Электронная библиотека » Джозеф Мазур » » онлайн чтение - страница 6


  • Текст добавлен: 23 июня 2017, 21:12


Автор книги: Джозеф Мазур


Жанр: Математика, Наука и Образование


Возрастные ограничения: +12

сообщить о неприемлемом содержимом

Текущая страница: 6 (всего у книги 17 страниц) [доступный отрывок для чтения: 6 страниц]

Шрифт:
- 100% +
Глава 6
Длинная серия орлов

Согласно данным Всемирной организации здравоохранения, доля рождения мальчиков к общей рождаемости по всему миру составляет 0,515.{60}60
  В целом 3 % данных отсутствовали.


[Закрыть]
Если рассмотреть данные по конкретным регионам или странам, то шансы далеки от равных. В Мексике доля новорожденных мальчиков очень низкая, тогда как в США и Канаде их доля выше 0,5{61}61
  Victor Grech, Charles Savona-Ventura, and P. Vassallo-Agius, Unexplained Differences in Sex Ratios at Birth in Europe and North America, British Medical Journal 324. no. 7344 (April 27, 2002).


[Закрыть]
. Однако для всего населения Земли – а оно уже больше 7 млрд – шансы рождения мальчиков по отношению к девочкам почти равны. Причина проста: у человеческого сперматозоида равное число X и Y хромосом, и у каждой из них равные шансы в момент зачатия. Это бросок правильной монеты.

После того как мы подбросили правильную монету 7 млрд раз, мы можем ожидать, что в половине из бросков выпадет орел. Но можем ли мы ожидать серию из миллиона орлов последовательно? Машина для бросания монеты показывает нам, что, несмотря на случайность траектории движения монеты, ее можно заставить выпадать орлом в 100 % случаев.

Вероятность падения правильной монеты орлом вверх – 1/2. Благодаря математике мы знаем, что по мере увеличения числа бросков монеты отношение орлов к решкам постепенно приближается к 1. Эвристическая оценка нарушает смысл последнего предложения, превращая его в утверждение того, что длинная серия решек неким образом окажется сбалансирована серией орлов. Легко стать жертвой ошибочного впечатления, что если одна из сторон очень долго не выпадала, то шансы ее появления увеличиваются с каждым ходом, хотя мы знаем, что теоретически каждый раз, когда брошена монета, шансы за и против каждого из исходов совершенно одинаковы – монета может с равным успехом выпасть «орлом» или решкой. Дело в том, что люди путают исходы событий и частотность.

Длинные серии орлов могут иметь место. Я наблюдал очень длинные серии орлов. На интуитивном уровне нам может казаться странным, что происходит нечто подобное. Предположим, что вы бросаете монету 10 раз и орел выпадает 7 раз. Пропорция орлов к решкам тогда составит 7 к 3. Бытовые представления подсказывают нам, что в ходе следующих десяти бросков решка должна выпасть больше шести раз, чтобы сбалансировать превысившее ожидания число ранее выпавших орлов. Но у монеты нет памяти о том, что с ней произошло ранее, есть только история результатов, записанная наблюдателем. Ничто не мешает монетке выпасть орлом в ходе следующих 500 бросков, однако, если это произойдет, мы сильно удивимся.

На рис. 6.1 представлен сгенерированный компьютером совокупный результат 500 бросков монеты (+1 для каждого орла, – 1 для каждой решки). Горизонтальная линия обозначает 0. Орел и решка перехватывают лидерство друг у друга. Это как гонка двух лошадей с равными шансами. Этого вполне можно ожидать. Суждение, основанное на бытовых представлениях, говорит в пользу того, что график должен был бы прыгать около нулевой линии. Однако чаще всего такие графики подолгу остаются с одной стороны от нуля.



Абсолютная случайность как теория и та же абсолютная случайность в реальном, физическом мире – не одно и то же. Пронумерованные шарики для пинг-понга, которые кружатся в акриловой сфере, а потом вылетают по специальной трубке, движутся вовсе не случайным образом, но для стороннего наблюдателя они определенно выдают случайные числа. Бросок монеты, который определяет, кто начинает матч в американском футболе, весьма далек от того, чтобы быть случайным. На самом деле результат броска монеты – вопрос элементарной физики. Уже созданы машины, которые могут бросать монету сколь угодно долго – тысячу раз, миллион – и всегда выпадает орел.

Недавние эксперименты показывают, что монеты, даже правильные монеты, склонны выпадать той же стороной, с которой начинается бросок, а исход броска зависит от угла между нормалью к плоскости монеты и вектора углового момента. Другими словами, полет монеты определяется начальными условиями. Диаконис, Холмс и Монтгомери построили машину, которая подбрасывает монеты посредством пружинно-храпового механизма{62}62
  Persi Diaconis, Susan Holmes, and Richard Montgomery, Dynamical Bias in the Coin Toss, SIAM Review 49, no. 2 (2000): 211–235.


[Закрыть]
. С этой машиной любая монета, движение которой начинается из положения «орел», всегда (в 100 % случаев) выпадает орлом вверх. Так что результат броска монеты определяется физикой, а не случайностью. Рука того, кто бросает, и множество переменных внешней среды вызывают разнообразные исходы, которые кажутся случайными.

Но мы можем обмануться иллюзией того, что монета крутится, в то время как на самом деле она просто прецессирует в воздухе, как медленно вращающийся гироскоп. Ориентация монеты в полете определяется вектором ее углового момента, который может быть всегда направлен вверх. Итак, монета, которая начинает движение из положения «орел», может всегда выпадать орлом, поскольку следует определенной траектории, хотя кажется, что орел и решка крутятся.

Когда речь идет о бросании монеты в реальных условиях, а исходы событий определяются малейшим воздействием от землетрясений, происходящих в тысяче километров от нас, или надоедливой бабочкой-смутьянкой над Тихим океаном, все иначе. Но иначе не значит объяснимо или постижимо. Падение монеты очень даже может быть случайным, но наше человеческое представление о случайности часто не в ладах с нашим же предчувствием относительно случайных исходов. Поскольку у монеты нет памяти о предыдущих исходах, нам не следовало бы удивляться, если она выпадет решкой 100 раз подряд, но мы все же удивляемся.



На рис. 6.2 мы увидим странную историю. Исходы вполне следуют ожиданиям вплоть до 45-го броска, когда решка вдруг перехватывает инициативу примерно на 105 следующих бросков! Затем идет достаточно долгий период, когда лидирует орел, и совокупное значение опять приближается к 0. Но около 286 броска решка опять надолго вырывается вперед. Не то чтобы события не согласовывались с нашими интуитивными ожиданиями. Действительное отношение орлов к решкам наверняка приблизится к 1 в ходе значительно более долгого времени, но в краткосрочной перспективе этого не происходит. За 500 бросков решка выпала только на 12 раз больше, чем орел. Это достаточно мало, но последовательности орлов и решек могут расходиться значительно сильнее в совокупных результатах. Например, рассмотрим следующее испытание, показанное на рис. 6.3.



Орел полностью контролирует ситуацию. Совокупный исход показывает, что орел ведет настолько уверенно на протяжении всей серии бросков, что кажется, будто решка никогда уже не вырвется вперед.

Результаты компьютерной модели 1 млн бросков разобраны в табл. 6.1. Отношение k/N, где k – число успешных исходов, а N – число испытаний, называют эмпирической частотой успешности испытаний. В правой колонке в табл. 6.1 приведены абсолютные значения разности между эмпирической частотой успешности испытаний и 1/2 – математически предсказанной частотой успешности испытаний.

Слабый закон больших чисел не исключает, что какие-то маловероятные события будут происходить часто на раннем этапе игры или на более поздних. На самом деле, даже если коэффициент успешности приближается к математически предсказанному, нет гарантии, что он таким и останется. Чуть более сильный математический результат говорит нам, что, хотя коэффициент успешности может сходиться к теоретически вычисленному, действительные значения коэффициента склонны к довольно странному поведению по мере увеличения числа испытаний. Контринтуитивно, но это так.

Слабый закон больших чисел, примененный к любому событию, вероятность которого равна p, говорит нам, что вероятность приближается к 1 по мере увеличения N. Возьмем ԑ = 0,0001 (выбрано произвольно) с p = 1/2 для ситуации с бросанием монеты и спросим, насколько возможно, что  Обратите внимание (табл. 6.1), что имеет резкие перепады при низких значениях N. Но они, очевидно, есть также и при высоких значениях. От 100 000 до 200 000 оно увеличивается. Даже с 800 000 до 900 000 оно увеличивается, пока не падает на миллионе. Создается обманчивое впечатление, что разность между орлом и решкой приближается к нулю. Но ничего не говорится о волатильности этого приближения при увеличении числа испытаний. Как мы видим, волатильность увеличивается по мере увеличения числа бросков монеты.

Итак, что же здесь происходит? Похоже, что у более высокого N есть некоторая свобода от закона больших чисел, поскольку в масштабах больших чисел больше места для незаметных ошибок.

Для 5000 бросков были 2561 орел и 2439 решек с разностью 122. Это дает ошибку в 2,4 %, что не так уж плохо. Но, если не знать распределение этих орлов, может случиться так, что 122 орла были выброшены последовательно. Придерживаясь этой точки зрения, представьте, что 758 решек выброшены последовательно за 67 500 бросков или 694 орла выброшены последовательно за 82 500 бросков. Другими словами, нет математического закона, который исключает возможность последовательного выпадения огромного числа орлов при большом N.


Глава 7
Треугольник Паскаля

В физическом мире не существует совершенной симметрии, искусственных машин с бесконечно малым допуском или идеальных моделей. Это мир множества скрытых переменных, явления которого слишком трудно охватить точной мерой. Иными словами, подлинные случайности действительно происходят, и мы часто обращаемся к вероятностным картинам событий, чтобы понять сложный феномен случайности.

Что если бы у вас обнаружили миелодиспластический синдром – редкую форму рака, при котором костный мозг не вырабатывает достаточно красных кровяных телец? Вы столкнулись бы с дилеммой: согласиться на трансплантацию костного мозга с 70 % вероятностью успеха или не делать ничего и с 70 % вероятностью умереть в течение следующих 10 лет. Конечно, у трансплантации имеются свои риски. Помимо необходимости химиотерапии и риска инфекции будет еще 30 % вероятность смерти в течение следующих 6 месяцев.

Брайан Зикмунд-Фишер, который преподает теорию рисков и теорию вероятностей в Медицинской школе Мичиганского университета, столкнулся с такой дилеммой в 1998 г. Ему диагностировали миелодиспластический синдром и сказали, что без лечения он проживет всего 10 лет, а с лечением у него будет 70 %-ная вероятность жить нормальной жизнью{63}63
  Robert Siegel and Andrea Hsu, What the Odds Fail to Capture When a Health Crisis Hits, NPR All Things Considered, July 21, 2014.


[Закрыть]
. Он сделал ставку на трансплантацию. Смысл в том, что шансы ничего не говорят об отдельном человеке. Вероятность в 70 % получена посредством сбора статистических данных о сотнях (возможно, тысячах) людей, которые столкнулись с той же дилеммой, – государственная, нелокальная статистика. Статистические группировки описывают тенденции и возможности, а не отдельные случаи, когда можно выиграть или проиграть.

Возьмем некое событие, которое вы могли бы счесть редким. Его математические шансы могут быть один к миллиону, но, вероятно, такие цифры связаны с тем, что событие оценивается как локальный феномен. В качестве примера можно взять белку, которую ударило молнией в тот момент, когда она пересекала дорогу. Когда мы говорим на этом знакомом языке шансов, то часто выражаемся фигурально, без какого-либо последовательного метода определения терминов. Итак, «один на миллион» обычно применяется к событию, которое, как мы думаем, происходит в довольно широких пределах Соединенных Штатов. Но США – большая страна. Это нетрудно увидеть, пролетев над маленькими домиками, маленькими деревьями и обширными зелеными полями. Мы не думаем ни о том, сколько там внизу белок, ни о том, сколько из них пересекают дорогу в отдельный момент времени. Ученые оценивают численность белок в США в 1,12 млрд, что в 3 раза больше населения страны. И белки постоянно пересекают дороги.

Учитывая 1,12 млрд белок, 6,5 млн км дорог и 9,5 млн км2 площади США, вполне возможно, что каждую минуту 300 белок пересекают дороги{64}64
  Протяженность дорог, согласно данным Министерства транспорта США и Федерального управления шоссейных дорог; площадь суши, согласно данным Управления лесов Министерства сельского хозяйства США.


[Закрыть]
. Во время грозы это число может быть даже больше. В среднем в Соединенных Штатах случается 110 000 гроз в год. Летом гроз гораздо больше, чем зимой, что делает возможность поражения белки ударом молнии летом действительно очень большой.

Каждое явление в природе вызывается большим числом неопределенных возможностей. Когда бросают игральную кость, то результат сильно зависит от ее начального положения в руке бросающего и значительно слабее – от звуковых волн, создаваемых голосами присутствующих в комнате. Это лишь два внешних фактора, направляющих кость к положению, в котором она остановится.

То, как она ударяется об стол, точность ее балансировки, ее движение по руке, упругость соударения со столом – все это повлияет на то, какая из сторон будет направлена вверх, когда кость остановится.

Рассмотрим игру, в которой возможен только выигрыш или проигрыш, а вничью сыграть невозможно. Пусть X обозначает исход испытания, а P (X) – вероятность наступления этого исхода. Если бы вы, например, бросали монету, P (орел) равнялось бы 1/2, как и P (решка). В колесе для американской рулетки 38 ячеек, включая 0 и 00: 18 красных; 18 черных; 0 и 00 – зеленые. Если вы ставите на красное, P (красное) равняется 18/38 или, если упростить, 9/19, а P (не красное) равняется 10/19. Если бы вы бросали игральную кость, надеясь выбросить «очко» (1), то P (1) равняется 1/6.

Выберите любую подобную игру и спросите себя: какова вероятность выиграть 0, 1, 2, 3 или 4 раза? Вполне уместный вопрос, поскольку реальные азартные игры предполагают совокупные последовательности выигрышей или проигрышей. Вспомним о Джоан Гинтер, о том, как она 4 раза выиграла в лотерею. Вам также могут быть интересны шансы сыграть лучше, чем если бы вы остались при своих, или по крайней мере шансы не проиграть больше 2 из 4 ставок.

Обозначим последовательностями из букв W и L серии выигрышей или проигрышей. Четырехкратный проигрыш будет обозначен через LLLL, а четырехкратный выигрыш – через WWWW. Есть лишь один способ выиграть все 4 раза и только один – не выиграть ни разу. А если выиграть 1 раз из 4? Есть 4 способа выиграть 1 раз из 4, а именно: WLLL, LWLL, LLWL и LLLW. И, конечно, способов проиграть только 1 раз из 4 также 4. Как насчет 2 выигрышей за 4 тура? Двухкратный выигрыш будет представлен 6 вариантами: WWLL, WLWL, WLLW, LWWL, LWLW и LLWW. При независимых событиях, где исход первого события не имеет памяти о других (например, туры при игре в рулетку или игра в орлянку), вероятности одного или другого из 2 событий – это произведение вероятностей каждого из них. Исходя из того, о чем мы говорили в главе 4, если A и B – это возможные исходы, вероятность наступления и A, и B – это произведение P (A) P (B), а вероятность наступления A или B – P (A) + P (B) – P (A) × P (B).

Теперь давайте возьмем случай с 2 выигрышами. Чтобы упростить запись, примем, что p означает P (W), а q – P (L). Вероятность 1 отдельного выигрыша – p, и, поскольку выигрыш и проигрыш в разных турах – события независимые (т. е. каждый тур не зависит от предыдущего), мы видим, что вероятность 2 выигрышей в 4 турах – это p²q²[10]10
  Здесь имеется в виду «вероятность двух выигрышей и двух проигрышей в некотором фиксированном порядке». – Прим. науч. ред.


[Закрыть]
. Так происходит потому, что вам необходимо 2 раза выиграть и 2 раза проиграть, а когда логической связкой является «и», вероятности перемножают. Но, как мы выяснили, это может произойти 6 различными способами: WWLL, WLWL, WLLW, LWWL, LWLW и LLWW.

Поскольку логической связкой является «или», вероятность наступления любого из этих событий будет: ppqq + pqpq + pqqp + qppq + qpqp + qqpp, или просто 6p²q².

Рассмотрим четыре разные игры. В первой игре мы играем в рулетку и ставим на красное. Во второй мы подбрасываем монетку и ставим на выпадение орла. В третьей мы подбрасываем две игральные кости и выигрываем, если в сумме выпало 7, а во всех остальных случаях проигрываем. Наконец, в последней игре мы покупаем билет Texas Lotto и рассматриваем как выигрыш только джекпот. В таблице 7.1 приведены вероятности выиграть в каждой из этих игр (первый столбец). Мы также можем сыграть несколько раз. Допустим, мы играем четыре раза – тогда можем выиграть ноль, один, два, три или четыре раза. Вероятности соответствующих событий также приведены в таблице 7.1.

В теории и для рулетки, и для орлянки в соответствии с табл. 7.1 наиболее вероятен выигрыш в 2 турах из 4. Мы могли бы составить таблицу вероятностей для 100 туров рулетки и орлянки, однако это было бы ужасно долгим и непрактичным занятием. Вместо этого позвольте сказать только то, что в 100 турах орлянки игрок, ставящий на орла, с наибольшей вероятностью выиграет 50 раз, а в 100 турах рулетки, делая ставку на «красное», игрок с наибольшей вероятностью выиграет (как будет показано) только 37 раз{65}65
  Может показаться странным, что в 100 турах рулетки при ставке на красное вероятен выигрыш в 47 турах, а не в 50, но это происходит оттого, что p < q, поэтому максимальная вероятность отклоняется от средней.


[Закрыть]
. Священный Грааль игрока – знать, какие именно 37 раз.

Отметим симметричность, присущую рулетке и орлянке, асимметричность костей и предельную асимметричность лотерей. Как насчет строки для рулетки в табл. 7.1? На гистограмме, изображающей число туров, когда выпадает «красное», против вероятности наступления этого количества туров, где выигрывает «красное» (см. рис. 7.1A), около числа 2 есть некоторая асимметрия, а центр притяжения (геометрическая точка равновесия), видимо, немного меньше 2. Когда число туров увеличивается до 8, отклонение становится еще более явным (см. рис. 7.1B){66}66
  Mazur. What's Luck Got to Do with It? 104.


[Закрыть]
.






Увеличение числа туров в рулетке приводит к сглаживанию графика. Для 100 туров у нас будет 101 прямоугольник с основанием в одно деление{67}67
  Однако, чтобы уместить его на странице, график нужно сжать по горизонтальной оси, чтобы он выглядел, как график на рис. 7.4.


[Закрыть]
.

На рис. 7.2 изображено то, что называется частотным распределением. Высота прямоугольника над каждым из чисел означает то, как часто ожидается наступление отдельных событий. Столбцы распределяются по горизонтальной оси таким образом, что общая сумма их площадей равняется 1. Другими словами, площадь графика составляет 100 % всех возможных событий. Большая часть распределения частот концентрируется между 32 и 62, самый высокий столбец – 47. Меньше 32 и больше 62 вероятности настолько малы, что на графике их не видно. Например, P (31) = 0,00034, а P (63) = 0,0006. Весьма маловероятно, что «красное» выпадет 20 или 80 раз, однако, как все совпадения, не исключено.

В случае орлянки, где p равняется q, симметрия идеальна. Но p не обязательно равняется q. Мы обнаруживаем все более выраженную асимметрию по мере того, как увеличивается разрыв между p и q. В табл. 7.1 мы видим идеальную симметрию в 5-й колонке слева и почти никакой симметрии в 7-й колонке. И все же все вычисления основываются на 3-й колонке и производятся с помощью так называемого треугольника Паскаля – ключе к хранилищу инструментов теории вероятностей.

Треугольник Паскаля – это числа, расположенные в виде треугольника следующим образом:



Каждое число на рис. 7.3 – это сумма двух чисел, расположенных точно над ним в линии сверху: например, 3-е число (10) в 5-й линии сверху – это сумма 4 и 6 на 4-й линии. Сперва отметим симметричность, а затем обратим внимание на то, что числа те же, что мы видели, когда раскладывали по степеням сумму двух переменных p и q. Мы находим те же числа, когда раскладывали по степеням (p + q) n. Например, при n = 2 (p + q)² = (p + q) (p + q) = p (p + q) + q (p + q) = p² + pq + qp + q² = p² + 2p¹q¹ + q².

Если мы возведем в степень n = 1, 2, 3, 4, 5, 6…, получим следующую матрицу в форме треугольника:



Для любого n константы в разложении двучленов (p + q)n – это как раз числа из треугольника Паскаля.

История этого треугольника начинается задолго до Блеза Паскаля{68}68
  Мне говорили, что есть и более ранние упоминания о треугольнике, начиная с индийского математика XII в. Халаюдха, который написал комментарий к «Чанда Шастра» (трактат на санскрите, посвященный исследованию стихотворных размеров), где он отмечал, что диагонали треугольника складываются в определенные числа, которые позже назовут числами Фибоначчи. Я не встречал достоверных подтверждений тому, что подобный треугольник упоминается так рано, хотя это вполне возможно. Если это так, то там наверняка не приводится формула построения, а просто дается список достаточно большого числа рядов, чтобы им можно было пользоваться.


[Закрыть]
. Он в 1527 г. появился в работах китайского алгебраиста XIII в. Чу Шикей, позже – на титульном листе «Учебника по арифметике» Петера Апиана (который можно увидеть на картине «Послы» [1533 г.] работы Ганса Гольбейна-младшего), больше чем за век до того, как Паскаль исследовал треугольник, названный его именем{69}69
  Петер Апиан был немецким гуманистом, математиком и астрономом. См.: D. E. Smith, History of Mathematics (New York: Dover, 1958), 508.


[Закрыть]
. В современном Иране треугольник известен как треугольник Хайяма, в честь известного персидского поэта и математика Омара Хайяма, который использовал треугольник в XII в., чтобы создать метод нахождения корней n-х степеней. В современном Китае он называется треугольником Ян Хуэя, в честь другого математика, который описал его в XIII в. В Италии это треугольник Тарталья, в честь математика Никколо Тарталья, жившего за век до Паскаля. Однако Паскаль, собрав уже известные наработки о треугольнике, использовал их в теории вероятностей{70}70
  Mazur, What's Luck Got to Do with It? 239.


[Закрыть]
.

Распределение вероятностей

На рис. 7.2 показана вероятность выигрыша при ставке на «красное» в 100 турах рулетки. Мы уже видели, какую форму принимает график, когда рассматривали примеры вычислений в табл. 7.1 и коэффициенты, получаемые в результате разложения двучленов (p + q)n. Распределение столбцов на графике справедливо называют биномиальным распределением. Слово «биномиальное» происходит от конструкции, основанной на двух мономах p и q. По мере увеличения n график выравнивается и принимает форму колокола. Чем больше n, тем плавнее кривая.

Выберем некоторое большое значение n. Мы изменим гистограмму, сохранив без изменений ее площадь, а следовательно, и вероятность. Поскольку основание каждого столбца[11]11
  Имеется в виду, на исходной диаграмме, до модификаций. – Прим. науч. ред.


[Закрыть]
имеет ширину в одно деление, распределение вероятностей представлено в виде площадей прямоугольников, а также их высотами. Некоторые разумные изменения – сдвиг, сжатие и растяжение – дают нам новый график, который сохраняет всю полезную информацию оригинала{71}71
  Сначала мы сдвигаем весь график так, чтобы высшая точка располагалась на 0. Очевидно, что площадь остается прежней, никакая информация не теряется, за исключением того, что теперь мы интерпретируем смысл графика как распределение вероятностей пошагового увеличения или уменьшения красного против черного. Еще одно изменение нашего рисунка – мы сжимаем кривую в 5 раз по горизонтали и растягиваем во столько же раз по вертикали. Коэффициент 5 получен в результате вычисления √Npq, где N – это число туров, p – вероятность того, что выпадет красное, а q – вероятность того, что красное не выпадет. Точное число – 4,99307. Я округлил его до 5 для удобства использования.


[Закрыть]
. Конечно, теперь, в измененном графике, вертикальная ось уже не обозначает вероятность. Вероятность заключена в площадях прямоугольников, а эти площади не изменялись, потому что мы растянули график по вертикали и сжали по горизонтали в одной пропорции[12]12
  Здесь имеется в виду следующее. На рис. 7.2 построена гистограмма для числа выигрышей в рулетку при 100 играх. На горизонтальной оси отмечены отрезки, соответствующие числам от 0 до 100. Над каждым из отрезков построен прямоугольник, высота которого равна вероятности получить соответствующее число выигрышей. Поскольку горизонтальные отрезки единичные, высота каждого отрезка численно совпадает с его площадью. Если теперь задать вопрос, например, «какова вероятность, что число выигрышей будет от 42 до 47», то для получения ответа нужно будет сложить все высоты прямоугольников, построенных над отрезками от 42 до 47. Визуально проще при этом думать не о сложении высот, а о сложении площадей этих прямоугольников: эта сумма будет равна просто площади под частью всей фигуры, расположенной над отрезком [42, 47]. Таким образом вероятность получает простую геометрическую интерпретацию в виде площади. Если теперь модифицировать диаграмму, сжав ее по горизонтали в несколько раз и растянув по вертикали в такое же число раз (это будет соответствовать выбору других единиц измерения для горизонтальной оси, на которой мы откладываем значения нашей случайной величины), то высоты прямоугольников изменятся и больше не будут обозначать вероятности. В то же время, если рассмотреть часть фигуры, лежащую над каким-то отрезком, то в результате модификации она перейдет в другую фигуру той же площади. Эта площадь по-прежнему будет вероятностью того, что случайная величина попадет на (новый) отрезок. – Прим. науч. ред.


[Закрыть]
.

Чего мы достигли? Вот оно – чудо, вдохновенная идея. Кривую (гистограмма биномиального распределения, показанная на рис. 7.2), которая изображает вероятность выигрыша при ставке на «красное» в 100 турах рулетки, можно близко аппроксимировать к одной определенной математической кривой. Тут важно понимать, что одна эта кривая описывает великое множество природных феноменов, являющихся результатами случайностей. Поразительно, но эта кривая моделирует события рулетки, хотя и не имеет очевидной связи с шариками, падающими в красные ячейки колеса рулетки. Еще более удивительно, что та же кривая моделирует также и орлянку. Всего одна кривая описывает вероятности столь различных явлений. Чтобы получить информацию о вероятности конкретного явления, нам нужно ввести некоторые данные в модель. Мы должны предоставить два числа – среднее (среднее значение) и стандартное отклонение (мера разброса от среднего){72}72
  Сначала надо переместить кривую так, чтобы ее среднее значение стало менее 50, затем нам необходимо вычислить скаляр (коэффициент масштабирования), на который мы будем сжимать кривую по горизонтали и растягивать по вертикали. Перемещение было нужно потому, что мы знали, что всего в игре было 100 туров.


[Закрыть]
. Два этих числа дают информацию для модели, скажем, о рулетке, а именно: вероятность наступления события p (шарик падает в красную ячейку) – 9/19. Как только у нас есть эти конкретные p и N (число сыгранных туров рулетки), мы можем вычислить стандартное отклонение для нашей конкретной игры – ставки на «красное» в рулетке{73}73
  Скаляр – это  где N – число туров, p – вероятность успешного испытания, а q – вероятность неудачи (q = 1 – p). Другими словами, скаляр для нашей конкретной игры (ставка на красное на рулетке):
  или приблизительно 5.


[Закрыть]
. Это мера того, насколько велик разброс исходов от среднего, или стандартное отклонение от среднего, чаще называемое просто стандартным отклонением{74}74
  В общем, можно представить проделанные нами масштабирование и преобразования просто как трансформацию переменных x и y в новые переменные X и Y. Положим, X = x – a, сдвигая график как целое на a единиц вправо. Пусть X = x/b, что соответствует растяжению по горизонтали в b раз. Также положим Y = cy, чтобы отмасштабировать график по вертикали в c раз. В итоге получаем новый график: Y vs. X. Для биномиального распределения частот, где p достаточно близко к q, мы преобразуем x в X, приняв его за


[Закрыть]
.

Итак, каждая кривая биномиального распределения трансформируется с помощью математического трюка (посредством сдвигов и масштабирования) в особую могущественную кривую нормального распределения, график которой изображен на рис. 7.4{75}75
  Кривая, описываемая графиком
  называется кривой нормального распределения и на самом деле упоминается еще у Муавра и Лапласа. Получается из нормального распределения
  при μ = 0, σ² = 1 (μ – это среднее, σ – стандартное отклонение).


[Закрыть]
.

Числа в основании кривой на рис. 7.4 – это стандартные отклонения от среднего. Мы объединили испытания в группы по стандартному отклонению. Отдельные вероятности исходов событий теперь не видны. Переменная X под кривой на рис. 7.4 показывает отклонение числа эмпирических успешных исходов от наиболее вероятного их числа. Иными словами, X, переменная горизонтальной оси, измеряется в стандартных отклонениях. Высота кривой – это уже не вероятность, поскольку мы ее масштабировали и сжали, сохранив площадь под кривой. Но в обмен на это масштабирование и сжатие мы получаем некоторые ценные сведения. Первое: около 68 % площади под кривой лежат на одном стандартном отклонении от среднего и около 95 % площади – на двух стандартных отклонениях от среднего. Второе: одно стандартное отклонение отмечено точками перегиба, т. е. точками на кривой, где кривая меняет форму с вогнутой на выпуклую.



Хотя одно стандартное отклонение для исхода «красное» в 100 турах рулетки – это не то же самое, что стандартное отклонение для орла в 100 бросках монеты, чудесным образом кривая и в том и в другом случае одинакова. Но толкование значения этих кривых будет различным. Хотя кривая на рис. 7.4 может быть одинаковой для распределения в различных азартных играх, разметку на осях нужно рассматривать в соответствии с конкретными расчетами среднего и стандартного отклонения. Эти данные будут зависеть от числа туров и вероятностей положительных исходов для конкретных игр.

Когда мы исследуем частотное распределение, то склонны смотреть в основном на отклонение от наиболее вероятного значения. Но то, что происходит далеко за пределами наиболее вероятных значений, может иметь невероятно сильное воздействие на общий накопленный результат. Мы обращаем мало внимания на эту внешнюю область, потому что в основном думаем о центре распределения и явлениях, которые наиболее вероятны, а не о том, что могло бы произойти в самых маловероятных случаях.

Принимаем ли мы в расчет маловероятные ситуации самых плохих сценариев? Или говорим, что они настолько редки, что их следует просто отбросить? Это и есть совпадения или случайности природы, реальные физические явления, движущиеся с попутным ветром вероятности. По мере увеличения числа бросков «правильной» монеты общее число орлов может значительно превысить общее число решек (или наоборот). Например, ситуация, когда вы бросаете монету 100 раз и каждый раз выпадает орел, маловероятна, но возможна, несмотря на то что шансы выбросить орла при каждом подбрасывании 1 к 1. Все же будем немного более сдержанны и рассмотрим случай, где из 100 бросков мы имеем исходы в 41 орел и 59 решек, или вероятности 0,41 и 0,59 соответственно[13]13
  Имеются в виду «эмпирические вероятности», то есть частоты выпадения в конкретной серии подбрасываний. – Прим. науч. ред.


[Закрыть]
. Похоже, что разница велика, но из 100 бросков разница между орлом и решкой на самом деле всего лишь 18. Однако, если вы бросите монету 500 раз (как мы сделали в главе 6) и найдете, что вероятности стали значительно ближе к 1/2, скажем, где пропорция орлов в общем числе бросков равняется 0,45, а решек – 0,55, итого у нас будет 225 орлов и 275 решек, разность составит 50.

Иными словами, разность может продолжать увеличиваться, даже если коэффициенты приближаются к 1/2. Добавим к этому понимание, что для распределения результатов нет прогноза, мы находим его по мере того, как увеличивается число бросков, и то же самое происходит с вероятностью возникновения все большего и большего числа непрерывных серий орлов. Мы могли бросить монету 100 раз, сделать паузу, бросить еще 100 раз, снова сделать паузу и продолжить дальше подобным образом. Каждый раз мы могли бы начинать вести счет заново. Тогда каким же образом выходит, что разность между решками и орлами может быть 50 за 500 бросков, но, возможно, 10 за 100 бросков? Когда случится разница в 50? Может ли она случиться на последних 100 бросках подряд? Конечно, это тоже будет совпадением, но у каждой возможности есть небольшой шанс!

В теории в рулетку играют шариком идеально сферической формы, который крутится и ударяется о безупречно сбалансированное колесо с идеально ровными ячейками в совершенно неподвижной комнате в мире, который мы никогда не видели и который никогда не существовал. Реальные ставки делают в физическом мире, где шарики и колеса производятся с предельно жесткими допусками, но эти шарики и колеса изготавливают машины, созданные человеком. Магическая связь между идеальным и физическим настолько замысловата, что наше непонимание ослепляет нас.

Внимание! Это не конец книги.

Если начало книги вам понравилось, то полную версию можно приобрести у нашего партнёра - распространителя легального контента. Поддержите автора!

Страницы книги >> Предыдущая | 1 2 3 4 5 6
  • 0 Оценок: 0

Правообладателям!

Данное произведение размещено по согласованию с ООО "ЛитРес" (20% исходного текста). Если размещение книги нарушает чьи-либо права, то сообщите об этом.

Читателям!

Оплатили, но не знаете что делать дальше?


Популярные книги за неделю


Рекомендации