Электронная библиотека » Джон Ловин » » онлайн чтение - страница 18


  • Текст добавлен: 14 ноября 2013, 04:35


Автор книги: Джон Ловин


Жанр: Зарубежная образовательная литература, Наука и Образование


сообщить о неприемлемом содержимом

Текущая страница: 18 (всего у книги 22 страниц)

Шрифт:
- 100% +
Плавание с помощью крыла

Хвост рыбы можно рассматривать как подводное крыло. При движении хвоста из стороны в сторону он отбрасывает поток воды назад и соответственно движет рыбу вперед. Во время движения хвоста в воде за ним образуются вихри. Есть основания полагать, что принцип образования этих вихрей может быть ключом к пониманию эффективности передвижения рыбы.

Дельфины интересны тем, что их хвост – подводное крыло расположен горизонтально. Он не перемещается из стороны в сторону как у рыбы, а совершает движения вверх-вниз. Такие движения в той же степени эффективно толкают тело дельфина вперед.

Пингвины плывут с помощью толчков их крыльев. Вид пингвина, плывущего в воде, сильно напоминает полет птицы. Однако существует разница. При полете птица взмахами крыльев должна поддерживать тело в воздухе, а также обеспечивать движение вперед. Создание подъемной силы необходимо для преодоления силы притяжения. Для пингвинов подъемная сила не нужна. Плотность воды равна плотности тела пингвина (нулевая плавучесть), поэтому пингвин машет крыльями только для продвижения вперед.

Лопасти и весла

Рассматривая способы передвижения в воде, мы должны включить сюда использование лопастей и весел. При движении по воде утки используют перепончатые лапы в качестве лопастей. Водомерки используют ножки в качестве весел и двигаются вперед, как маленькие лодки.

Что мы знаем?

Исследования в МТИ привели исследователей к идее использования жидкостного динамического параметра, известного как индекс Строхала. Для рыбы этот параметр вычисляется умножением частоты взмахов хвоста рыбы на ширину образующегося вихря, деленную на скорость рыбы. Были исследованы рыбы разных пород. Оказалось, что КПД у рыбы максимален, когда индекс Строхала лежит в пределах 0,25-0,35.

Когда плавники робота-рыбы, созданной в МТИ были переделаны и настроены так, что индекс Строхала попал в этот диапазон, КПД устройства возрос более чем до 86 %. Это большое достижение по сравнению с гребными винтами, обеспечивающими КПД не более 40 %.

Приступаем к проекту

B этой главе рассмотрены два основных проекта подводных роботов. Один из них предусматривает переделку игрушечной подводной лодки, а другой – изготовление робота-рыбы из подручных материалов.

Подводная лодка

Модели игрушечных подводных лодок производятся и продаются многими компаниями. Их возможности зависят от степени сложности модели, но обычно они управляются по радио и способны погружаться и всплывать (см. рис. 13.2).

Рис. 13.2. Игрушечная подводная лодка готова к переделке в TROV


При переделке игрушечной подводной лодки я советую отказаться от радиоуправления и перейти к управлению по проводам с использованием соответствующего кабеля. По специальному кабелю можно подвести к подводной лодке питание и управляющие сигналы.

Такие подводные лодки для «хобби» могут быть превращены в небольшие системы телеслежения. Первоначальной переделкой может быть установка цветной видеокамеры. Большинство из подобных лодок имеют пустые отсеки, куда можно установить электронную схему (см. рис. 13.3).

Рис. 13.3. Открытый отсек для размещения электронных компонентов


В подводную лодку можно установить большинство блоков, использованных в автомобиле с дистанционным управлением (см. гл. 9). Единственным отличием является управление по проводам вместо радиоканала.

Подводная лодка является игрушкой, поэтому лучше не запускать ее в открытые водоемы. Крошечные водяные движители в таких лодках могут работать только в спокойной воде. Конечно, создание такой лодки может служить началом для более совершенных конструкций.

Существуют ли какие-либо другие способы использования подобных лодок, кроме использования их в качестве подводных «наблюдателей»? Я могу вообразить себе 10 или более подводных лодок в одном бассейне, причем, каждой управляет отдельный оператор. Я уверен, что на этой базе можно создать множество подводных или «космических» сценариев интересных игр.

Плавание с помощью хвоста

Как уже утверждалось ранее, устройства, имитирующие движения рыб, имеют очень низкий КПД. Эта модель не является исключением. Однако тщательный сбор информации источников типа МТИ может способствовать созданию модели (здесь этого не сделано) с гораздо большим КПД. И если кто-то хочет изготовлять роботов-андроидов, имеющих форму животного, то можно начать именно с этого проекта.

Кольцевые соленоиды

Движение робота-рыбы обеспечивается с помощью кольцевого соленоида (см. рис. 13.4). При включении питания верхняя часть соленоида поворачивается на угол примерно 30°. При отключении питания пружина возвращает механизм в исходное положение.

Рис. 13.4. Открытый отсек для размещения электронных компонентов


В верхней части соленоида находятся, по крайней мере, два резьбовых отверстия 1,6 мм, которые могут быть использованы для крепления деталей. В нижней части соленоида имеются две стойки с резьбой 1,6 мм для крепления соленоида. Соленоид оказался не таким мощным, как мне бы хотелось, но его все же достаточно для обеспечения подводного продвижения.

Электрическая схема

Для генерации медленной последовательности импульсов в схеме использован однопереходный транзистор Q1 (UJT2646) (см. рис. 13.5). Частота импульсов определяется номиналами C1 и R1. Импульсы подаются через резистор R2 на базу Q2. Q2 представляет собой NPN транзистор типа 2N2222. Транзистор Q2 используется для подачи инвертированного импульса на вывод 2 ИС 1. ИС 1 представляет собой таймер 555, включенный по схеме одновибратора. Форма и длина импульса определяются ИС 1. Выход таймера 555 управляет включением транзистора Q3. Транзистор Q3 управляет током, протекающим через кольцевой соленоид, использованный в роботе.

Рис. 13.5. Принципиальная схема устройства


Питание схемы осуществляется с помощью батареи 9 В. Схема достаточно проста и монтируется на печатной плате.

Проверьте работу схемы, соединив ее с соленоидом перед дальнейшей сборкой. Постоянная времени работы соленоида должна быть в районе 1 с.

Механика

Для снижения общей массы и веса устройства большинство деталей выполнено из алюминия. Первый вариант механизма, передающего движение соленоида к машущему хвосту «рыбы», изображен на рис. 13.6. Оказалось, что такой механизм сложнее, чем требуется. Окончательный вариант привода хвоста показан на рис. 13.7.

Рис. 13.6. Первоначальный привод движения хвоста


Рис. 13.7. Окончательный вариант привода


Полоса алюминия размерами 3х 12х 140 мм прикреплена к верхней крышке соленоида при помощи двух винтов 1,6 мм и длиной 6 мм. Просверлите сперва два отверстия в алюминиевой полосе, совпадающие с положением отверстий в верхней части соленоида. Затем, чтобы предотвратить излишне глубокое вворачивание винтов в соленоид, предварительно наверните на каждый винт гайку до упора. Если винты слишком глубоко ввернуты в верхнюю подвижную часть соленоида, то они будут препятствовать ее легкому вращению. Прикрепите алюминиевую полосу к подвижной части соленоида.

Плавник хвоста сделан из квадратного кусочка алюминия 30 мм, разрезанного по диагонали. Плавники крепятся к основанию 12 мм с помощью достаточного количества термоклея. Для лучшего контакта можно предварительно зачистить поверхности с помощью наждачной бумаги.

Соленоид крепится к задней части алюминиевой пластины размерами 3x30x50 мм на двух задних стойках 1,6 мм с помощью нескольких гаек. К передней части крепится плата электрической схемы и батарея (см. рис. 13.8).

Рис. 13.8. Робот-рыба в сборе


Гидроизоляция

Мы изготовили привод соленоида и электрическую схему. Для исключения попадания воды, которая может привести к порче устройства, необходимо завернуть плату соленоида в тонкую прозрачную пленку, используемую в кулинарии. Чехол из пленки крепится к хвосту с помощью проволоки. Крепление должно обеспечивать легкое поперечное перемещение хвоста.

Перед тем как опускать устройство в воду, ему необходимо обеспечить нулевую плавучесть. Если вы опустите его в воду «как есть», то передняя тяжелая часть робота «спикирует» на дно, а взмахи хвоста будут осуществляться «в воздухе». При помощи резиновой ленты прикрепите полоски пенопласта к передней части модели поверх прозрачного чехла. Положите модель в воду для проверки. Добейтесь горизонтального или почти горизонтального положения равновесия. После этого можно включить модель и отпустить ее в «плавание».

Эффективность модели

Данная модель робота не обладает КПД настоящей живой рыбы, хотя и обеспечивает движение. Я думаю, что КПД устройства можно повысить, распилив алюминиевую хвостовую пластину 12х 140 мм пополам, и затем соединить половины с помощью пружины 50 мм. Такая пружина позволит хвосту поворачиваться и изгибаться, что может обеспечить больший КПД передвижения.

Рыба-андроид

Робот отличается от андроида своим внешним видом. Если робот выглядит как «робот», то андроид копирует облик человека или иного живого существа. По этой причине андроидная рыба должна иметь вид рыбы.

Создание рыбы-андроида не столь сложно, как это может показаться на первый взгляд. Причина в том, что можно приобрести достаточно хорошо сделанную искусственную «шкуру» рыбы (см. рис. 13.9). Подобные предметы продаются в магазинах «хобби» и иллюзионного реквизита. Такая рыба может быть «вспорота» для установки внутри соответствующего механизма.

Рис. 13.9. Робот-рыба, заключенный в оболочку резиновой рыбы


Некоторые типы подобных муляжей выглядят более натурально. Я нашел модель, сделанную из толстой и мягкой резины. Такая «рыба» на вид и на ощупь очень реалистична, но требует более мощной «начинки», чтобы она могла двигаться. Лучшим выбором могут служить менее натуральные муляжи рыб, имеющие более тонкую шкуру и, следовательно, требующие меньше усилий для их передвижения.

Дополнительная информация

Чтобы больше узнать об устройствах, использующих принцип движения рыб, вы можете прочитать следующие статьи: Scientific American, March 1955, «An Efficient Swimming Machine» by Micheal S. Triantafyllou и George S. Triantafyllou, и Exploring Biomechanics, by R.McNeill Alexander, опубликованная в Scientific American Library, 1992, ISBN 0-7167-5035-X.

Список деталей для робота-рыбы

• R1 33 кОм

• R2 и R6 100 Ом

• R3 470 Ом

• R5 10 кОм

• R7 15 кОм

• Q2 транзистор NPN 2N2222

• Q3 TIP 120 NPN Darlington

• IC1 таймер 555

• C1 и C2 22 мкФ

• С3 0,01 мкФ

• Кольцевой соленоид $5,95

• Q1 2N2646 UJT $5,95

• Алюминиевая полоса 3х12х150 мм

• Алюминиевая полоса 3х30х50 мм


Детали можно заказать в:

Images SI, Inc.

39 Seneca Loop

Staten Island, NY 10314

(718) 698-8305

http://www.imagesco.com

Глава 14
Аэророботы

Аэророботы представляют собой класс роботов, которые умеют летать. Сюда включаются аппараты легче воздуха (дирижабли), вертолеты и самолеты. Подобные аппараты находят применение в автономных и беспилотных полетах, военном деле, наблюдении с воздуха, индустрии развлечений и системах телеслежения.

Беспилотная авиация имеет достаточно долгую историю: первые аппараты появились еще в начале 20-х годов. Один из таких беспилотных летающих аппаратов имел кодовое название «жук» и был предназначен для военных целей. Длина «жука» составляла 3,6 метра, а размах крыльев – 4,5 метра. Его навигационная система была достаточно совершенной для того времени и включала гироскоп, альтиметр и пневматические и электрические системы управления. Система управления полетом направляла аппарат на 50–70 км вглубь вражеской территории. Когда самолет достигал заданного региона, аппарат сбрасывал крылья, и тяжелый фюзеляж сбрасывался на землю, неся при этом 200-фунтовый заряд взрывчатки. Однако устройство не нашло массового применения в связи с окончанием 1-й Мировой войны.

С самого начала конструкции подобных беспилотных аппаратов подвергались постоянным улучшениям и модификациям. Последние модели беспилотных самолетов применялись в войне в Персидском заливе. Эта акция почти не нашла отражения в прессе, хотя было совершено более 300 вылетов. Эти аппараты были использованы в разведке для оценки потерь противника и обнаружения складов вооружений. Наиболее известными и совершенными беспилотными летательными аппаратами можно назвать самонаводящиеся межконтинентальные ракеты с ядерными боеголовками.

Системы дистанционного управления и «присутствия» на летательных аппаратах также имеют достаточно длинную историю, правда, не такую долгую, как беспилотные аппараты. США использовали во 2-й Мировой войне дистанционно управляемые самолеты для полетов «камикадзе». Системы управления того времени, конечно, не идут ни в какое сравнение с современными совершенными устройствами. Эти системы были недостаточно и надежны, и чтобы точно пилотировать аппарат, пилоту приходилось визуально наблюдать за полетом.

Сегодня дистанционно управляемые летательные аппараты имеют видеокамеры, передающие изображение пилоту-оператору. Пилот может находиться в любой точке Земли. Подобные системы сегодня превратились в системы телеслежения на базе принципов виртуальной реальности.

Мы изготовим аэроробота – дирижабль с системой телеслежения. Я решил сделать аппарат легче воздуха, поскольку в сравнении с моделью самолета или вертолета он более безопасен, не производит шума, дешев и прост в изготовлении.

Дирижабли летают тихо, медленно, грациозно и «прощают» ошибки пилотирования. Основной причиной моего решения была безопасность. Если дирижабль столкнется с предметом или человеком, то он не сможет причинить ему какого-либо вреда. С другой стороны, самолет или вертолет могут быть опасны для человека (вращающийся винт самолета или вертолета может случайно стать смертельным оружием), когда полет совершается в непосредственной близости от людей.

Мы изготовим модель небольшого дирижабля с мягкой оболочкой (далее, просто «дирижабль» – прим. переводчика), предназначенного для полетов внутри помещения. Необходимо очень тщательно отнестись к подбору деталей конструкции, которые должны иметь исключительно малый вес. Подъемная сила дирижабля составляет около 6 унций. Это означает, что приемник радиоуправления, движитель, источник питания, ПЗС видеокамера и передатчик видеоизображения должны иметь вес, не превышающий 185 грамм. Ограничение очень строгое, но выполнимое.

Виды летательных аппаратов легче воздуха

Летательные аппараты легче воздуха составляют три категории: жесткие, полужесткие и нежесткие (с мягкой оболочкой). Оболочка жестких летательных аппаратов обычно сделана из легкого алюминия. Наиболее известными являются цепеллины.

Полужесткие аппараты имеют жесткую кабину, расположенную в килевой части аппарата. Мягкая оболочка, наполненная гелием, крепится сверху.

Наиболее известными сегодня являются аппараты нежесткого (мягкого) типа. Это и есть шары-дирижабли. Наиболее известными являются шары Goodyear, используемые в рекламных целях. Такой шар-дирижабль представляет собой мягкую оболочку, принимающую форму при заполнении гелием.

Системы дирижаблей

Наиболее часто дирижабли используются сегодня для наблюдения за ходом футбольных матчей с высоты птичьего полета. Также шары – дирижабли используются в рекламных целях.

Технология подобных аппаратов может показаться устаревшей, однако ученые и инженеры находят для них все новые применения. Например, в армии США используется аппарат SASS LITE (мини-система слежения и обнаружения одиночных объектов), которая используется для патрулирования границ. Недавно производитель объявил, что 90-футовый летательный аппарат можно также использовать и для коммерческих целей.

Шары, наполненные гелием, способны достигать верхних слоев стратосферы. Одна из компаний предложила создать летающую воздушную станцию на высоте более 30 км над Землей. По аналогии со спутником, с подобной станцией будет осуществляться телекоммуникационная связь. При этом стоимость подобной станции будет составлять 50 % от стоимости спутника, оснащенного аналогичным оборудованием.

Роботизованные системы и системы телеслежения устанавливаются на модели дирижаблей уже в течение ряда лет. Мы вкратце расскажем о двух проектах, одном от The Robot Group и другом от Berkley's WEB Blimp. Затем мы сосредоточимся подробно на установке простой системы телеслежения на модели дирижабля. В действительности система телеслежения представляет собой портативную, легкую беспроводную систему телевидеонаблюдения. Сенсорные системы обратной связи, типа датчиков прикосновения, имитирующих чувство осязания, которые необходимы для «реальной» системы телеслежения, не разработаны. Наша простая система передает изображение и звук. Пользователь или оператор могут управлять полетом дирижабля через систему радиоуправления.

The Robot Group – Остин, Техас

На модель дирижабля была установлена роботизованная система. The Robot Group из Остина, штат Техас продемонстрировала робот-дирижабль на первом фестивале Robofest осенью 1989 года. Я уверен, что роботизованные системы, установленные на дирижаблях, использовались и ранее в военных или научных целях, однако The Robot Group представила частные (не финансируемые правительством) исследования в этой области. The Robot Group продолжает развивать и совершенствовать роботизованные дирижабли. В 1991 году был представлен проект компьютеризованного дирижабля Mark III, использующий ультразвуковые датчики и нейронные сети в качестве системы навигации. Хотя система в общем не оправдала надежд разработчиков, ее функционирование можно признать вполне удовлетворительным.

У The Robot Group есть сайт в Интернете, который вы можете посетить и получить свежую информацию (электронный адрес в конце главы).

WEB Blimp – университет Беркли, Калифорния

Космический «собиратель» – это имя было дано системе телеслежения, размещенной на дирижабле, которая была разработана и изготовлена в университете Беркли, Калифорния, на факультете радиоэлектроники и вычислительной математики. Эти дирижабли можно представить «аватарами», или «небожителями», или, как я их предпочитаю называть, – «големами».

Группа из Беркли предприняла усилия по созданию системы телесного «перевоплощения». Настоящая система телесного «перевоплощения» требует комплексной системы сенсорной обратной связи от дирижабля «аватара» к оператору. В настоящее время система обратной связи включает передачу звука и изображения, а пользователь может управлять дирижаблем по радио.

Наиболее интересным в конструкции этого дирижабля является то, что он может управляться через сеть Интернет (отсюда его название – WEB Blimb, т. е. WEB дирижабль). Видеоизображение передается в сеть через видеокарту формата CU-SeeMe. WEB дирижабль доступен в сети через вебсайт Беркли (см. адрес доступа в конце главы).

Создание дирижаблей систем телеслеженияв виде «аватаров» и «големов»

Хорошо там, где нас нет! Роботизованные дирижабли или подобные конструкции имеют большое будущее в индустрии дистанционного наблюдения и телеслежения. Представьте, что вы хотите посмотреть несколько картин в Парижском Лувре, посетить Американский музей естественной истории в Нью-Йорке, затем оказаться в Смитсоньевском институте в Вашингтоне и, наконец, понаблюдать за пингвинами на Галапагосских островах. И условимся, что все путешествие должно занять пару часов.

Одним из способов совершить это в реальном времени – это использовать системы телеслежения. Однажды в будущем появятся телероботы, снабженные «зрением», которые смогут связаться по телефонному (или спутниковому) каналу с вашей домашней системой виртуальной реальности. Эти роботы будут расположены во многих интересных местах по всему земному шару.

Телероботы будут не только привязаны к Земле. Будут созданы роботы, находящиеся в космосе, под водой или летящие в воздухе. Проект Джейсона предполагает создание подводной системы научно-познавательных «приключений» для школьников. Через систему телекоммуникационной связи школьники смогут связаться с учеными, находящимися на далеком судне. Студенты смогут узнать о том, чем занимаются ученые, задать вопросы и иногда пилотировать TROV (средство передвижения, снабженное системой телеслежения), используя систему телекоммуникации.

Путешествие на Луну

Компания Lunacorp в Фэйрфаксе, штат Вирджиния, планирует запустить вездеход гражданского применения на Луну (см. рис. 14.1). Какую-то часть времени этот вездеход будет использоваться как система телеслежения с управлением с Земли (см. рис. 14.2). К сожалению, цена такого «вождения» высока и составляет примерно $7000 в час. Я не знаю как вы, а я бы пожертвовал $120, чтобы поездить на вездеходе по лунной поверхности в течение минуты.

Рис. 14.1 Вездеход Lunacorp


Рис. 14.2. Система телеслежения Lunacorp. Версия художника


Lunacorp планирует доставить вездеход на Луну в район моря Спокойствия. Но мы отклонились от нашей темы о дирижаблях.


Страницы книги >> Предыдущая | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 | Следующая
  • 0 Оценок: 0

Правообладателям!

Это произведение, предположительно, находится в статусе 'public domain'. Если это не так и размещение материала нарушает чьи-либо права, то сообщите нам об этом.


Популярные книги за неделю


Рекомендации