Электронная библиотека » Марк Чангизи » » онлайн чтение - страница 5


  • Текст добавлен: 1 декабря 2015, 13:00


Автор книги: Марк Чангизи


Жанр: Биология, Наука и Образование


сообщить о неприемлемом содержимом

Текущая страница: 5 (всего у книги 18 страниц) [доступный отрывок для чтения: 6 страниц]

Шрифт:
- 100% +
Кровь в глазах

Итак, мы стали лучше понимать принципы, на которых строится наше цветовосприятие. Но по-прежнему неясно, почему тот или иной предмет имеет для нас ту или иную окраску. Почему трава видится нам зеленой, а не фиолетовой? Почему небо голубое, а не красное? Пока нам известно, кроме прочего, что наше восприятие красного цвета является чистым, что пурпурный ощущается как смесь красного и синего, что среди видимых нами оттенков не существует такой категории, как красновато-зеленые. Но описанное здесь цветовое пространство – это, в конечном счете, просто палитра красок, при помощи которой можно было как угодно расцветить окружающие предметы. Однако наш мир использует эту палитру строго определенным образом. Трава зеленая, а не фиолетовая. Небо голубое, а не красное. То, в какие цвета будет “выкрашен” тот или иной предмет, зависит от особенностей спектральной чувствительности нашей зрительной “аппаратуры”. Помимо самого факта, что мы сопоставляем сигналы, получаемые от имеющихся у нас колбочек трех типов – чувствительных к коротким, средним и длинным световым волнам, – нам необходимо знать и то, к каким конкретно длинам волн они чувствительны. В разделе “Зеленые фотоны” уже упоминалось, что когда мы говорим о цвете, речь идет не столько о длинах волн, сколько о восприятии сложной смеси световых лучей со всеми возможными длинами волн (в рамках видимой части спектра), исходящей от каждого предмета. В ходе эволюции у нас выработалась способность видеть не фотоны, а определенные предметы и поверхности – в первую очередь поверхность кожи.

На рис. 14 показано, к каким длинам волн восприимчивы наши колбочки каждого из трех типов. Вы, конечно, обратите внимание на ту странность, что чувствительности колбочек M и L едва не наступают друг другу на пятки. На первый взгляд это кажется чудовищным инженерным просчетом. Разумнее было бы снимать показания через одинаковые промежутки спектра, чтобы S-колбочки были восприимчивы к коротким световым волнам, M-колбочки – к средним, а L-колбочки – к длинным. Именно так устроены фотоаппараты. По этому же принципу работают глаза птиц, пресмыкающихся, рыб и пчел (хотя у перечисленных животных свет анализируют не три, а четыре типа колбочек). Обладание фоторецепторами двух различных типов для восприятия волн практически одинаковой длины кажется бессмысленной расточительностью.

Но в этом безумии есть логика. На это намекает рис. 14, где, помимо графиков чувствительности колбочек, можно увидеть, как выглядит типичный спектр отражения человеческой кожи. Его самой важной отличительной чертой является характерный изгиб в форме буквы W – эта небольшая загогулина появляется в связи с особенностями поглощения света окисленным гемоглобином, содержащимся в подкожной крови. Обратите внимание, насколько те длины волн, к которым колбочки M и L наиболее восприимчивы, совпадают соответственно с левым нижним коленом и с центральным пиком этой W. Как нам вскоре станет ясно, именно такое наложение графиков и есть тот решающий фактор, которому мы обязаны своей способностью к эмпатии.

На рис. 15 видно, как спектр отражения кожи меняется в зависимости от количества подкожной крови и ее насыщенности кислородом. (Здесь показано, как выглядит этот спектр уже после того, как свет прошел через глаз, – именно в таком виде он достигает колбочек. А на рис. 14 спектр отражения кожи изображен до того, как глаз исказил его. Наш глаз не является абсолютно прозрачным, и поэтому не весь попадающий в него свет достигает сетчатки.) Синий и желтый графики показывают, как интенсивность кровоснабжения влияет на спектр. Главное изменение при переходе от недостатка крови (желтый график) к ее избытку (синий график) заключается в том, что W-образный участок кривой сдвигается вниз. Все остальные ее участки остаются практически неизменными. По мере того как количество крови возрастает, средняя совокупная активность M- и L-колбочек падает, и кожа выглядит более синей. А если изменять те же параметры в обратном направлении, она желтеет. (Кроме того, увеличение количества крови снижает общую яркость кожи, а недостаточное кровоснабжение, напротив, увеличивает ее. Уж не поэтому ли синий слывет у нас “темным” цветом, а желтый – “светлым”?)

Красная и зеленая кривые на рис. 15 показывают зависимость изменений спектра нашей кожи от концентрации кислорода в крови. Как вы можете видеть, местоположение “буквы W” на графике осталось в общем прежним. Здесь изменения гораздо тоньше: по мере того как уровень оксигенации растет, W-образная форма становится все более выраженной. А поскольку колбочки типа M наиболее чувствительны к длинам волн, соответствующим левому нижнему колену W-образного зигзага, а колбочки типа L – к длинам волн, соответствующим его центральному пику, то чем отчетливее видна “буква W в связи с увеличением содержания кислорода в крови, тем сильнее возбуждены L-колбочки по сравнению с M-колбочками. Это приводит к тому, что кожа выглядит краснее. Аналогичным образом деоксигенация подкожной крови приводит к преобладанию зеленых оттенков. Рис. 16 представляет те же самые четыре кривые, что мы видели на рис. 15, но здесь они расположены вокруг цветового диска, взятого из предыдущих иллюстраций.

Именно это сближение пиков чувствительности у колбочек типов M и L позволяет нам увидеть, как меняется цвет кожи в зависимости от изменения обоих связанных с кровью параметров. Взгляните, как похожи четыре спектра отражения на рис. 15 (особенно это заметно при сопоставлении спектров для окисленной и неокисленной крови). Различить столь тонкие цветовые колебания непросто, и пики чувствительности M-и L-колбочек располагаются точно так, чтобы сделать это возможным: соответственно в области левого нижнего колена и срединного пика W-образной фигуры. Такое их расположение не только позволяет нам видеть в красно-зеленом измерении. Благодаря ему колбочки типов M и L вместе по-прежнему могут выполнять функцию предковых M/L-колбочек, и это дает нам возможность сохранить и сине-желтое измерение своего цветового пространства. А поскольку наша новоприобретенная способность отмечать колебания концентрации кислорода вследствие умения видеть на красно-зеленой оси не создает помех древнему восприятию сине-желтой гаммы, можно предположить, что это положение дел является результатом направленного естественного отбора. Более того, точное расположение свойственных M- и L-колбочкам пиков чувствительности идеально подходит для того, чтобы мы могли максимально четко отличать колебания количества крови от колебаний уровня оксигенации. Скажем, если бы эти пики чувствительности расположились на уровне центрального пика и правого нижнего колена “буквы W’, мы по-прежнему видели бы оттенки на красно-зеленой оси, да и колбочки типов M и L остались бы, вероятно, достаточно похожи на предковые M / L-колбочки и не препятствовали бы различению сине-желтой гаммы. Однако в этом случае колебания количества крови влияли бы на наше восприятие красного и зеленого гораздо сильнее, чем теперь. Смысл изменений цвета кожи по красно-зеленой оси был бы менее однозначен: нам труднее было бы определить, сдвигом какого именно параметра – кровоснабжения или оксигенации – вызван тот или иной цветовой переход. Благодаря имеющимся у нас колбочкам колебания воспринимаются как сравнительно независимые друг от друга.

Новшеством является лишь красно-зеленое цветовое измерение, а сине-желтое в ходу уже десятки миллионов лет и возникло задолго до того, как мы обзавелись голой кожей. Значит ли это, что информацию об эмоциях передает только варьирование цвета кожи по красно-зеленой шкале? Почти наверняка нет. В ходе эволюции наша цветовая сигнализация могла подгоняться под любые цвета, которые мы были способны видеть. А поскольку колебания интенсивности кровоснабжения и концентрации кислорода – параметры более или менее независимые, цветовая сигнализация имела возможность извлекать пользу как из древнего сине-желтого, так и из нового красно-зеленого измерения, создавая для наших глаз как можно более броские сигналы.

Отблески цвета

Цветовое зрение – это приблизительное восприятие различных распределений длин волн исходящего от объектов света. Но наши глаза – не спектрометры, и они не способны измерить, сколько в них попадает света с той или иной длиной волны. Для этого понадобились бы десятки, даже сотни типов колбочек, а не два, три или четыре, которыми обычно располагают животные (хотя у некоторых ракообразных бывает и больше). И поэтому доставшиеся нам колбочки мы используем для анализа тех длин волн, которые для нас особенно важны. Если X – нечто, обладающее первостепенной важностью (например, кожа), то естественный отбор будет благоприятствовать такой чувствительности колбочек, которая позволит наилучшим образом видеть X. Цветовое зрение животного будет “спроектировано под X”.

Очень важно, что видимые нами цвета внешнего мира – это своего рода удобная иллюзия. Как будто эволюция взяла набор карандашей и пометила разными цветами вещи, которые важны для нашего выживания и размножения. Однако в реальности таких меток не существует. Дональд Д. Хоффман, профессор когнитивистики Калифорнийского университета в Ирвайне, любит обращать на это внимание, но предпочитает говорить не о цветных карандашах, а использовать другую метафору: “рабочий стол” компьютера. На его виртуальной поверхности есть иконки различных форм и цветов, которые можно перемещать, открывать и даже класть в корзину. Такой “рабочий стол” представляет собой визуальное отображение процессов, происходящих внутри компьютера. Но каким образом осуществляется выбор той или иной формы этого отображения? Разумеется, не путем эволюции в естественной среде, а вследствие требований рынка, который несколько десятков лет вынуждал инженеров разрабатывать все более удобные для человеческого мозга пространства “рабочих столов” – то есть визуальные системы, позволяющие заглядывать “внутрь” компьютера. Эволюция “рабочих столов” улучшила наше взаимодействие с компьютером, подобно тому, как эволюция нашего зрительного восприятия усовершенствовала взаимодействие с реальным миром.

Эта аналогия хороша тем, что никто на самом деле не думает, будто внешний вид “рабочего стола” хоть в какой-нибудь мере отражает истинные свойства компьютера. Мы все понимаем, что местоположение иконки на экране, ее цвет, размер, а также способы обращения с ней “иллюзорны” в том смысле, что они существуют только затем, чтобы помочь нам взаимодействовать с компьютером и управлять им. Это удобная фикция. Но раз инженеры, чтобы упростить взаимодействие человека с компьютером, воспользовались удобными выдумками типа иконок “рабочего стола”, то не могла ли эволюция использовать такие же полезные фикции, чтобы упростить взаимодействие человека с реальностью? В этом суть метафоры Хоффмана. Эволюции все равно, насколько правдиво зрительная система отражает реальный мир, пока визуальные ощущения животного помогают ему выживать и распространять свои гены эффективнее, чем это делают конкуренты. Эволюция поддерживает только такие зрительные системы, которые размножаются, а их точность – дело десятое. Исходя из этих соображений, доктор Хоффман полагает, что мы не можем быть уверены ни в чем из того, что нам известно о внешнем мире. На мой взгляд, профессор перегибает палку, принимая скептические аргументы такого рода слишком близко к сердцу (по правде говоря, я даже волновался, что, не будучи уверен в моем существовании, он перестанет оплачивать мои обеды), однако само это сравнение видимого мира с “рабочим столом” компьютера невероятно удачно и поучительно, и мы еще вернемся к нему в последующих главах.

Как сказано выше, цветовое зрение животного всегда будет эволюционировать так, чтобы лучше всего видеть то, что важнее всего (пресловутоеX). Но ведь в мире, помимоX, существует много чего еще. Как быть со всем этим? Если говорить о нас, людях, как быть с объектами, не являющимися человеческой кожей? Едва эволюция создала палитру красок для X, как этими же красками тотчас оказался расцвечен весь мир. Наш красный цвет, предназначенный для обогащенной кислородом кожи, невольно дарит свой отблеск закатам, рубинам и божьим коровкам. Все эти примеры – не более чем причудливые совпадения: естественного отбора, ориентированного на то, чтобы воспринимать спектры закатов, рубинов и божьих коровок как один и тот же цвет, не было. На самом деле их спектры различаются довольно сильно – но не до такой степени, чтобы наши колбочки могли это уловить. Мы, как и другие животные с цветовым зрением, смотрим на мир через очки цвета X. Нам кажется, будто в природе повсюду красные и зеленые оттенки, по большей части ничего не означающие. Эти воспринимаемые нами цвета красно-зеленой гаммы – не просто иллюзии, но и, вероятнее всего, бесполезные иллюзии: когда мы видим их на коже, они полезны, но в том, чтобы видеть цветы красными, а листья – зелеными, нет никакой выгоды. К нашим глазам пришиты очки цвета X, которые, хотя и помогают нам заглядывать во внутренний мир других людей, могут сбивать нас с толку во всем, что не связано с социумом (например, внушать ошибочную мысль, будто между закатами, рубинами и божьими коровками существует некое объективное сходство). Это мощное напоминание о том, что зрение, которым мы пользуемся, возникло, чтобы помочь нам размножаться, независимо от того, воспринимаем мы окружающий мир объективнее или нет. (Восприятие синего и желтого должно приносить еще какую-то пользу, поскольку оно свойственно и тем млекопитающим, чья кожа не имеет безволосых участков. Правда, в чем именно заключается эта польза, пока остается неясным.)

Итак, наша цветовая картина мира довольно странна. Для животных с другим количеством типов колбочек мир раскрашен в другие цвета. Оттенки, воспринимаемые нами, разбросаны там и сям (за исключением кожи) без какого-либо смысла и порядка, и наша картина мира гораздо менее объективна, чем кажется. В сущности, животные, обделенные цветовым зрением, смотрят на мир объективнее нас. В их случае цвета не отбрасываются на предметы, окраска которых не имеет практического значения, но… платой за эту объективность оказывается отсутствие какой бы то ни было информации о длине световых волн. Животные, не обладающие цветовым зрением, способны оценить только то, сколько вообще света попадает в глаз. Рассуждая таким образом, я вновь проникся уважением к черно-белой фотографии. Прежде она казалась мне чем-то несовершенным, и я не мог понять, почему некоторые так ею увлечены. Теперь я думаю, что черно-белые снимки лучше передают то, как предметы выглядят на самом деле. Черно-белая фотография более или менее устроит и пчелу, и птицу, и человека: все они увидят на ней примерно одно и то же. Но на цветном фото они увидят разные цвета. Если бы вам пришлось отправлять в космос фотографию, чтобы однажды ее обнаружили инопланетяне, то лучше выбрать черно-белую: им будет гораздо проще разобраться. Даже если у инопланетян есть цветовое зрение, оно вряд ли построено на основе нашего гемоглобина. И цветную фотографию инопланетяне могут увидеть совершенно иной.

Живой цвет

Знание того, что назначение цветового зрения – отмечать значительные и незначительные изменения окраски нашей кожи, возможно, не увеличит продажи обоев “телесного” цвета. Но, надеюсь, теперь вы поняли, что кожа, цвет которой кажется неопределенным, на самом деле удивительно красочная, поскольку эволюция наших глаз превратила ее в цветной экран, на котором можно смотреть волнующие драмы, полные секса и насилия. Животным, не имеющим цветового зрения или, по крайней мере, не имеющим такого же цветового зрения, как у нас, эти шоу недоступны. Им наша способность улавливать такую глубоко личную информацию могла бы даже показаться своего рода волшебством. Но мы не волшебники, а просто телепаты. Настоящие, живые телепаты.

Глава 2
Рентгеновское зрение

– Теперь смотрите, – одновременно крикнули зебра и жираф. – Вы хотите знать, как это бывает? Раз-два-три! Где же ваш завтрак? Леопард смотрел, и эфиоп смотрел, но они видели только полосатые и пятнистые тени в лесу, но никаких признаков зебры или жирафа. Те успели убежать и скрыться в тенистом лесу.

Редьярд Киплинг “Как леопард получил свои пятна”[5]5
  Пер. Л.Хавкиной.


[Закрыть]

Загадочный шимпанзе

Представьте, что вы превратились в белку. Покрывшись мехом, обретя гибкое тельце весом около двух фунтов и испытав шок от осознания того, что волшебная палочка вашего приятеля оказалась действительно волшебной, вы обнаруживаете, что поблизости нет ни вашего телевизора, ни дивана. Теперь вы находитесь на дереве в тропическом лесу Уганды. И не одни, а в компании своих (новых) сородичей, которые явно чем-то обеспокоены и потому не расположены приветствовать вас. Они с ужасом таращатся куда-то вниз, и, хотя вы ничего не видите, у вас появляется дурное предчувствие. Определенно, сегодня неудачный день для превращения в грызунов. Наконец вы слышите: отовсюду снизу доносятся уханье и визг. Шимпанзе!

А ведь вы даже успели испугаться. Но тут ни змеи, ни пальмовой куницы, ни леопарда. Одни только миляги-шимпанзе: они так забавны в рекламных роликах, когда на них костюм с галстуком! Так, ну а теперь надо каким-то образом добраться до посольства и объяснить, почему у вас нет с собой паспорта.

Спускаясь с дерева и дивясь своим новым когтям, вы задумываетесь о том, куда исчезли все остальные белки. Чего они испугались? И тут ваше лицо становится мертвенно-бледным (точнее, стало бы, если бы вы все еще были человеком): вы припоминаете, как видели что-то такое по телевизору. Шимпанзе иногда охотятся на млекопитающих вроде мелких обезьян и… белок! Все, что вы видели в телепередаче братьев Кратт, стремительно всплывает в памяти: Крис и Мартин сопровождали шимпанзе во время охоты и снимали на камеру, как те ловят маленьких пушистиков, разгрызают им головы и отрывают конечности. “Я – маленький пушистик!” – вопите вы, но с новым голосовым аппаратом у вас выходит только что-то вроде: “Квурп, квурп, квурп”. И, судя по стремительно приближающимся крикам шимпанзе, те восприняли это как призыв: “Свежая бельчатина! Приготовлено с кровью!” (рис. 1).

Вы мчитесь сквозь лесной полог, ловко перепрыгивая с ветки на ветку и с дерева на дерево, стараясь удалиться от звуков погони. Про себя вы отмечаете, как хорошо иметь тонкий слух, потому что увидеть кого-либо из следующих за вами по пятам шимпанзе вам пока не удалось. По правде говоря, вы вообще мало что видите. Листья, листья, листья. Они крупнее вашей крохотной головы, которую так просто откусить, и загораживают вам обзор. Даже если бы вам было известно, где вы были вначале, теперь вы точно заблудились. К счастью, вы быстрее и проворнее шимпанзе, и это помогает противостоять тому факту, что их масса примерно в пятьдесят раз больше вашей. Кроме того, вы способны двигаться бесшумно, особенно по сравнению с грохотом, который производят ваши преследователи. Но если они вас не слышат, почему же тогда преследуют так неотступно? Как будто бы шимпанзе способны видеть вас, хотя вы их и не видите. Может быть, у них есть секретные шимпанзячьи рентгеновские очки, позволяющие смотреть сквозь кажущуюся непроницаемой листву? Не успеваете вы подбодрить себя тем, что подобная нелепость невозможна, как вас хватают и навсегда лишают возможности додумать эту мысль до конца.

Настоящая глава будет посвящена загадочным способностям шимпанзе – их разновидности “рентгеновского зрения”.


а)


б)

Рис. 1. а) Это вы – после того как приятель-волшебник превратил вас в белку. б) Шимпанзе интересуется, есть ли вы в меню.


Мы с вами тоже обладаем такими способностями, и они делают нас грозой лесов. Рассказ об этом сверхъестественном качестве я начну с циклопов и с того, почему они так редки.

Где циклопы?

В природе циклопы встречаются нечасто, а те, которые есть, не оправдывают ожиданий: подпоить этих животных и вонзить острый кол в их единственный глаз было бы куда менее впечатляюще по сравнению с подвигом Одиссея. Настоящие “циклопы” – чаще всего мелкие ракообразные наподобие дафний (рис. 2а) или беспозвоночные вроде ланцетников – наших далеких рыбоподобных предков. Среди позвоночных циклопы не встречаются. У некоторых рыб, лягушек, ящериц и их дальних родственников имеется третий (так называемый теменной) глаз на макушке, который напоминает циклопический в том смысле, что не имеет пары (рис. 2б). Однако, хотя этот глаз и является светочувствительным, он, строго говоря, и не глаз вовсе, поскольку не способен формировать картину внешнего мира. Его функция, по-видимому, связана с регуляцией температуры тела. Среди высших позвоночных ближе всего к циклопам детеныши-анэнцефалы, но они являются на свет вследствие ошибки природы.

Одна из причин редкости циклопов – они не видят того, что у них сзади. Большинство зрячих животных с нашей планеты, напротив, может видеть происходящее за спиной – и имеет смысл предположить, что это зачем-то нужно. Получается это у них оттого, что глаза смотрят в противоположных направлениях. Именно так обстоит дело у кальмаров, насекомых, рыб, рептилий, динозавров, птиц и многих млекопитающих – скажем, у лошадей или кроликов (рис. 3). К этим животным нельзя незаметно подкрасться со спины.


а)


б)


в)

Рис. 2. Циклопы: а) единственный глаз дафнии; б) теменной глаз ящерицы; в) циклопы-млекопитающие вроде этого древнеримского божества встречаются только в легендах.


Но раз панорамное зрение (способность видеть и спереди, и сзади) объясняет столь малое количество циклопов, что в таком случае можно сказать о нас с вами? У нас два глаза, и оба они глядят в одном направлении. От этого должна быть какая-то выгода – достаточно значительная, чтобы перевесить неудобство от полной слепоты по отношению к тому, что находится позади. Ниже я разъясню это затруднение, ведь основная тема данной главы – почему наши глаза направлены вперед.







Рис. 3. У большинства животных глаза смотрят в разные стороны, что делает возможным панорамное зрение.


Но вначале давайте обратим внимание на одну особенность изображенных на рис. 3 животных: столь очевидную, что проглядеть ее легче легкого. Как я уже говорил, их глаза смотрят в противоположных направлениях. Если точнее, по бокам головы (рис. 4а). Однако это не единственный возможный способ обзавестись панорамным зрением. Альтернативный вариант – разместить один глаз прямо на лбу, а другой прямо на затылке (рис. 4б). Но вы не встретите ничего подобного в природе (и, насколько мне известно, в фантастике тоже). Почему же?


Рис. 4. а) У многих животных, как и у этого вымышленного существа, глаза направлены в стороны. б) Животных, один глаз которых смотрел бы вперед, а другой – назад, не бывает. Почему?


Причина связана с тем, что смотрящие в противоположные стороны глаза животных с рис. 3 видят не только противоположные половинки общей картины. Их зрительные поля частично перекрываются, то есть оба глаза видят некоторые части окружающего мира одновременно. Эти участки называются бинокулярной областью. В том, чтобы видеть какую-то часть мира обоими глазами, есть определенные преимущества, и они по большей части прямо перед вами. Бинокулярная область тех животных, чьи глаза расположены с двух сторон, находится спереди (рис. 5а), сверху и сзади (рис. 5б). Так, вы находитесь в бинокулярной области животного с рис. 4а, потому что каждый его глаз вас видит. Но у животного, один глаз которого смотрит вперед, а другой назад, все перекрывающиеся участки поля зрения будут расположены по сторонам, а не спереди. В том же, чтобы самым мощным зрением было боковое, выгод не так уж много. (Наше зрение – частный случай расположения глаз по бокам, в том смысле что наши глаза находятся слева и справа от плоскости симметрии, и поэтому бинокулярная область формируется спереди.)


Рис. 5. а) Поля зрения каждого глаза животного (в данном случае птицы), чьи глаза расположены по бокам. Впереди имеется бинокулярная область – участок, который видят оба глаза. Кроме того, каждый глаз видит клюв, частично загораживающий передний обзор, но другой глаз компенсирует недостающее, и в итоге животное видит все. Иными словами, оно способно одновременно видеть и свой клюв, и все, что находится за ним. (Обратите внимание на то, что в непосредственной близости от животного, прямо перед бинокулярной областью, находится участок, не попадающий в поле зрения ни одного из глаз – слепая зона. Никакой зрительной информации отсюда не получишь, но зато это подходящее место, чтобы разместить выступающий участок тела, – здесь он не будет ничего загораживать.) б) Если на первом изображении птица смотрела вперед, то теперь ее взор устремлен назад: зрительные поля обоих глаз сдвигаются, и новая бинокулярная область образуется прямо позади животного. Некоторые, хотя и не все животные с глазами, направленными в противоположные стороны, обладают такой способностью (например, кролики).


Каковы преимущества бинокулярного зрения? Знающий человек ответит: это стереоскопия, то есть способность видеть глубину и объем. Изучение бинокулярности исторически так тесно переплетено со стереоскопией, что и лекции, и книги по данному вопросу посвящены в первую очередь проблеме восприятия объема. Однако я в своих исследованиях пришел к необходимости обратить внимание на другое преимущество бинокулярного зрения, прежде никем не замечавшееся, – на способность видеть сквозь предметы. Без понимания свойств этого нашего “рентгена” невозможно понять и то, почему глаза у нас направлены вперед.

Но прежде чем обсуждать наше “рентгеновское” зрение как таковое, мне хотелось бы поговорить об одной специфической и основополагающей его разновидности, вытекающей из наличия у нас двух глаз одновременно и дающей новые аргументы в пользу того, что панорамное зрение выгоднее формировать при помощи глаз, расположенных по бокам, а не спереди или сзади. Я имею в виду способность видеть сквозь собственное тело.


Страницы книги >> Предыдущая | 1 2 3 4 5 6 | Следующая
  • 0 Оценок: 0

Правообладателям!

Данное произведение размещено по согласованию с ООО "ЛитРес" (20% исходного текста). Если размещение книги нарушает чьи-либо права, то сообщите об этом.

Читателям!

Оплатили, но не знаете что делать дальше?


Популярные книги за неделю


Рекомендации