Текст книги "Теории всего на свете"
Автор книги: Ричард Докинз
Жанр: Прочая образовательная литература, Наука и Образование
Возрастные ограничения: +16
сообщить о неприемлемом содержимом
Текущая страница: 14 (всего у книги 29 страниц)
Почему солнце до сих пор светит
Барт Коско
Профессор электротехники и юриспруденции Университета Южной Каролины; автор книги Noise («Шум»)
Одно из самых глубоких объяснений – ответ на вопрос, почему до сих пор сияет Солнце – иными словами, почему оно до сих пор не выгорело, как сгорают все костры, которые мы наблюдаем в нашей повседневной жизни. Об этом спрашивали себя люди еще в далеком прошлом, глядя на наше светило и сравнивая его с кострами или лесными пожарами, которые случались нередко. Ученых XIX столетия также волновала эта проблема: они понимали, что продолжительность жизни Солнца зависит не от одной только гравитации.
Меня еще в детстве заинтересовал и встревожил этот вопрос.
Объяснение, что атомы водорода в ходе ядерной реакции превращаются в атомы гелия, принесло мне мало утешения. Я услышал его на пике «холодной войны» с ее параноидальными поисками укрытия от ядерного удара. В начале 1960‑х мой отец даже переоборудовал часть подвала нашего нового дома в атомное бомбоубежище. В этом однокомнатном укрытии имелись железобетонные стены, металлические оконца и морозилка с быстрыми обедами домашнего приготовления. Солнце, объясняли мне, пылает так долго и так ярко, потому что внутри него, по сути, происходит огромное количество термоядерных взрывов, подобных взрывам водородной бомбы (порождающим знаменитые облака-«грибы»), и потому что в Солнце имеется огромное количество материала для этих «водородных бомб». Такие взрывы, говорили мне, произойди они достаточно близко, испепелили бы Землю, не пощадив даже наше маленькое бомбоубежище.
Логика этого объяснения выходила далеко за пределы рассуждений о глобальном стратегическом равновесии в условиях Карибского кризиса. Хорошая новость (о том, что в ближайшее время Солнце не догорит) сопровождалась новостью плохой – о том, что в грядущие несколько миллиардов лет непременно наступит момент, когда Солнце сгорит дотла. Но вначале, став красным гигантом, оно поглотит Землю, предварительно ее расплавив.
В том же самом объяснении указывалось, что рано или поздно (по космическим меркам) все звезды сгорят или взорвутся. Нам не даются даром тепло и свет, которые вырабатываются, когда в ходе ядерных реакций более простые атомы превращаются в чуть более сложные и масса превращается в энергию. Даже звездам суждена (опять же, по космическим масштабам) не такая уж долгая жизнь. Рано или поздно во Вселенной наступит мрак и холод: она еще ближе придвинется к абсолютному нулю. Останется лишь слабенький «белый шум» рассеянной энергии и материи. По прошествии колоссального (с нашей точки зрения) времени даже черные дыры могут полностью израсходовать свою энергию или схлопнуться практически в ничто – в почти идеальный слабый белый шум. Этот белый шум будет обладать высокой стабильностью и, по сути, содержать в себе нулевую информацию. Такими станут последние несколько шагов в ошеломляюще долгой череде необратимых и нелинейных процессов, из которых и слагается эволюция Вселенной. Тогда уже не будет никакой возможности узнать о мирах и жизнях, которые предшествовали этим фазам существования Вселенной, даже если и появится кто-нибудь, кто задастся таким вопросом.
Объяснение, почему Солнце по-прежнему светит, кажется мне довольно глубоким. По крайней мере, так можно объяснить конец света.
Межатомные взаимодействия по Бошковичу
Чарлз Симоний
Создатель текстового редактора WYSIWYG, соучредитель компании International Software, бывший директор управления развития приложений компании Microsoft и ее бывший главный программный архитектор
Объяснение, которое дал межатомным взаимодействиям еще в XVIII столетии разносторонний ученый-иезуит Руджер Бошкович, – пример того, как самые простые рассуждения порой приводят к удивительному прозрению.
Среди наиболее значимых философских противостояний того времени можно с уверенностью назвать борьбу между приверженцами Декарта, которые вслед за Аристотелем считали, что физические силы могут являться лишь результатом непосредственного соприкосновения тел, и последователями Ньютона, которые приняли его идею о силах, действующих на расстоянии. В этом Ньютон совершил подлинную научную революцию, однако его оппоненты не без оснований возражали, что подобное «действие на расстоянии» возвращает в физику полузабытые мистические объяснения, отнюдь не выводимые ясным логическим путем, которого требовал Декарт. Между тем Бошкович, страстный защитник ньютоновской точки зрения, вывернул вопрос наизнанку, призывая: давайте четко уясним себе, что происходит к ходе взаимодействия, которое мы именуем «непосредственным соприкосновением».
Его доводы легко понять, и они чрезвычайно убедительны. Представим себе два тела, одно из которых движется со скоростью 6 единиц, а второе – со скоростью 12 единиц, причем более быстрое тело настигает более медленное и они движутся по одному и тому же прямолинейному пути. Когда два тела столкнутся, то благодаря закону сохранения импульса оба должны будут после столкновения продолжать движение по тому же пути, со скоростью 9 единиц каждое (в случае неупругого соударения, в случае же соударения упругого такое движение будет происходить лишь в течение краткого периода сразу после столкновения).
Но каким образом скорость более быстрого тела снизилась с 12 до 9 единиц, а скорость более медленного тела возросла с 6 до 9 единиц? Понятно, что временной интервал изменения скоростей не может быть нулевым, поскольку тогда, замечает Бошкович, такое мгновенное изменение скорости нарушило бы принцип непрерывности[55]55
Формулируя еще в XVII веке принцип всеобщей непрерывности, согласно которому «природа никогда не делает скачков», Лейбниц замечал: «Существует бесконечное число ступеней между каким угодно движением и полным покоем». – Прим. перев.
[Закрыть]. Более того, нам пришлось бы заключить, что в момент соударения скорость одного тела одновременно составляет 12 и 9 единиц: явный абсурд. А значит, изменение скорости должно происходить в течение небольшого, но конечного промежутка времени. Однако такое предположение приводит нас к другому противоречию. Представим, к примеру, что по прошествии небольшого количества времени скорость более быстрого тела составляет 11 единиц, а более медленного – 7 единиц. Но это значит, что они не движутся с одной и той же скоростью, а следовательно, передняя поверхность быстрого тела должна проникнуть сквозь заднюю поверхность медленного тела, что невозможно, поскольку в условиях нашего опыта оба тела непроницаемы. Отсюда легко видеть, что взаимодействие должно происходить непосредственно перед соударением двух тел и что оно может являться лишь отталкиванием, поскольку выражается в том, что одно тело замедляется, а другое ускоряется.
То же рассуждение верно и для тел, движущихся с произвольной скоростью, так что уже не приходится говорить о четких пространственных измерениях частиц (а именно атомов), которые до этого считались непроницаемыми. Атом следует рассматривать скорее как точечный источник силы, и сила, «исходящая» от него, воздействует на другие тела неким сложным образом и зависит от расстояния.
По Бошковичу, когда тела удалены друг от друга, они взаимодействуют посредством силы, соотносимой с гравитационной силой и обратно пропорциональной квадрату расстояния между телами. Но с сокращением расстояния в этот закон следует вносить поправки, так как, согласно уже высказанным соображениям, сила при этом меняет знак и становится силой отталкивания. Бошкович даже начертил причудливые графики, показывающие, как сила должна меняться с расстоянием, несколько раз при этом меняя знак. Тем самым он словно бы намекал на существование минимального потенциала взаимодействия и стабильных связей между частицами – атомами.
Выдвинув эту идею, Бошкович не только предложил новую картину взаимодействий взамен теории Аристотеля и Декарта, рассматривавшей лишь непосредственный контакт тел, но и предвосхитил современные теории о структуре материи, особенно в твердых объектах.
Птицы – прямые потомки динозавров
Грегори С. Пол
Независимый исследователь; автор книги The Princeton Field Guide to Dinosaurs («Динозавры: принстонский путеводитель»)
Наиболее изящный пример элегантной идеи в одной из сфер моих научных интересов – идея о том, что динозавры были тахиэнергетическими существами: иными словами, они были эндотермами (теплокровными животными) с высоким уровнем производства внутренней энергии и высоким уровнем потребления кислорода при физических нагрузках, что характерно для птиц и млекопитающих, способных к долгим периодам физической деятельности. Такая идея о «высокоэнергетичном» динозавре вполне согласуется с гипотезой о том, что птицы являются прямыми потомками динозавров – в сущности, летающими динозаврами (подобно тому, как летучие мыши – летающие млекопитающие).
Из тахиэнергетической идеи следуют важнейшие выводы. Она совершила настоящий переворот в нашем понимании значительной части эволюции и 230 миллионов лет истории Земли, коренным образом изменив представления, державшиеся в науке с середины XIX века до 1960‑х годов. Раньше большинство ученых предполагали, что динозавры – тупиковая ветвь холоднокровных рептилий, способных лишь на краткие всплески бурной физической активности. Даже ходьба со скоростью 8 км/ч требует высокой респираторной емкости, которой нет у пресмыкающихся: передвигаясь на большие расстояния, они вынуждены тащиться со скоростью всего лишь 1,5 км/ч. Птицы же рассматривались как особая группа животных – пернатые существа, в процессе эволюции научившиеся управлять «неэффективным» (с точки зрения рептилий) расходом энергии, чтобы эта энергия позволяла им летать. Хотя новая гипотеза не заключала в себе логических противоречий, она все же отличалась от общепринятых гипотез об эволюции летучих мышей: их шерстистые предки, как и они сами, обладали высокой респираторной емкостью.
Я впервые узнал о «теплокровных» динозаврах, еще будучи старшеклассником, в свой последний школьный год: Smithsonian Magazine давал хвалебную рецензию на статью Роберта Бэккера, вышедшую в Nature летом 1972 года. Как только я прочел этот текст, у меня в сознании все встало на свои места. Раньше я воображал себе динозавров похожими на рептилий, но что-то здесь не складывалось, поскольку динозавры явно сложены как птицы и млекопитающие, а не как крокодилы и ящерицы. Примерно в то же время Джон Остром, также приложивший руку к открытию эндотермии динозавров, представил доказательства того, что птицы – летающая разновидность динозавровавепод: идея настолько очевидная, что она должна была бы стать доминирующей в науке еще в XIX столетии.
На протяжении четверти века эти гипотезы считались весьма противоречивыми (особенно та, что описывала метаболизм динозавров), и некоторые из первых их обоснований грешили недостатками. Но доказательства продолжали накапливаться. Кольца роста в костях динозавров демонстрируют, что эти существа росли сравнительно быстро: рептилии не могли бы увеличиваться в размерах с такой скоростью. Следы динозавров показывают, что эти животные на протяжении длительных промежутков времени ходили с высокой скоростью, недостижимой для холоднокровных существ. У многих небольших динозавров имелись перья. А полярные динозавры, птицы и млекопитающие переживали снежные мезозойские зимы, что было бы невозможно для существ холоднокровных (эктотермов).
Благодаря этой «динозавриной революции» наше понимание эволюции животных, некогда царствовавших на земных континентах, теперь гораздо ближе к истине, чем раньше. Энергоэффективные амфибии и рептилии доминировали на суше лишь в течение 70 миллионов лет – на протяжении самой поздней части палеозойской эры, которая началась с трилобитов и с полного отсутствия сухопутной живности. На протяжении последних 270 миллионов лет высокоэнергетические, хотя и менее энергоэффективные, тахиэнергетики царили на суше. Все началось с протомлекопитающих – терапсид, появившихся ближе к концу палеозоя. Терапсиды вымерли в начале мезозоя (в этой группе животных выжили только млекопитающие, в ту пору сравнительно мелкие), и в течение следующих 150 миллионов лет на смену им пришли не низкоэнергетические динозавры, а такие динозавры, которые смогли быстро увеличить свой и без того немалый уровень освоения кислорода.
Необычная респираторная система птиц настолько эффективна, что некоторые пернатые умеют летать не ниже самолетов. Однако эволюция создавала эту систему не для полета. Дело в том, что конструкции скелета, позволявшие управляться с легкими, сделанными по принципу воздушного мешка, впервые возникли у нелетающих динозавровавепод для вполне сухопутных целей (некоторые исследователи, пусть и далеко не все, полагают, что фактором отбора здесь стал низкий уровень содержания кислорода в атмосфере Земли). Так что основы «птичьей» энергетики появились не у кого-нибудь, а у хищных динозавров. Далеко не сразу эти особенности стали использоваться для настоящего полета. Точно так же и двигатель внутреннего сгорания изначально был разработан не для полетов, однако позже позволил человеку внедрить такие устройства в самолетостроение.
Сложность из простоты
Брюс Худ
Директор Бристольского центра когнитивного развития (Бристольский университет); автор книги The Self Illusion: How the Social Brain Creates Identity («Самообман.
Как социализированный мозг формирует личность»)
Как ученый я имею дело со сложными поведенческими и когнитивными процессами, но мое любимое «глубокое и изящное объяснение» взято не из психологии (которая редко бывает изящной), а из математической физики. Готов поручиться, что теорема Фурье обладает куда большей простотой и при этом куда большей применимостью, чем многие другие широко известные научные объяснения. Выразим ее упрощенно: любой сложный объект или процесс, будь то во времени или в пространстве, можно описать в виде серии перекрывающихся синусоидальных волн различной частоты и амплитуды.
Я впервые столкнулся с теоремой Фурье, когда работал в Кембридже над диссертацией о развитии зрения. Там-то я и познакомился с Фергусом Кэмпбеллом, который в 1960‑е годы продемонстрировал, что теорема Фурье не только позволяет элегантнейшим образом анализировать сложные визуальные объекты и процессы, но является корректной и с биологической точки зрения. Это открытие позже позволило заложить основу для разработки многообразных математических моделей зрения. Но зачем ограничиваться в нашем анализе лишь зрением?
В сущности, любое сложное физическое явление можно свести к синусоидам с их математической простотой. Неважно, о чем идет речь: о «Звездной ночи» Ван Гога, моцартовском «Реквиеме», духах «Шанель № 5», роденовском «Мыслителе» или салате «Вальдорф». Любой сложный объект или процесс в окружающем нас мире можно перевести в нейронный рисунок, который, в свою очередь, можно разложить на множество синусоид, соответствующих проявлениям нейронной активности.
Может быть, я в чем-то даже завидую физикам. Процитирую лорда Кельвина: «Теорема Фурье… не только один из красивейших плодов современного анализа, но и незаменимый инструмент в разрешении почти всякого запутанного вопроса сегодняшней физики»[56]56
Treatise on Natural Philosophy (Cambridge: Cambridge University Press, 1879), 54.
[Закрыть]. Трудно удостоиться более высокой похвалы.
Расселова теория описаний
Э. К. Грейлинг
Философ, глава Нового гуманитарного колледжа (Лондон), преподаватель колледжа Святой Анны (Оксфорд); автор книги The Good Book: A Humanist Bible («Хорошая книга: библия гуманиста»)
Мой излюбленный пример изящной и вдохновляющей философской теории – теория описаний, предложенная Бертраном Расселом. Как позже выяснилось, она не является истиной в последней инстанции, однако она помогла проложить ряд весьма перспективных путей в исследованиях структуры языка и мышления.
По сути, главное в теории Рассела – идея о том, что под «поверхностными» формами языка кроется логически выверенная структура, которую можно выявить с помощью анализа. А обнаружив эту структуру, мы поймем, что же на самом деле говорим, каким убеждениям и верованиям на самом деле привержены, а кроме того, какие существуют условия истинности или ложности наших высказываний и убеждений.
Рассел часто иллюстрировал эту идею следующим примером. Допустим, фраза «Нынешний король Франции лыс» [ «The present king of France is bald»] произносится в эпоху, когда никакого короля во Франции нет и в помине. Каким является высказанное утверждение – истинным или ложным? Можно ответить: ни тем, ни другим, ведь монарха во Франции нет. Но Расселу хотелось найти объяснение ложности данного утверждения, не отказываясь при этом от двузначной логики – иными словами, уникальную альтернативу истинности и ложности, выраженную как два и только два значения истинности.
Он постулировал, что в основе данного утверждения лежит конъюнкция трех утверждений (более «основополагающих» с логической точки зрения):
а) существует нечто, обладающее свойством «быть французским королем»;
б) в данный момент времени существует лишь один такой объект (вот почему в английском языке перед ним ставится определенный артикль «the»);
в) этот объект обладает еще одним свойством – плешивостью.
Рассел считал, что соответствующий логический предикат первого порядка можно непротиворечивым образом выразить в следующей форме (для упрощения я убрал некоторые скобки):
(Ex)Kx & [(y)Ky → y = x] & Bx.
Словами это выражается так: «Существует х такое, что оно является К; при этом (для любого у) если у является К, то у и х идентичны (так на языке логики объясняется смысл артикля «the», предполагающего уникальность); при этом х является В (где К значит «обладает свойством быть королем Франции», а В значит «обладает свойством быть лысым»). Е здесь означает «существует…» или «существует по крайней мере один…», а (у) означает «для всех» или «всякий».
Из этого видно, что для нашего утверждения есть две возможности оказаться ложным: либо нет такого х, чтобы х являлось К, либо такой х есть, но он не лыс. Оставаясь в рамках двузначности и обдирая утверждение до его логического костяка, Рассел подарил человечеству то, что Фрэнк Рамсей удачно назвал «философским эталоном».
Для неисправимых скептиков, презирающих философию, все это, конечно, выглядит как буря в стакане воды (или, по ливанской поговорке, попытка «утонуть на мелком месте»). Но на самом деле это великолепный пример философского анализа, весьма плодотворный подход, который в дальнейшем породил работы в самом широком спектре областей, от трудов Витгенштейна и Уилларда Куайна до многочисленных исследований в области философии языка, лингвистики, психологии, когнитивистики, кибернетики, теории искусственного интеллекта.
Фейнмановский спасатель
Тимо Ханней
Исполнительный директор отдела цифровых наук издательства Macmillan Publishers Ltd., бывший издатель Nature.com, соучредитель SciFoo
Мне хотелось бы предложить не только какое-то единичное объяснение, но и целое обрамление для него. Речь идет о лекциях Ричарда Фейнмана по квантовой электродинамике, которые он читал в Оклендском университете в 1979 году и которые наверняка можно отнести к числу самых лучших лекций в истории науки.
Начнем с того, что сама эта теория необычайно глубока, поскольку имеет дело с поведением и взаимодействиями наиболее фундаментальных (по-видимому) частиц – фотонов и электронов. При этом она объясняет гигантский спектр явлений – от отражения, преломления и дифракции света до структуры и поведения электронов в атомах и вытекающих из этого химических свойств вещества. Возможно, Фейнман и преувеличивал, когда утверждал, что квантовая электродинамика объясняет вообще все явления на свете, «за исключением разве что радиоактивности и гравитации», но это лишь небольшое преувеличение.
Приведу маленький пример. Всем известно, что свет распространяется по прямой – кроме тех случаев, когда он этого не делает: скажем, когда он входит в стекло или воду не под прямым углом. Откуда это «кроме»? Как объясняет Фейнман, свет всегда избирает путь, который позволит ему преодолеть расстояние от одной точки до другой за минимальное время. Наш лектор использует аналогию со спасателем, который бежит по пляжу, чтобы спасти тонущего человека. (Спасатель в данном случае – Фейнман, а тонет, разумеется, красивая девушка.) Спасатель может пробежать по прямой к кромке воды и затем по диагонали поплыть вдоль берега в открытое море, но тогда он больше времени проведет плывя, а ведь плывет человек медленнее, чем бежит по пляжу. С другой стороны, он может подбежать к воде в точке, которая ближе всего к купальщице, и плыть уже оттуда. Но тогда общее расстояние, которое ему придется преодолеть, будет слишком большим. Оптимальная стратегия (если его цель – добраться до девушки как можно скорее) лежит где-то между этими двумя крайностями. Свет также выбирает маршрут, при котором он затрачивает наименьшее время на путь от одной точки до другой, вот почему он преломляется при прохождении через границу сред (двух различных материалов) [если только не падает на эту границу под прямым углом].
Далее Фейнман сообщает, что на самом деле это неполное утверждение. Используя так называемую формулировку квантовой теории через интегралы по траекториям (хотя сам лектор избегает столь неуклюжего термина), он объясняет, что в действительности свет путешествует по всем возможным маршрутам между двумя точками, однако большинство из этих маршрутов «гасят» друг друга, и в результате нам кажется, что луч проходит лишь по одному маршруту – тому, что характеризуется наименьшим временем. Оказывается, точно так же можно объяснить, почему не встречающий препятствий луч света (как и все прочее) распространяется по прямой. Это настолько фундаментальное явление, что наверняка мало кто считает, будто оно вообще нуждается хоть в каком-то объяснении. Хотя на первый взгляд разработка соответствующей теории кажется нелепой тратой научных сил, такая теория дает полезные результаты, сводя к минимуму произвольность – настоящий бич науки.
Мои дилетантские попытки кратко изложить это объяснение, быть может, создают впечатление, что речь идет о каком-то потаенном знании. На самом же деле еще одна причина восхититься им – в том, что оно поражает почти невероятной простотой и интуитивной понятностью. Даже я, бывший биолог, не разбирающийся в физике, вынес из этих лекций не смутное ощущение, что некие ученые где-то открыли что-то новенькое, а твердую убежденность, новую концепцию реальности, ощущение, что этой концепцией я спокойно могу поделиться с окружающими. В науке такие переживания вообще редки, а уж в абстрактном, заумном мире квантовой физики они практически не встречаются. Главной причиной такой доходчивости стало введение своего рода визуального языка (знаменитых фейнмановских диаграмм) и почти полный отказ от зубодробительного математического аппарата (тот факт, что вращающиеся векторы, играющие центральную роль в этой теории, на самом деле являются представлением комплексных чисел, кажется едва ли не случайностью). Хотя мир, который рисует эта теория, видится нам совершенно незнакомым, он – на свой странный лад – наполнен смыслом.
Правообладателям!
Это произведение, предположительно, находится в статусе 'public domain'. Если это не так и размещение материала нарушает чьи-либо права, то сообщите нам об этом.