Автор книги: Евгений Кунин
Жанр: Биология, Наука и Образование
Возрастные ограничения: +16
сообщить о неприемлемом содержимом
Текущая страница: 38 (всего у книги 41 страниц)
Вероятность случайного возникновения различных революционных систем в Н-области: грубая прикидка верхних пределов
Общие предположения: в Н-области содержится 1022 звезд, у каждой десятой есть пригодная для жизни планета; то есть имеется 1021 таких планет (несомненно, это сильное преувеличение; в действительности большинство звезд не имеет планет вовсе, не говоря о пригодных для жизни). Каждая планета размером с Землю, у каждой имеется пригодный для обитания слой толщиною 10 км (106 см); отсюда объем этого слоя 4/3π[R3-(R-l)3] ≈ 5 × 1024 см3, где R – радиус планеты, l – толщина обитаемого слоя. Синтез РНК происходит в 1 % объема обитаемого слоя – то есть в объеме 5 × 1022 см3 (опять сильное преувеличение – в действительности «фабрик РНК» будет очень мало). Положим концентрацию нуклеотидов в объеме V и скорость синтеза молекул РНК размера n (свободный параметр, зависящий от специфики модели революционной стадии, далее n-мер) за 1 молекулу/см3/сек (и снова сильное преувеличение для любой молекулы сколько-нибудь значительного размера; более того, не учтена обратная зависимость от n, которая должна быть достаточно сильной). Время после Большого взрыва в данной Н-области (как верхний предел) для всех планет 1010 лет ≈ 3 × 1017 секунд. Тогда количество уникальных n-меров, опробованных за время после Большого взрыва, будет:
S ≈ 5 × 1022 × 1021 × 3 × 1017 ≈ 1,5 × 1061
Предположим, что для начала биологической эволюции требуется уникальный n-мер. Количество возможных последовательностей, состоящих из n нуклеотидов, N = 4n ≈ 100,6n.
Можно ожидать, что уникальный n-мер возникнет в Н-области E раз:
E = S/N = 1,5 × 1061/100,6n
и
n = log (E × 1,5 × 1061)/0,6
Подставив E = 1, получаем n ≈ 102 (нуклеотида). Заметим, что, так как величина n прямо пропорциональна логарифму S, оценка будет мало зависеть от начальных предположений о величине переменных; например, изменение S на порядок величины приведет к увеличению или уменьшению n менее чем на 2 нуклеотида.
Можно представить себе рибозим-репликазу, состоящую из приблизительно ста нуклеотидов; таким образом, в принципе спонтанное появление таковой в конечной вселенной, состоящей из единственной Н-области, нельзя исключать в нашей «игрушечной» модели (и снова, скорость синтеза РНК, принятая здесь, намеренно сильно переоценена).
Для появления примитивной системы сопряженной репликации-трансляции, что в данном контексте рассматривается как революционная стадия, требования гораздо жестче. Как минимум, необходимо спонтанное появление следующего:
• Две рРНК, с общим размером не менее 1000 нуклеотидов.
• Примерно 10 примитивных адаптеров по 30 нуклеотидов каждый, в целом около 300 нуклеотидов.
• По меньшей мере одна РНК, кодирующая репликазу, размером примерно 500 нуклеотидов (оценка снизу). В принятой модели, n = 1800, и в результате E < 10–1018.
Другими словами, даже в нашей игрушечной модели, которая предполагает сильно преувеличенную скорость синтеза РНК, вероятность случайного зарождения системы трансляция – репликация в единственной Н-области будет P < 10–1018. Очевидно, эта версия революционной стадии может рассматриваться только в контексте вселенной с бесконечным (или, по меньшей мере, очень большим) количеством Н-областей.
Модель, рассмотренная здесь, ни в коем случае не предполагалась реалистичной. Она только иллюстрирует разницу в требованиях, накладываемых на вероятность возникновения разных версий революционных систем, и следовательно, связь этой версии с разными космологическими моделями вселенной.
Таблица II-1. Новые определения и новые интерпретации известных определений в модели МММ.
Литература
(1948) O Polozhenii V Biologicheskoi Nauke. Stenograficheskii Otchet Sessii Vsesoyuznoi Akademii Selskohozyastvennyh Nauk Imeni V. I. Lenina. (On the Situation in Biological Science. A Transcript of the Session of the V. I. Lenin All-Union Academy of Agricultural Sciences, July 31-August 7, 1948. Moscow, USSR: The State Agricultural Literature Publishers.
‘t Hooft, G. (1993) Dimensional Reduction in Quantum Gravity. gr-qc/9310026.
Adami C. (2002) What Is Complexity? Bioessays 24: 1,085—1,094.
Adl, S. M., A. G. Simpson, M. A. Farmer, R. A. Andersen, O. R. Anderson, J. R. Barta, S. S. Bowser, G. Brugerolle, R. A. Fensome, S. Fredericq, T. Y. James, S. Karpov, P. Kugrens, J. Krug, C. E. Lane, L. A. Lewis, J. Lodge, D. H. Lynn, D. G. Mann, R. M. McCourt, L. Mendoza, O. Moestrup, S. E. Mozley-Standridge, T. A. Nerad, C. A. Shearer, A. V. Smirnov, F. W. Spiegel, and M. F. Taylor. (2005) The New Higher Level Classification of Eukaryotes with Emphasis on the Taxonomy of Protists. J Eukaryot Microbiol 52: 399–451.
Agol V. I. (1974) Towards the System of Viruses. Biosystems 6: 113–132.
Agol V. I., and A. P. Gmyl. (2010) Viral Security Proteins: Counteracting Host Defences. Nat Rev Microbiol 8: 867–878.
Ahlquist P. (2006) Parallels among Positive-Strand RNA Viruses, Reverse-Transcribing Viruses and Double-Stranded RNA Viruses. Nat Rev Microbiol 4: 371–382.
Alic N., N. Ayoub, E. Landrieux, E. Favry, P. Baudouin-Cornu, M. Riva, and C. Carles. (2007) Selectivity and Proofreading Both Contribute Significantly to the Fidelity of RNA Polymerase III Transcription. Proc Natl Acad Sci USA 104: 10,400—10,405.
Allen, E. E., and J. F. Banfield. (2005) Community Genomics in Microbial Ecology and Evolution. Nat Rev Microbiol 3: 489–498.
Alperovitch-Lavy, A., I. Sharon, F. Rohwer, E. M. Aro, F. Glaser, R. Milo, N. Nelson, and O. Beja. (2011) Reconstructing a Puzzle: Existence of Cyanophages Containing Both Photosystem-I and Photosystem-II Gene Suites Inferred from Oceanic Metagenomic Datasets. Environ Microbiol 13: 24–32.
Altschul, S. F., T. L. Madden, A. A. Schaffer, J. Zhang, Z. Zhang, W. Miller, and D. J. Lipman. (1997) Gapped Blast and Psi-Blast: A New Generation of Protein Database Search Programs. Nucleic Acids Res 25: 3,389—3,402.
Altstein, A. D. (1987) Origin of the Genetic System. Mol Biol 21: 309–322.
Amaral, P. P., M. E. Dinger, T. R. Mercer, and J. S. Mattick. (2008) The Eukaryotic Genome as an RNA Machine. Science 319: 1,787—1,789.
Anantharaman, V., E. V. Koonin, and L. Aravind. (2002) Comparative Genomics and Evolution of Proteins Involved in RNA Metabolism. Nucleic Acids Res 30: 1,427—1,464.
Anfinsen, C. B. (1973) Principles That Govern the Folding of Protein Chains. Science 181: 223–230.
Aquadro, C. F. (1997) Insights into the Evolutionary Process from Patterns of DNA Sequence Variability. Curr Opin Genet Dev 7: 835–840.
Aravind, L., V. Anantharaman, S. Balaji, M. M. Babu, and L. M. Iyer. (2005) The Many Faces of the Helix-Turn-Helix Domain: Transcription Regulation and Beyond. FEMS Microbiol Rev 29: 231–262.
Aravind, L., L. M. Iyer and E. V. Koonin. (2006) Comparative Genomics and Structural Biology of the Molecular Innovations of Eukaryotes. Curr Opin Struct Biol 16: 409–419.
Aravind, L., and E. V. Koonin. (1999) DNA-Binding Proteins and Evolution of Transcription Regulation in the Archaea. Nucleic Acids Res 27: 4,658—4,670.
Aravind, L., and E. V. Koonin. (2001) The DNA-Repair Protein Alkb, Egl-9, and Leprecan Define New Families of 2-Oxoglutarate – and Iron-Dependent Dioxygenases. Genome Biol 2: RESEARCH0007.
Aravind, L., R. Mazumder, S. Vasudevan, and E. V. Koonin. (2002) Trends in Protein Evolution Inferred from Sequence and Structure Analysis. Curr Opin Struct Biol 12: 392–399.
Aravind, L., R. L. Tatusov, Y. I. Wolf, D. R. Walker, and E. V. Koonin. (1998) Evidence for Massive Gene Exchange Between Archaeal and Bacterial Hyperthermophiles. Trends Genet 14: 442–444.
Aravind, L., D. R. Walker, and E. V. Koonin. (1999) Conserved Domains in DNA Repair Proteins and Evolution of Repair Systems. Nucleic Acids Res 27: 1,223—1,242.
Assis, R., and A. S. Kondrashov. (2009) Rapid Repetitive Element-Mediated Expansion of piRNA Clusters in Mammalian Evolution. Proc Natl Acad Sci USA 106: 7,079—7,082.
Assis, R., A. S. Kondrashov, E. V. Koonin, and F. A. Kondrashov. (2008) Nested Genes and Increasing Organizational Complexity of Metazoan Genomes. Trends Genet 24: 475–478.
Atkins, J. F., R. F. Gesteland, and T. R. Cech, eds. (2010) RNA Worlds: From Life’s Origins to Diversity in Gene Regulation. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Press.
Auster, P. (1991) The Music of Chance. New York: Penguin.
Autexier, C., and N. F. Lue. (2006) The Structure and Function of Telomerase Reverse Transcriptase. Annu Rev Biochem 75: 493–517.
Baaske, P., F. M. Weinert, S. Duhr, K. H. Lemke, M. J. Russell, and D. Braun. (2007) Extreme Accumulation of Nucleotides in Simulated Hydrothermal Pore Systems. Proc Natl Acad Sci USA 104: 9,346—9,351.
Babu, M., N. Beloglazova, R. Flick, C. Graham, T. Skarina, B. Nocek, A. Gagarinova, O. Pogoutse, G. Brown, A. Binkowski, S. Phanse, A. Joachimiak, E. V. Koonin, A. Savchenko, A. Emili, J. Greenblatt, A. M. Edwards, and A. F. Yakunin. (2011) A Dual Function of the CRISPR-Cas System in Bacterial Antivirus Immunity and DNA Repair. Mol Microbiol 79: 484–502.
Ball, P. (2011) A Metaphor Too Far. Nature doi:10.1038/news.2011.115.
Bailey, K. A., F. Marc, K. Sandman, and J. N. Reeve. (2002) Both DNA and His-tone Fold Sequences Contribute to Archaeal Nucleosome Stability. J Biol Chem 15: 9293–9301.
Baltimore, D. (1971) Expression of Animal Virus Genomes. Bacteriol Rev 35: 235–241.
Bangham, C. R., and T. B. Kirkwood. (1993) Defective Interfering Particles and Virus Evolution. Trends Microbiol 1: 260–264.
Barabasi, A. L. (2002) Linked: The New Science of Networks. New York: Perseus Press.
Barabasi, A. L., and Z. N. Oltvai. (2004) Network Biology: Understanding the Cell’s Functional Organization. Nat Rev Genet 5: 101–113.
Barbrook, A. C., C. J. Howe, D. P. Kurniawan, and S. J. Tarr. (2010) Organization and Expression of Organellar Genomes. Philos Trans R Soc Lond B Biol Sci 365: 785–797.
Baross, J. A., and S. A. Hoffman. (1985) Submarine Hydrothermal Vents and Associated Gradient Environments As Sites for the Origin and Evolution of Life. Origins of Life 15: 327–345.
Barrangou, R., C. Fremaux, H. Deveau, M. Richards, P. Boyaval, S. Moineau, D. A. Romero, and P. Horvath. (2007) CRISPR Provides Acquired Resistance Against Viruses in Prokaryotes. Science 315: 1,709—1,712.
Barrick, J. E., D. S. Yu, S. H. Yoon, H. Jeong, T. K. Oh, D. Schneider, R. E. Lenski, and J. F. Kim. (2009) Genome Evolution and Adaptation in a Long-Term Experiment with Escherichia coli. Nature 461: 1243–1247.
Barrow, J. D., and F. J. Tipler. (1988) The Anthropic Cosmological Principle. Oxford: Oxford University Press.
Barrowman, J., D. Bhandari, K. Reinisch, and S. Ferro-Novick. (2010) Trapp Complexes in Membrane Traffic: Convergence Through a Common Rab. Nat Rev Mol Cell Biol 11: 759–763.
Barton, N. H. (2000) Genetic Hitchhiking. Philos Trans R Soc Lond B Biol Sci 355: 1,553—1,562.
Barton, N. H., and J. B. Coe. (2009) On the Application of Statistical Physics to Evolutionary Biology. J Theor Biol 259: 317–324.
Basu, M. K., E. Poliakov, and I. B. Rogozin. (2009) Domain Mobility in Proteins: Functional and Evolutionary Implications. Brief Bioinform 10: 205–216.
Beardmore, R. E., I. Gudelj, D. A. Lipson, and L. D. Hurst. (2011) Metabolic Trade-Offs and the Maintenance of the Fittest and the Flattest. Nature [Epub ahead of print].
Beeby, M., B. D. O’Connor, C. Ryttersgaard, D. R. Boutz, L. J. Perry, and T. O. Yeates. (2005) The Genomics of Disulfide Bonding and Protein Stabilization in Thermophiles. PLoS Biol 3: e309.
Begley, T. J., and L. D. Samson. (2003) Molecular Biology: A Fix for RNA. Nature 421: 795–796.
Behe, M. J. (2006). Darwin’s Black Box: The Biochemical Challenge to Evolution. New York: Free Press.
Behm-Ansmant, I., I. Kashima, J. Rehwinkel, J. Sauliere, N. Wittkopp, and E. Izaurralde. (2007) mRNA Quality Control: An Ancient Machinery Recognizes and Degrades mRNAs with Nonsense Codons. FEBS Lett 581: 2,845—2,853.
Beiko, R. G., and N. Hamilton. (2006) Phylogenetic Identification of Lateral Genetic Transfer Events. BMC Evol Biol 6: 15.
Beiko, R. G., T. J. Harlow, and M. A. Ragan. (2005) Highways of Gene Sharing in Prokaryotes. Proc Natl Acad Sci USA 102: 14,332—14,337.
Beringer, M., and M. V. Rodnina. (2007) The Ribosomal Peptidyl Transferase. Mol Cell 26: 311–321.
Bezier, A., M. Annaheim, J. Herbiniere, C. Wetterwald, G. Gyapay, S. Bernard-Samain, P. Wincker, I. Roditi, M. Heller, M. Belghazi, R. Pfister-Wilhem, G. Periquet, C. Dupuy, E. Huguet, A. N. Volkoff, B. Lanzrein, and J. M. Drezen. (2009) Polydnaviruses of Braconid Wasps Derive from an Ancestral Nudivirus. Science 323: 926–930.
Bhattacharya, D., J. M. Archibald, A. P. Weber, and A. Reyes-Prieto. (2007) How Do Endosymbionts Become Organelles? Understanding Early Events in Plastid Evolution. Bioessays 29: 1,239—1,246.
Bidle, K. D., and P. G. Falkowski. (2004) Cell Death in Planktonic, Photosynthetic Microorganisms. Nat Rev Microbiol 2: 643–655.
Biebricher, C. K., and M. Eigen. (2005) The Error Threshold. Virus Res 107: 117–127.
Bigot, Y., S. Samain, C. Auge-Gouillou, and B. A. Federici. (2008) Molecular Evidence for the Evolution of Ichnoviruses from Ascoviruses by Symbiogenesis. BMC Evol Biol 8: 253.
Bjedov, I., O. Tenaillon, B. Gerard, V. Souza, E. Denamur, M. Radman, F. Taddei, and I. Matic. (2003) Stress-Induced Mutagenesis in Bacteria. Science 300: 1,404—1,409.
Blanchard, S. C., R. L. Gonzalez, H. D. Kim, S. Chu, and J. D. Puglisi. (2004) tRNA Selection and Kinetic Proofreading in Translation. Nat Struct Mol Biol 11: 1,008—1,014.
Blasius, M., S. Sommer, and U. Hubscher. (2008) Deinococcus Radiodurans: What Belongs to the Survival Kit? Crit Rev Biochem Mol Biol 43: 221–238.
Blencowe, B. J. (2006) Alternative Splicing: New Insights from Global Analyses. Cell 126: 37–47.
Bokov, K., and S. V. Steinberg. (2009) A Hierarchical Model for Evolution of 23s Ribosomal RNA. Nature 457: 977–980.
Bolotin, A., B. Quinquis, A. Sorokin, and S. D. Ehrlich. (2005) Clustered Regularly Interspaced Short Palindrome Repeats (Crisprs) Have Spacers of Extrachro mosomal Origin. Microbiology 151: 2,551—2,561.
Bonner, J. T. (2004) Perspective: The Size-Complexity Rule. Evolution 58: 1,883—1,890.
Bostrom, Nick. (2002) Anthropic Bias: Observation Selection Effects in Science and Philosphy. New York and London: Rutledge.
Bourc’his, D., and O. Voinnet. (2010) A Small-RNA Perspective on Gametogenesis, Fertilization, and Early Zygotic Development. Science 330: 617–622.
Bousso, R. (2006) Holographic Probabilities in Eternal Inflation. Phys Rev Lett 97: 19,1302.
Bousso, R., and J. Polchinski. (2004) The String Theory Landscape. Sci Am 291: 78–87.
Bowman, G. R., V. A. Voelz, and V. S. Pande. (2011) Taming the Complexity of Protein Folding. Curr Opin Struct Biol 21: 4—11.
Branco, M. R., and A. Pombo. (2007) Chromosome Organization: New Facts, New Models. Trends Cell Biol 17: 127–134.
Brinkmann, H., and H. Philippe. (2007) The Diversity of Eukaryotes and the Root of the Eukaryotic Tree. Adv Exp Med Biol 607: 20–37.
Brisson, D. (2003) The Directed Mutation Controversy in an Evolutionary Context. Crit Rev Microbiol 29: 25–35.
Brochier-Armanet, C., B. Boussau, S. Gribaldo, and P. Forterre. (2008) Mesophilic Crenarchaeota: Proposal for a Third Archaeal Phylum, the Thaumarchaeota. Nat Rev Microbiol 6: 245–252.
Bromham, L., and D. Penny. (2003) The Modern Molecular Clock. Nat Rev Genet 4: 216–224.
Brookfield, J. F. (2009) Evolution and Evolvability: Celebrating Darwin 200. Biol Lett 5: 44–46.
Brouns, S. J., M. M. Jore, M. Lundgren, E. R. Westra, R. J. Slijkhuis, A. P. Snijders, M. J. Dickman, K. S. Makarova, E. V. Koonin, and J. van der Oost. (2008) Small CRISPR RNAs Guide Antiviral Defense in Prokaryotes. Science 321: 960–964.
Bruggeman, F. J., and H. V. Westerhoff. (2007) The Nature of Systems Biology. Trends Microbiol 15: 45–50.
Burger, R., M. Willensdorfer, and M. A. Nowak. (2006) Why Are Phenotypic Mutation Rates Much Higher Than Genotypic Mutation Rates? Genetics 172: 197–206.
Burki, F., K. Shalchian-Tabrizi, and J. Pawlowski. (2008) Phylogenomics Reveals a New «Megagroup» Including Most Photosynthetic Eukaryotes. Biol Lett 4: 366–369.
Bushman, F. (2001) Lateral DNA Transfer: Mechanisms and Consequences. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Press.
Cairns, J., J. Overbaugh, and S. Miller. (1988) The Origin of Mutants. Nature 335: 142–145.
Cairns, J., G. S. Stent, and J. D. Watson, eds. (1966) Phage and the Origins of Molecular Biology, Cold Spring Harbor, NY: CSHL Press.
Carmel, L., Y. I. Wolf, I. B. Rogozin, and E. V. Koonin. (2007) Three Distinct Modes of Intron Dynamics in the Evolution of Eukaryotes. Genome Res 17: 1,034—1,044.
Carroll, L. (1872). Through the Looking Glass and What Alice Found There. London: Macmillan.
Carroll, S. (2010) From Eternity to Here: The Quest for the Ultimate Theory of Time. New York: Penguin.
Carter, B. (1974) Large Number Coincidences and the Anthropic Principle in Cosmology in Confrontation of Cosmological Theories with Observational Data. M. S. Longair, editor. Dordrecht: D. Reidel, pp. 291–298.
Casino, P., V. Rubio, and A. Marina. (2010) The Mechanism of Signal Transduction by Two-Component Systems. Curr Opin Struct Biol 20: 763–771.
Cavalier-Smith, T. (1998) A Revised Six-Kingdom System of Life. Biol Rev Camb Philos Soc 73: 203–266.
Cech, T. R. (2002) Ribozymes, the First 20 Years. Biochem Soc Trans 30: 1,162—1,166.
Chan, C. X., A. E. Darling, R. G. Beiko, and M. A. Ragan. (2009) Are Protein Domains Modules of Lateral Genetic Transfer? PLoS One 4: e4524.
Chargaff, E. (1978) Heraclitean Fire: Sketches from a Life Before Nature. New York: Rockefeller University Press.
Charlebois, R. L., and W. F. Doolittle. (2004) Computing Prokaryotic Gene Ubiquity: Rescuing the Core from Extinction. Genome Res 14: 2,469—2,477.
Chen, I., P. J. Christie, and D. Dubnau. (2005) The Ins and Outs of DNA Transfer in Bacteria. Science 310: 1,456—1,460.
Cheng, L. K., and P. J. Unrau. (2010) Closing the Circle: Replicating RNA with RNA. Cold Spring Harb Perspect Biol 2: a002204.
Chernikova, D., S. Motamedi, M. Csuros, E. V. Koonin, and I. B. Rogozin. (2011) A Late Origin of the Extant Eukaryotic Diversity: Divergence Time Estimates Using Rare Genomic Changes. Biol Direct, in press.
Ciccarelli, F. D., T. Doerks, C. von Mering, C. J. Creevey, B. Snel, and P. Bork. (2006) Toward Automatic Reconstruction of a Highly Resolved Tree of Life. Science 311: 1,283—1,287.
Clapier, C. R., and B. R. Cairns. (2009) The Biology of Chromatin Remodeling Complexes. Annu Rev Biochem 78: 273–304.
Claverie, J. M. (2006) Viruses Take Center Stage in Cellular Evolution. Genome Biol 7: 110.
Collins, L., and D. Penny. (2005) Complex Spliceosomal Organization Ancestral to Extant Eukaryotes. Mol Biol Evol 22: 1,053—1,066.
Cortez, D., P. Forterre, and S. Gribaldo. (2009) A Hidden Reservoir of Integrative Elements Is the Major Source of Recently Acquired Foreign Genes and Orfans in Archaeal and Bacterial Genomes. Genome Biol 10: R65.
Costanzo, G., S. Pino, F. Ciciriello, and E. Di Mauro. (2009) Generation of Long RNA Chains in Water. J Biol Chem 284: 33,206—33,216.
Costanzo, G., R. Saladino, C. Crestini, F. Ciciriello, and E. Di Mauro. (2007) Nucleoside Phosphorylation by Phosphate Minerals. J Biol Chem 282: 16,729—16,735.
Cox, C. J., P. G. Foster, R. P. Hirt, S. R. Harris, and T. M. Embley. (2008) The Archaebacterial Origin of Eukaryotes. Proc Natl Acad Sci USA 105: 20,356—20,361.
Cox, M. M., and J. R. Battista. (2005) Deinococcus Radiodurans – the Consummate Survivor. Nat Rev Microbiol 3: 882–892.
Crick, F. (1970) Central Dogma of Molecular Biology. Nature 227: 561–563.
Crick, F. H. (1958) On Protein Synthesis. Symp Soc Exp Biol 12: 138–163.
Crick, F. H. (1968) The Origin of the Genetic Code. J Mol Biol 38: 367–379.
Csuros, M., and I. Miklos. (2009) Streamlining and Large Ancestral Genomes in Archaea Inferred with a Phylogenetic Birth-and-Death Model. Mol Biol Evol 26: 2,087—2,095.
Csuros, M., I. B. Rogozin, and E. V. Koonin. (2011) Resonstructed HumanLike Intron Density in the Last Common Ancestor of Eukaryotes. PLoS Comput Biol, in press.
D’Herelle, F. (1922). The Bacteriophage; Its Role in Immunity. Baltimore: Williams and Wilkins. Dagan, T., and W. Martin. (2006) The Tree of One Percent. Genome Biol 7: 118.
Daly, M. J. (2009) A New Perspective on Radiation Resistance Based on Deinococcus Radiodurans. Nat Rev Microbiol 7: 237–245.
Danchin, A. (2003). The Delphic Boat: What Genomes Tell Us. Cambridge, MA: Harvard Univ Press.
Darwin, C. (1859) On the Origin of Species. London: Murray. Darwin, C. (1872) Origin of Species. New York: The Modern Library.
Daubin, V., and H. Ochman. (2004) Bacterial Genomes As New Gene Homes: The Genealogy of Orfans in E. Coli. Genome Res 14: 1,036—1,042.
Davidov, Y., and E. Jurkevitch. (2009) Predation Between Prokaryotes and the Origin of Eukaryotes. Bioessays 31: 748–757.
Daviter, T., K. B. Gromadski, and M. V. Rodnina. (2006) The Ribosome’s Response to Codon-Anticodon Mismatches. Biochimie 88: 1,001—1,011.
Dawkins, R. (1996) The Blind Watchmaker: Why the Evidence of Evolution Reveals a Universe Without Design. London: W.W. Norton & Co.
Dawkins, R. (2006) The Selfish Gene: 30th Anniversary Edition – with a New Introduction by the Author. Oxford: Oxford University Press.
Dayhoff, M. O., W. C. Barker, and L. T. Hunt. (1983) Establishing Homologies in Protein Sequences. Methods Enzymol 91: 524–545.
de Nooijer, S., B. R. Holland, and D. Penny. (2009) The Emergence of Predators in Early Life: There Was No Garden of Eden. PLoS ONE 4: e5507.
de Souza, S. J., M. Long, R. J. Klein, S. Roy, S. Lin, and W. Gilbert. (1998) Toward a Resolution of the Introns Early/Late Debate: Only Phase Zero Introns Are Correlated with the Structure of Ancient Proteins. Proc Natl Acad Sci USA 95: 5,094—5,099.
de Visser, J. A., and S. F. Elena. (2007) The Evolution of Sex: Empirical Insights into the Roles of Epistasis and Drift. Nat Rev Genet 8: 139–149.
Deckert, G., P. V. Warren, T. Gaasterland, W. G. Young, A. L. Lenox, D. E. Graham, R. Overbeek, M. A. Snead, M. Keller, M. Aujay, R. Huber, R. A. Feldman, J. M. Short, G. J. Olsen, and R. V. Swanson. (1998) The Complete Genome of the Hyperthermophilic Bacterium Aquifex Aeolicus. Nature 392: 353–358.
Delarue, M., O. Poch, N. Tordo, D. Moras, and P. Argos. (1990) An Attempt to Unify the Structure of Polymerases. Protein Eng 3: 461–467.
Delaye, L., and A. Moya. (2010) Evolution of Reduced Prokaryotic Genomes and the Minimal Cell Concept: Variations on a Theme. Bioessays 32: 281–287.
Deleuze, G., and F. Guattari. (1987) Thousand Plateaus: Capitalism and Schizophrenia. Minneapolis, MN: University of Minnesota Press.
Denamur E. and I. Matic. (2006) Evolution of Mutation Rates in Bacteria. Mol Microbiol 60: 820–827.
Dennett, D. C. (1996) Darwin‘s Dangerous Idea: Evolution and the Meanings of Life. New York: Simon & Schuster.
Deppenmeier, U., A. Johann, T. Hartsch, R. Merkl, R. A. Schmitz, R. Martinez-Arias, A. Henne, A. Wiezer, S. Baumer, C. Jacobi, H. Bruggemann, T. Lienard, A. Christmann, M. Bomeke, S. Steckel, A. Bhattacharyya, A. Lykidis, R. Overbeek, H. P. Klenk, R. P. Gunsalus, H. J. Fritz, and G. Gottschalk. (2002) The Genome of Methanosarcina Mazei: Evidence for Lateral Gene Transfer Between Bacteria and Archaea. J Mol Microbiol Biotechnol 4: 453–461.
Deveau, H., J. E. Garneau, and S. Moineau. (2010) CRISPR/Cas System and Its Role in Phage-Bacteria Interactions. Annu Rev Microbiol 64: 475–493.
Diaz, R., C. Vargas-Lagunas, M. A. Villalobos, H. Peralta, Y. Mora, S. Encarnacion, L. Girard, and J. Mora. (2011) argC Orthologs from Rhizobiales Show Diverse Profiles of Transcriptional Efficiency and Functionality in Sinorhizobium Meliloti. J Bacteriol 193: 460–472.
Ding, S. W. (2010) RNA-Based Antiviral Immunity. Nat Rev Immunol 10: 632–644.
Dlakic, M. and A. Mushegian. (2011) Prp8, the Pivotal Protein of the Spliceosomal Catalytic Center, Evolved from a Retroelement-Encoded Reverse Transcriptase. RNA [Epub ahead of print].
Dobzhansky, T. (1951). Genetics and the Origin of Species. New York: Columbia University Press.
Dobzhansky, T. (1973) Nothing in Biology Makes Sense Except in the Light of Evolution. The American Biology Teacher 35: 125–129.
Dong, H., and C. G. Kurland. (1995) Ribosome Mutants with Altered Accuracy Translate with Reduced Processivity. J Mol Biol 248: 551–561.
Doolittle, R. F. (1995) The Multiplicity of Domains in Proteins. Annu Rev Biochem 64: 287–314.
Doolittle, W. F. (1999a) Lateral Genomics. Trends Cell Biol 9: M5—8.
Doolittle, W. F. (1999b) Phylogenetic Classification and the Universal Tree. Science 284: 2,124—2,129.
Doolittle, W. F. (2000) Uprooting the Tree of Life. Sci Am 282: 90–95.
Doolittle, W. F., and E. Bapteste. (2007) Pattern Pluralism and the Tree of Life Hypothesis. Proc Natl Acad Sci USA 104: 2,043—2,049.
Doolittle, W. F., and J. R. Brown. (1994) Tempo, Mode, the Progenote, and the Universal Root. Proc Natl Acad Sci USA 91: 6,721—6,728.
Doolittle, W. F., and C. Sapienza. (1980) Selfish Genes, the Phenotype Paradigm and Genome Evolution. Nature 284: 601–603.
Doolittle, W. F., and O. Zhaxybayeva. (2009) On the Origin of Prokaryotic Species. Genome Res 19: 744–756.
Doudna, J. A., and T. R. Cech. (2002) The Chemical Repertoire of Natural Ribozymes. Nature 418: 222–228.
Douzery, E. J., E. A. Snell, E. Bapteste, F. Delsuc, and H. Philippe. (2004) The Timing of Eukaryotic Evolution: Does a Relaxed Molecular Clock Reconcile Proteins and Fossils? Proc Natl Acad Sci USA 101: 15,386—15,391.
Draghi, J. A., T. L. Parsons, G. P. Wagner, and J. B. Plotkin. (2010) Mutational Robustness Can Facilitate Adaptation. Nature 463: 353–355.
Drake, J. W. (1991) A Constant Rate of Spontaneous Mutation in DNA-Based Microbes. Proc Natl Acad Sci USA 88: 7,160—7,164.
Drake, J. W., and J. J. Holland. (1999) Mutation Rates Among RNA Viruses. Proc Natl Acad Sci USA 96: 13,910—13,913.
Dronamraju, K. R., ed. (1968) Haldane and Modern Biology. Baltimore, Johns Hopkins University Press.
Drummond, D. A., J. D. Bloom, C. Adami, C. O. Wilke, and F. H. Arnold. (2005) Why Highly Expressed Proteins Evolve Slowly. Proc Natl Acad Sci USA 102: 14,338—14,343.
Drummond, D. A., A. Raval, and C. O. Wilke. (2006) A Single Determinant Dominates the Rate of Yeast Protein Evolution. Mol Biol Evol 23: 327–337.
Drummond, D. A., and C. O. Wilke. (2008) Mistranslation-Induced Protein Misfolding As a Dominant Constraint on Coding-Sequence Evolution. Cell 134: 341–352.
Drummond, D. A., and C. O. Wilke. (2009) The Evolutionary Consequences of Erroneous Protein Synthesis. Nat Rev Genet 10: 715–724.
Dupuy, C., E. Huguet, and J. M. Drezen. (2006) Unfolding the Evolutionary Story of Polydnaviruses. Virus Res 117: 81–89.
Echols, H. (1981) SOS Functions, Cancer, and Inducible Evolution. Cell 25: 1–2.
Eckerle, L. D., X. Lu, S. M. Sperry, L. Choi, and M. R. Denison. (2007) High Fidelity of Murine Hepatitis Virus Replication Is Decreased in nsp14 Exoribonuclease Mutants. J Virol 81: 12,135—12,144.
Eddy, S. R. (2002) Computational Genomics of Noncoding RNA Genes. Cell 109: 137–140.
Edwards, R. A., and F. Rohwer. (2005) Viral Metagenomics. Nat Rev Microbiol 3: 504–510.
Eigen, M. (1971) Self-organization of Matter and the Evolution of Biological Macromolecules. Naturwissenschaften 58: 465–523.
Eigen, M., B. F. Lindemann, M. Tietze, R. Winkler-Oswatitsch, A. Dress, and A. von Haeseler. (1989) How Old Is the Genetic Code? Statistical Geometry of tRNA Provides an Answer. Science 244: 673–679.
Eisen, J. A., J. F. Heidelberg, O. White, and S. L. Salzberg. (2000) Evidence for Symmetric Chromosomal Inversions Around the Replication Origin in Bacteria. Genome Biol 1: RESEARCH0011.
Eldredge, N., and S. J. Gould. (1997) On Punctuated Equilibria. Science 276: 338–341.
Ellington, A. D., X. Chen, M. Robertson, and A. Syrett. (2009) Evolutionary Origins and Directed Evolution of RNA. Int J Biochem Cell Biol 41: 254–265.
Ellis, R. J. (2003) Protein Folding: Importance of the Anfinsen Cage. Curr Biol 13: R881—883.
Embley, T. M., and W. Martin. (2006) Eukaryotic Evolution, Changes and Challenges. Nature 440: 623–630.
Esser, C., N. Ahmadinejad, C. Wiegand, C. Rotte, F. Sebastiani, G. Gelius-Dietrich, K. Henze, E. Kretschmann, E. Richly, D. Leister, D. Bryant, M. A. Steel, P. J. Lockhart, D. Penny, and W. Martin. (2004) A Genome Phylogeny for Mitochondria Among Alpha-Proteobacteria and a Predominantly Eubacterial Ancestry of Yeast Nuclear Genes. Mol Biol Evol 21: 1,643—1,660.
Esser, C., W. Martin, and T. Dagan. (2007) The Origin of Mitochondria in Light of a Fluid Prokaryotic Chromosome Model. Biol Lett 3: 180–184.
Falkowski, P. G., T. Fenchel, and E. F. Delong. (2008) The Microbial Engines That Drive Earth’s Biogeochemical Cycles. Science 320: 1,034—1,039.
Falnes, P. O. (2005) RNA Repair – the Latest Addition to the Toolbox for Macro-molecular Maintenance. RNA Biol 2: 14–16.
Fedor, M. J., and J. R. Williamson. (2005) The Catalytic Diversity of RNAs. Nat Rev Mol Cell Biol 6: 399–412.
Felsenstein, J. (1996) Inferring Phylogenies from Protein Sequences by Parsimony, Distance, and Likelihood Methods. Methods Enzymol 266: 418–427.
Felsenstein, J. (2004). Inferring Phylogenies. Sunderland, MA: Sinauer Associates.
Feschotte, C. (2010) Virology: Bornavirus Enters the Genome. Nature 463: 39–40.
Field, M. C., and J. B. Dacks. (2009) First and Last Ancestors: Reconstructing Evolution of the Endomembrane System with Escrts, Vesicle Coat Proteins, and Nuclear Pore Complexes. Curr Opin Cell Biol 21: 4—13.
Fields, B. N., P. M. Howley, D. E. Griffin, R. A. Lamb, M. A. Martin, B. Roizman, S. E. Straus, and D. M. Knipe. (2001). Fields Virology. New York: Lippincott Williams & Wilkins.
Fisher Box, J. (1978) R. A. Fisher: The Life of a Scientist. New York: Wiley.
Fisher, R. A. (1930) The Genetical Theory of Natural Selection. New York: Oxford University Press.
Fitch, W. M. (1970) Distinguishing Homologous from Analogous Proteins. Syst Zool 19: 99—113.
Fleischmann, R. D., M. D. Adams, O. White, R. A. Clayton, E. F. Kirkness, A. R. Kerlavage, C. J. Bult, J. F. Tomb, B. A. Dougherty, J. M. Merrick et al. (1995) Whole-Genome Random Sequencing and Assembly of Haemophilus Influenzae Rd [See Comments]. Science 269: 496–512.
Правообладателям!
Это произведение, предположительно, находится в статусе 'public domain'. Если это не так и размещение материала нарушает чьи-либо права, то сообщите нам об этом.