дифракции, которые сделал Раймонд Гослинг, аспирант Розалинд (о нем я рассказывал на с. 62). Этот снимок позволял предположить, что молекула имеет спиралевидную форму. Розалинд отложила этот снимок в сторону в мае 1952 года, а Морис Уилкинс показал мне его только в январе 1953 года. Честно говоря, ей он в этом так не признался. Вообще-то вся эта история с ДНК развивалась в духе «рыцарей плаща и кинжала».

Открытие двойной спирали стало последним гвоздем, забитым в гроб витализма. Серьезные ученые, даже разделявшие религиозные взгляды, осознали, что для полного понимания жизни не потребуется открывать никаких новых законов природы. Жизнь оказалась просто делом физики и химии, хотя и совершенно филигранно организованных. Теперь перед нами стояла следующая задача: понять, как реализуется на практике заложенный в ДНК «генетический код». Как молекулярные клеточные механизмы считывают информацию из молекул ДНК? В следующей главе будет рассказано, сколь неожиданно сложным оказался такой механизм считывания и какие удивительные подсказки о возникновении самой жизни он нам преподнес.


Страницы книги >> Предыдущая | 1 2 3 4 5 6 7 8 9 10 11 | Следующая
  • 0 Оценок: 0

Правообладателям!

Данное произведение размещено по согласованию с ООО "ЛитРес" (20% исходного текста). Если размещение книги нарушает чьи-либо права, то сообщите об этом.

Читателям!

Оплатили, но не знаете что делать дальше?


Популярные книги за неделю


Рекомендации