Электронная библиотека » Людмила Смирнова » » онлайн чтение - страница 9


  • Текст добавлен: 3 октября 2013, 02:29


Автор книги: Людмила Смирнова


Жанр: Хобби и Ремесла, Дом и Семья


Возрастные ограничения: +12

сообщить о неприемлемом содержимом

Текущая страница: 9 (всего у книги 16 страниц) [доступный отрывок для чтения: 4 страниц]

Шрифт:
- 100% +
Особенности монтажа труб из разных материалов

Стальные трубы при прокладке трубопроводов соединяются между собой с помощью муфт или сварки. Оцинкованные трубы можно соединять только муфтами, потому что во время выполнения сварочных работ происходит обгорание оцинкованного слоя, и трубы впоследствии разрушаются.

Соединение труб с помощью муфт является длительным и трудоемким, а также дорогим процессом, потому что дополнительно требуется множество соединительных элементов и специальных инструментов. При всем этом муфтовые соединения не очень надежны.

Монтаж медных труб выполняется намного быстрее и проще, чем стальных. Это происходит потому, что медные трубы пластичны, легко режутся и гнутся. Медные трубы можно соединять между собой тремя способами:

– с помощью обжимных фитингов – резьбовое соединение;

– с помощью прессованных фитингов – пресс-соединение;

– с помощью капиллярной пайки. Применение обжимных фитингов – самый легкий и широко распространенный способ соединения труб. Этот метод дает возможность избежать перекоса труб в местах стыков.

Второй способ используется в России недавно. Пресс-соединения отличаются надежностью и занимают довольно мало времени. Способ соединения труб с помощью капиллярной пайки – самый трудоемкий, потому что нужно иметь специальное оборудование и опыт в обращении с горелкой. Но этот способ самый надежный.

Муфтовое соединение – самое дорогое и самое ненадежное соединение труб, поэтому для соединения медных труб применяется крайне редко.

Монтаж пластиковых труб. Способ соединения зависит от вида полимера. Например, трубы из молекулярно-сшитого полиэтилена стыкуют с помощью соединительных элементов, поливинилхлоридные трубы склеивают, а полипропиленовые и полибутиленовые сваривают горячим воздухом с использованием различных фитингов.

Монтаж металлополимерных труб – довольно несложная операция. Требования к прокладке трубопроводов из МПТ ниже, чем к пластиковым и тем более к стальным. Работы выполняются простым инструментом при плюсовой температуре воздуха. МПТ можно придать любую нужную форму, которую они легко сохраняют. Это в несколько раз снижает применение фиксаторов. Но при этом алюминиевая фольга подвергается во время изгибания серьезной деформации.

Стыковка металлопластиковых труб производится двумя способами:

• с помощью обжимных фитингов;

• с помощью прессованных фитингов. Обжимные фитинги значительно дешевле, но и срок

их службы намного короче. Причиной этого служит разница коэффициента линейного расширения полимеров и металла. Поэтому довольно часто в местах соединения труб возникают протечки.

Прессованные фитинги не имеют резьбы, стоят дорого и требуют специального инструмента. Но при грамотном монтаже они не дают протечек.

Монтаж асбестоцементных труб выполняется с помощью муфт и резиновых уплотнителей (прокладок). Такое соединение будет подвижным и не вызовет деформации от воздействия тепла или просадки грунта.

Монтаж стояков

Эту операцию выполняют в соответствии со следующими требованиями (рис. 59):

– стояки монтируют строго по отвесу;

– длину и диаметр стояков в целях уменьшения расхода металла сокращают;

– стояки целесообразно устанавливать в углах, образуемых наружными стенами;

– необходимо предусматривать отдельное расположение стояков для отопления лестничных клеток;

– скрытые стояки располагают в бороздах наружных стен, при этом не допускается примыкание стояков вплотную к поверхности строительных конструкций;

– на пересечении стояков и подводок скобы устанавливают на стояках, а не на подводках, с направлением изгиба в сторону помещения;

– в местах прохода стояков через перекрытия их вставляют в гильзы из кровельной жести или в обрезки труб большого диаметра. При этом края гильз, закрепленных в перекрытиях, должны выступать над уровнем пола (потолка) на 20—30 мм, что позволит предотвратить порчу штукатурки при удлинении и движении стояков во время нагревания;

– в местах прохода стояков через деревянные конструкции необходимо предусмотреть изоляцию;

– распределительные поэтажные и промежуточные трубы между стояками и подводками монтируют под отопительными приборами у пола на таком же расстоянии от поверхности пола, как и стояки (без уклона).

Однотрубные стояки с односторонними подводками по отношению к откосам оконных проемов должны находиться на расстоянии 16 см. В двухтрубных системах подающий стояк располагается с правой стороны, а обратный – с левой, если смотреть на стену.


Рис. 59. Монтаж стояков: а – с приоконными стояками и радиаторами; б – с замоноличенными стояками и конвекторами; 1 – стояк приоконный; 2 – радиатор; 3 – внутренняя стена; 4 – замоноличенный стояк; 5 – конвектор


К стене стояки крепятся с помощью хомутов на высоте 1,5—1,8 м от пола. На каждый этаж должна приходиться одна точка крепления.

Балансировка системы

При монтаже отопительной системы, как правило, возникает множество моментов, которые невозможно предусмотреть в процессе проектирования. Поэтому при запуске система работает и отдает тепло не так, как задумывалось.

Различные сбои и неэффективность работы отопительной системы связаны не столько с неправильным выбором оборудования, сколько с неправильным расходованием теплоносителя. При недостаточном его расходовании воздух в помещении не прогревается и температура остается низкой, а при перерасходе теплоносителя возникает перегрев воздуха. При этом перегрев в одном помещении ведет к недостатку тепла в других. Плохо поддаются регулировке однотрубные системы отопления. Чтобы наладить работу вновь смонтированной системы отопления, необходимо произвести ее балансировку.

Балансировка отопительной системы представляет собой гидравлическую регулировку, без которой невозможна ее долгая и эффективная работа. Результатом балансировки становится перераспределение теплоносителя по замкнутым участкам системы таким образом, чтобы через каждый отопительный прибор проходил расчетный объем теплоносителя.

Имеется мнение, что балансировку отопительной системы нужно производить только в больших многоэтажных зданиях. Но это далеко не так. Небольшие загородные дома, в которых расход тепла в разных помещениях неодинаков, балансировка отопительной системы жизненно необходима. Причем чем сложнее система, чем больше в ней отступлений от проекта или брака при монтаже, тем выше необходимость в балансировке.

Под балансировкой отопительной системы подразумевается настройка специальной запорно-регулирующей арматуры, которая управляет движением теплоносителя. Ни термостатические клапаны, ни системы автоматического регулирования не обеспечивают нужного распределения теплоносителя в системе, поэтому не только не могут выполнить операцию балансировки, но и сами нуждаются в хорошо сбалансированной системе отопления. А вот балансирующие клапаны, регуляторы расхода, регуляторы давления и перепускные клапаны – именно та арматура, без которой невозможно произвести гидравлическую балансировку системы. В них гасится избыточный перепад давления, вредный для термостатов и автоматики. Кроме того, они дают возможность выявить неполадки в системе и способствуют их быстрому устранению.

В разных отопительных системах используется специальная балансировочная арматура. В однотрубных системах применяются ручные балансировочные краны. Этого для них достаточно. А в двухтрубных системах с автоматическими терморегуляторами следует устанавливать автоматические балансировочные клапаны. Монтируют их так, чтобы длина прямого участка трубы перед клапаном и после него составляла не менее 5 диаметров трубы, а при установке сразу же за циркуляционным насосом – не менее 10 диаметров трубы. В противном случае возникают вихревые потоки, снижающие точность регулировки. Размер балансирующего клапана должен совпадать с диаметром трубы.

Существует несколько методов балансировки. Самый популярный и простой, но самый трудоемкий из них представляет собой многократные замеры на всех балансировочных клапанах. Самым эффективным считается метод, при котором отопительная система подразделяется на модули. Модулем может быть отдельный отопительный прибор, их группа, целая ветвь или стояк со всеми ветвями. На выходе каждого модуля монтируется один балансировочный клапан, позволяющий модулю работать автономно, независимо от других модулей. Таким образом, работу всех модулей можно сбалансировать по отношению друг к другу.

Количество балансировочных клапанов в отопительной системе можно увеличивать постепенно. Так, сначала можно установить один балансировочный клапан, смонтировав его у циркуляционного насоса. Со временем клапаны можно установить на всех стояках.

Прежде чем проводить гидравлическую балансировку, следует выполнить подготовительные работы. Сначала нужно открыть все краны и клапаны, смонтированные на трубах и около отопительных приборов. Затем проверить работу циркуляционного насоса, прочистить фильтры. После этого тщательно промыть теплопроводы и залить в них деаэрированную воду. Дальше система нагревается до расчетной температуры и из нее удаляется воздух. Если на трубах смонтированы термостатические вентили, то перед балансировкой система должна находиться в рабочем состоянии не менее 24 ч.

Гидравлическая балансировка отопительной системы – это залог долговечной работы всего отопительного оборудования, труб и арматуры.

Глава 3
Прямое электрическое отопление

При прямом электрическом отоплении система обогрева включает в себя только обогреватели. В этом случае не нужно ни теплоносителя, ни водогрейного котла, ни циркуляционного насоса, ни сети трубопроводов. Понадобятся электрические кабели и обогреватели. Это происходит потому, что электрические отопительные приборы сами преобразуют электрическую энергию в тепло.

Наибольшее распространение электрическое отопление получило во многих странах Европы и Северной Америки. Там электроотопление намного популярнее традиционного и тем более печного. Это объясняется дешевизной этого вида энергии. Органическое топливо в Европе и Америке стоит очень дорого, учитывая еще и его транспортировку.

В России дела обстоят иначе. Несмотря на то что в нашей стране имеется довольно разветвленная сеть электростанций, этот вид энергии не столь широко используется при отоплении. Причин этому несколько. Во-первых, электрическая энергия во много раз дороже, чем магистральный газ или уголь. Во-вторых, имеются перебои с подачей электричества, что делает его использование в качестве единственного источника тепла неэффективным.

Но прямое электрическое отопление имеет и множество преимуществ, к которым относятся:

– высокий КПД, обусловленный отсутствием теплоносителя, благодаря чему происходит прямое преобразование электрической энергии в тепловую;

– быстрота нагрева воздуха в обогреваемом помещении;

– удобство регулировки подачи тепла в каждом отдельно взятом помещении благодаря независимой работе термостатов;

– отсутствие аварийных протечек и взрыва водогрейного оборудования;

– бесшумность (ввиду отсутствия вентиляторов и циркуляционных насосов);

– гигиеничность и высокие экологические показатели;

– небольшие габариты отопительных приборов;

– эстетичность электрических обогревателей;

– сравнительная легкость монтажных работ (за исключением системы «теплые полы»);

– легкость и простота эксплуатации.

Электрообогреватели

По способу теплопередачи электрообогреватели подразделяются на:

– конвективные: электроконвекторы, тепловентиляторы, электрокалориферы;

– излучающие: ИК-панели, теплоизлучающие зеркала;

– конвективно-радиационные, или комбинированные: маслонаполненные радиаторы.

По характеру передачи тепла электроприборы бывают:

– непосредственно преобразующие электроэнергию в тепло;

– аккумуляционные.

Виды электрообогревателейКонвективные обогреватели

При конвективном способе обогрева помещений воздушные потоки циркулируют таким образом, что температура воздуха на уровне пола на несколько градусов ниже температуры воздуха под потолком. Известно, что теплый воздух поднимается вверх, а холодный опускается вниз. Поэтому при конвективном способе отопления основная масса тепла скапливается под потолком.

При использовании конвективных обогревателей с фронтальным выходом теплого воздуха разница температур у пола и потолка составляет примерно 4° С. При обогреве конвективными приборами с вертикальным выходом воздуха разница температур равна 9° С. На характер распределения температуры влияет и высота потолков в помещении. Чем выше потолки, тем больше разница температур.

К недостаткам конвективного способа отопления можно отнести и то, что воздушные потоки увлекают за собой пыль и переносят ее из комнаты в комнату. Бороться с этой пылью путем влажной уборки практически бесполезно, она продолжает циркулировать по дому.

Конвективный обогреватель работает следующим образом. Холодный воздух, естественным или принудительным образом проходя через нагревательный элемент, нагревается до определенной температуры, после чего отдает тепло в помещение. В качестве нагревательного элемента в данных приборах могут использоваться:

• спираль – тонкая нихромовая проволока, намотанная на стержень определенного диаметра и уложенная так, что при максимальной длине она занимает минимальную площадь;

• ТЭН – металлическая (стальная) трубка со спиралью внутри;

• керамический нагреватель с большой нагревательной поверхностью, напоминающей своим видом пчелиные соты.

В настоящее время открытые нихромовые спирали практически не применяются. Они уступили место более надежным и безопасным конструкциям – ТЭНу и керамическому нагревателю. В современных моделях обогревателей нихромовая спираль заключена в металлическую или керамическую трубку. Благодаря этому нагревательная поверхность элемента значительно увеличивается, а температура уменьшается. В рабочем режиме температура защищенного оболочкой нагревательного элемента составляет примерно 100° С, что соответствует температуре защитного кожуха отопительного прибора традиционной системы отопления.

В зависимости от принципа работы конвективные электрообогреватели подразделяются на:

– приборы с естественным теплообменом (электроконвекторы и настенные панели);

– приборы с теплообменом на основе принудительного обдува (электровентиляторы и тепловые пушки).

Электроконвекторы

Электроконвектор представляет собой панель из металла, имеющую два отверстия. Нижнее служит для поступления холодного воздуха, а верхнее – для выхода нагретого воздуха. В нижней части панели смонтирован нагревательный элемент, который состоит из ТЭНа и алюминиевого рассеивателя (радиатора). Радиатор нужен для более эффективной передачи тепла от ТЭНа воздуху. При выборе электрического конвектора в первую очередь нужно проверить качество изготовления нагревательного элемента, потому что от него зависит эффективность работы и срок службы прибора.

Практически все электроконвекторы имеют встроенные термостаты, которые регулируют температуру воздуха в диапазоне от 5 до 30° С. Встроенный термостат дает возможность снизить потребление электроэнергии на 40—80%, т. к. данный прибор может работать не постоянно, а в режиме прерывистых включений. Помимо этого, регулярные перерывы в работе электроконвектора продлевают срок его службы.

Конвекторы с электронными термостатами существенно дороже, но и имеют целый ряд преимуществ по сравнению с конвекторами с механическими термостатами. Они более точные, бесшумные и обладают высокой степенью надежности. Кроме того, электронные термостаты помогают экономить электроэнергию на 3—4% больше, чем механические.

Если термостат не встроен в конвектор, то регулятор настройки измеряет температуру в той точке пространства, где он установлен. У встроенного термостата регулятор настройки имеет шкалу в относительных единицах и требует индивидуальной калибровки в каждом помещении. На конвекторы одного помещения можно поставить один терморегулятор, который будет обслуживать все приборы.

Современные электроконвекторы оснащены датчиками безопасности, которые при перегреве нагревательного элемента автоматически отключают питание. Обесточка конвектора произойдет и в том случае, если прибор упадет на пол или возникнет преграда для выхода нагретого воздуха. Некоторые модели имеют вентиляторы и специальные блоки управления, позволяющие программировать работу нескольких приборов, что особенно удобно в доме с большим количеством комнат.

Электроконвекторы имеют мощность от 0,5 до 3 кВт, вес – 3—9 кг. По габаритным размерам данные отопительные приборы делятся на:

– высокие (высотой 40—45 см и небольшой длины);

– плинтусные (высотой не более 20 см и длиной до 2,5 м).

Высокие электроконвекторы оснащены высокотемпературными нагревательными элементами. Их ставят на пол или с помощью специальной рамы закрепляют на стене. Температура нагревательных элементов плинтусных приборов значительно ниже, но это никак не сказывается на эффективности их работы.

Среди электрических обогревателей электроконвекторы являются самыми популярными отопительными приборами. Их широкое применение обусловлено дешевизной. Особенно часто их используют для обогрева помещений в малоэтажных загородных домах, где нет магистрального газа.

Кроме того, эти приборы используют в качестве дополнительных источников тепла даже при наличии водяного или печного отопления.

Монтаж электроконвекторов очень прост. Они не требуют прокладки трубопроводов и присоединения к ним отопительных приборов. Достаточно иметь в доме электропроводку, к которой будут подключены электроконвекторы (рис. 60).


Рис. 60. Принципиальная схема монтажа электроконвекторов: 1 – электроконвекторы; 2 – комнатный термостат; 3 – электропроводка


Российская промышленность выпускает множество типов электроконвекторов, которые делятся на такие группы:

– конвекторы с терморегулятором для автоматического регулирования температуры воздуха в помещении (ЭВПА, ЭВУА);

– конвекторы с бесступенчатым регулированием мощности (ЭВПБ, ЭВУБ);

– конвекторы со ступенчатым регулированием мощности (ЭВПС, ЭВУС);

– конвекторы с термовыключателем (ЭВПТ, ЭВУТ).

На корпусе электроконвектора обычно бывает маркировка, в которой имеются следующие условные обозначения:

• ЭВ – электроконвектор;

• П – напольный;

• У – универсальный;

• А – с терморегулятором для автоматического регулирования температуры воздуха в помещении;

• Б – с бесступенчатым регулированием мощности;

• С – со ступенчатым регулированием мощности;

• Т – с термовыключателем.

Тепловентиляторы и тепловые пушки

Принцип работы тепловентиляторов основан на принудительной конвекции. Благодаря этому нагрев воздуха осуществляется значительно быстрее. Такого рода обогреватели используются как для временного, так и для постоянного отопления загородного дома.

Тепловентилятор имеет в своем составе нагревательный элемент и вентилятор. Вентилятор принудительно прогоняет воздух через нагревательный элемент и при этом производит повышенный шум. Нагревательный элемент может быть в виде спирали, ТЭНа или выполнен из керамики. Площадь нагрева невелика, и, для того чтобы прогоняемый вентилятором воздух успел нагреться, нагреватель имеет высокую температуру. Чем меньше площадь нагревательного элемента, тем выше должна быть температура. Это означает, что нагреватель с незначительной нагревательной поверхностью сжигает намного больше кислорода, а также пыли и микрочастиц, содержащихся в воздухе. В связи с этим воздух в комнате приобретает неприятный запах.

Большая часть современных моделей тепловентиляторов имеет металлокерамический нагревательный элемент с довольно развитой нагревательной поверхностью. Именно такая большая площадь дает возможность тепловентилятору эффективно работать при минимальной температуре.

Современные тепловентиляторы обладают мощностью до 2,5 кВт, имеют компактные размеры и изготавливаются в напольных или настенных вариантах. Большинство моделей оснащено ступенчатой регулировкой мощности и скорости воздушного потока. Некоторые тепловентиляторы в летнее время можно использовать в качестве обычных вентиляторов.

Тепловентиляторы мощностью более 5 кВт называют тепловыми пушками. Они применяются для ускоренной просушки сырых и влажных помещений, а также для обогрева больших помещений и открытых пространств. Для отопления небольших загородных домов тепловые пушки не подходят.

При выборе тепловентилятора или тепловой пушки необходимо учитывать следующие моменты:

• лучше, если нагревательный элемент будет керамическим;

• вентилятор должен быть как можно более бесшумным;

• регулировка температуры воздуха в помещении должна быть точной;

• необходимо наличие системы защиты прибора от перегрева.


Страницы книги >> Предыдущая | 1 2 3 4
  • 4.2 Оценок: 5

Правообладателям!

Данное произведение размещено по согласованию с ООО "ЛитРес" (20% исходного текста). Если размещение книги нарушает чьи-либо права, то сообщите об этом.

Читателям!

Оплатили, но не знаете что делать дальше?


Популярные книги за неделю


Рекомендации