Текст книги "Чувства: Нейробиология сенсорного восприятия"
Автор книги: Роб Десалл
Жанр: Прочая образовательная литература, Наука и Образование
Возрастные ограничения: +18
сообщить о неприемлемом содержимом
Текущая страница: 9 (всего у книги 22 страниц)
9. Глаза
Пределы человеческого зрения
Глаза видят только то, что разум готов постичь.
Генри Бергсон, философ
Сходите в театр или на концерт, и велика вероятность, что вы встретите людей с разным уровнем остроты зрения. Наверняка там будут люди в очках, люди без очков, те, кто носит контактные линзы, и те, кто сделал операцию по коррекции зрения. Некто будет красоваться в очках с очень толстыми линзами, иные нацепят очочки, только чтобы прочитать программку. Кое-кто невооруженным глазом будет способен разглядеть даже мелкие детали далеко за сценой. А быть может, в толпе попадется и слепой человек, да не один. И все это абсолютно очевидные различия зрения людей: некоторые из них возникли в результате несчастного случая, болезни или воздействия окружающей среды, другие являются врожденными. Но есть и варианты, которые просто невозможно определить по внешнему виду. Вполне вероятно, что среди досточтимой публики найдется пара мужчин, не различающих зеленый и красный цвета, и тройка женщин, способная распознать особо причудливые оттенки бордо. У кого-то может быть туннельное (слабое периферическое) зрение, а кому-то придется прятаться за темными очками, чтобы ограничить свет, бьющий в глаза. Все эти вариации связаны с работой органов зрения (рис. 9.1).
Рис. 9.1. Строение глаза и сетчатки
В глазах млекопитающих свет проходит к сетчатке вдоль условной линии, которая называется зрительной – или третьей главной оптической – осью. Это прямая линия, идущая от наблюдаемого объекта к середине центральной ямки сетчатки. По пути к сетчатке свет проходит через несколько слоев соединений и структур глаза. Сначала это маслянистая слезная пленка, покрывающая глаз: она защищает, смазывает и сохраняет поверхность глаза чистой. Дальше идет роговица, выглядящая как прозрачная ткань, но довольно сложная, с несколькими специальными слоями. Роговица фокусирует больше половины света, который воспринимает глаз. После этого свет попадает в переднюю камеру. Эта структура наполнена жидкостью и примыкает вплотную к следующему элементу строения глаза по зрительной оси – радужной оболочке, которая контролирует размер зрачка. Радужная оболочка, или радужка, содержит пигмент, благодаря которому появляются бездонные синие глаза, волнующие зеленые или удивительные карие. Следующее звено по зрительной оси – зрачок; он может увеличиваться в диаметре, чтобы больше света проникало в остальную часть глаза, или сокращаться для ограничения количества света, поступающего вдоль зрительной оси. Дальше идет хрусталик. Он выпуклый, и с его помощью свет вдоль зрительной оси фокусируется на сетчатке. Между хрусталиком и сетчаткой находится большая структура – стекловидное тело. Свет, прежде чем попасть на сетчатку, проходит через него. И последняя часть глаза большинства млекопитающих – это сетчатка.
Люди с супервидением – это что-то из области мифических персонажей, их существование настолько сомнительно, что любое проявление зрительных сверхспособностей тут же становится интернет-мемом и обрастает подозрениями. Два недавних случая особенно интересны, ведь независимо от того, правда это или нет, они дают информацию о пределах человеческого зрения.
Первая история супервидения рассказывает о женщине из Германии по имени Вероника Зайдер. В 1970-е годы ее объявили человеком с самым лучшим зрением на планете, потому что она утверждала, что видит детали объектов, находящихся на расстоянии более полутора километров. Согласно источникам информации, она даже могла идентифицировать людей на такой дистанции: у нее было зрение 20/2, а может, даже 20/1! У большинства людей острота зрения равна 20/20 (или 6/6, если вы пользуетесь метрической системой), что означает, что они могут ясно видеть объекты на расстоянии 20 футов, или 6 метров. Если у человека зрение 20/200 (6/60), это значит, что на расстоянии 20 футов (6 метров) он будет видеть то же самое, что человек со зрением 20/20 видит на расстоянии 200 футов (60 метров). Другими словами, человек с показателями зрения 20/200 (6/60) видит примерно одну десятую того, что видит большинство. Показатели Зайдер – 20/2 (6/0,6), а значит, на расстоянии 20 футов (6 метров) она четко различает то, что средний человек видит в 2 футах (60 см) от себя. Ее зрение в десять, а то и в двадцать раз лучше, чем у обычных людей, оно такое же острое, если не лучше, как и у хищных птиц, чьи показатели – 20/2 (6/0,6).
Бейсболисты, чей удар сильно зависит от остроты зрения, должны определять скорость и распознавать вращение мяча задолго до того, как тот достигнет пластины, чтобы замах битой был своевременным и точным. Например, посчитали, что неправильная оценка скорости подачи всего на 4 км/ч ведет к тому, что игрок пытается отбить мяч либо на 30 см раньше, либо позже. Все подачи для великих питчеров выглядят по-разному. Вот для меня все одно: что фастбол, что слайдер, что форкбол или чейндж-ап[35]35
Названия бросков в бейсболе.
[Закрыть] – я вижу лишь мутное пятно (именно поэтому моя карьера в бейсболе закончилась еще в средней школе). А для Уэйда Боггса или великого Теда Уильямса фастбол выглядит белым, при слайдере появляется красная точка, а кервбол характерен вращающимися полосами. Некоторые питчеры при ударе достигают состояния бейсбольной нирваны, называемой точной фовеальной фиксацией. Это состояние, когда питчер видит мяч с такой точностью, что может определить, где именно тот пересечет пластину, и нахождение в той самой зоне, по-видимому, и вызывают эйфорию. Фовеа, или центральная ямка, – это крошечная область сетчатки, где достигается наиболее сфокусированное, четкое и детальное зрение, она и отвечает за фовеальную фиксацию. Лучше всего это можно объяснить на примере известного теста. Посмотрите на изображенные ниже фигуры и в течение нескольких секунд сосредоточьте взгляд на символе зарегистрированного товарного знака (®), а затем, продолжая концентрировать внимание на этом символе, попытайтесь понять, как вы видите фигуры справа и слева от него.
Если вы все сделали правильно, то другие фигуры кажутся немного размытыми. Это происходит потому, что на знаке регистрации вы фокусируете фовеальную область сетчатки, и это единственное, что вы способны видеть с остротой зрения 6/6 (или 20/20). Есть кое-что особенное в строении центральной ямки, необходимое для понимания работы зрения.
Второй интернет-мем – это китайский мальчик-кот, которого зовут Нонг Юхуй. В 2012 году стало известно, что этот мальчик может видеть в темноте, а его глаза светятся, как у кошки. Сторонники теории инопланетного заговора тут же дополнили историю красочными подробностями (увы, такова сущность интернета), и информация о Нонге сейчас довольно сумбурна. Однако это не отменяет того факта, что мальчик действительно хорошо видит в темноте. А кошачье свечение появилось из-за недостатка пигмента в клетках глаз, вызванного расстройством, называемым глазным альбинизмом. Животные с исключительно прекрасным ночным зрением, такие как кошки, имеют отражающий слой ткани, связанный с сетчаткой, который называется тапетум (tapetum lucidum). Благодаря ему на сетчатку поступает больше света. Тапетум отражает свет, поэтому и светится в темноте, однако глаза Нонга – это другой случай. Между глазным альбинизмом и наличием тапетума нет ни генетической, ни анатомической связи.
Глаза животных с ночным зрением имеют повышенное количество клеток сетчатки. Сетчатка состоит из тысяч маленьких палочек и колбочек. У кошек в сетчатке гораздо больше палочек, и, хотя сетчатку Нонга никто не исследовал, держу пари, что в ней тоже преобладают палочки. Вероятно, после этих двух историй вам стало любопытно узнать о строении сетчатки и о всех этих палочках и колбочках.
Глаза позвоночных устроены довольно сложно, в них множество структур, с помощью которых мы фильтруем свет и фокусируем взгляд, однако большая часть событий происходит на сетчатке, поэтому имеет смысл рассмотреть ее подробнее. Для начала запомните, что на сетчатке и возникает потенциал действия, посылающий в мозг электрические импульсы (в главе 10 вы узнаете, куда именно в мозге приходят в итоге эти сигналы).
Сетчатка – это в буквальном смысле поле, на котором находятся два вида специализированных рецепторных клеток: палочек и колбочек. Все они напрямую связаны с мозгом. На самом деле многие неврологи считают сетчатку частью мозга[36]36
Сетчатка глаза развивается из выроста промежуточного мозга. – Прим. науч. ред.
[Закрыть]. То, как все эти палочки и колбочки распределяются по сетчатке и какой свет они чувствуют, в большей степени определяет, что происходит с нашим зрением. Надо заметить, что на сетчатке есть еще и третий тип фоторецепторов – светочувствительные клетки [pRGC]. Их обнаружили примерно сто лет назад у слепых мышей. Эти клетки будут реагировать на свет, даже если палочки и колбочки отсутствуют или выведены из строя. Клетки pRGC участвуют в поддержании суточных биоритмов и лишь опосредованно связаны со зрением.
Колбочки отвечают за остроту зрения, или разрешающую способность, поэтому фовеа, или центральная ямка, заполнена только клетками этого типа. Чем больше колбочек в фовеа, тем лучше она функционально согласована с остротой или разрешением. Кроме того, именно здесь подбирается наилучшее цветовое разрешение для нашей зрительной системы. Но неверно было бы предположить, что цветоощущение и острота каким-то образом связаны. Несмотря на то что обе эти функции выполняются колбочками, это разные явления.
При плохом освещении, когда нет необходимости в определении цвета и сильной остроте, за дело берутся палочки. Неудивительно, что область, отвечающая за зрение при низком уровне освещенности, находится вдали от центральной ямки, на периферии сетчатки, ведь именно здесь и обитают все палочки.
Составляющие сетчатку палочки и колбочки очень плотно уложены. На концах, направленных к внешней стороне клеток, находятся белки, которые встроены в клеточную мембрану и обращены наружу. Эти специализированные фоторецепторные белки называются опсинами, и их структура очень похожа на структуру хеморецепторов, описанных в начале книги. Для того чтобы закрепить опсин в палочке или колбочке, существуют семь трансмембранных доменов, которые входят и выходят через клеточную мембрану. Как и в случае с хеморецепторами, один конец белка лежит на внешней стороне клетки, а небольшой хвост белка – на внутренней. В том месте, где расположены семь охватывающих мембрану доменов, уютно устроилась небольшая молекула хромофора, называемая 11-цис-ретиналь, – прямо рядом с белком, соединенная с его внутренней частью. Хромофор фотореактивен: когда на него воздействует фотон определенной длины волны, он изомеризуется (меняет форму, но не химический состав) и вываливается из своего уютного домика в сетчатке – опсина. Это изгнание молекулы, в свою очередь, приводит к изменению структуры самого опсина и запускает те же самые реакции G-белка, которые мы наблюдали при хеморецепции, когда я рассказывал про запах и вкус.
Человеческие опсины представляют собой большой и разнообразный набор белков, кодируемых генами в геноме человека. Существует девять основных типов, но не все они задействованы в работе зрительной системы. Со зрением связаны родопсин, красный опсин, зеленый опсин и синий опсин. Важным аспектом в развитии хорошего цветового зрения у людей стало то, что зеленый и красный опсины находятся рядом друг с другом на Х-хромосоме в геноме человека. Синие опсины расположены на седьмой хромосоме человека, а родопсин, последний участвующий в цветовом зрении опсин, находится на третьей хромосоме.
Свет, одновременно представляющий собой и волну, и поток частиц, состоит из фотонов, имеющих определенную длину волны. Для любого фотона видимой длины волны существует реагирующий на него опсин. Другие опсины будут просто сидеть и ждать, когда на них попадет фотон подходящей им длины волны. Так, например, любые попадающие на сетчатку фотоны с длиной волны 557 нм (свет имеет чрезвычайно малую длину волны) будут проходить через все виды клеток сетчатки, однако реагировать будет только опсин в колбочковых клетках, ответственных за восприятие красного цвета[37]37
Восприятие цвета – не физический, а психологический феномен. У всех трех видов колбочек спектры чувствительности очень широкие и значительно перекрываются. Свет с длиной волны 557 нм будет сильно возбуждать L-тип колбочек, немного меньше – M-тип и почти не будет возбуждать S-тип. Для нас такой цвет будет казаться желто-оранжевым. Однако, если использовать несколько длин волн, скажем 650 нм и 540 нм, и правильно подобрать их яркость, мы также увидим желто-оранжевый цвет. – Прим. науч. ред.
[Закрыть]. А если фотон имеет длину волны 420 нм, он опять же будет проходить через все виды палочек и колбочек на сетчатке и, следовательно, через много опсинов, но реагировать на него будет только опсин синего цвета в колбочках. Как ни странно, но, если на сетчатку попадает мало света (то есть вокруг темно), выключаются все опсины колбочек и начинает работать опсин палочек, или родопсин. Он вступает в реакцию с фотонами с длиной волны около 505 нм и интерпретирует фотореакцию и последующую фототрансдукцию (сигнал в мозг) как сине-зеленый цвет. Именно поэтому ночное видение, которое у нас может быть, относительно бесцветно. Конечно, свет, попадающий в наши глаза, существует в определенном диапазоне длин волн, а не только составляет 557, 420 или 505 нанометров. Поэтому, хоть фотоны с длиной волны 557 нм и оптимальны для реакции с находящимся в колбочках опсином красного цвета, опсин будет реагировать и, скажем, на волну длиной 550 нм – только с меньшим энтузиазмом. Собственно, этот опсин будет реагировать со светом вплоть до 500 нм, но опять же не так эффективно, как со светом на 557 нм. Этот энтузиазм опсина, реагирующего на определенную длину волны, и определяет степень, с которой G-связанный каскад посылает сообщения в мозг и влияет на то, как сетчатка воспринимает различные оттенки красного, зеленого или синего.
Ученые, проанализировав геномы разных людей, на основе знания о цветовом зрении пришли к выводу, что существуют несколько видов опсинов как для красно-зеленых, так и для синих колбочек. Разные виды красно-зеленых опсинов называются длинноволновыми и существуют в двух основных вариантах: длинноволновые (L) и средневолновые (M). Коротковолновые опсины (S) – это опсины синего цвета.
Эволюция генов опсинов для волн разной длины – история занимательная. Можно понять, как человек воспринимает цвет, если посмотреть на распределение опсинов у организмов на древе жизни. У некоторых бактерий есть гены опсинов, и они используют их как источник энергии, получаемой из света. Единственная общая черта опсинов всех организмов, имеющих их, состоит в том, что они используют небольшую молекулу – ретиналь – в качестве партнера по функции. Поскольку под действием света ретиналь изомеризуется, изменение формы этой маленькой молекулы использовалось на древе жизни для разных задач. У растений нет опсинов, как и у некоторых очень примитивных животных – например, у губок или у похожих на блины пластинчатых. Но у этих двух рано отделившихся от общей ветви животных и у растений нет даже нервов, не говоря уже о мозге. У книдарий (стрекающих), таких как медузы, кораллы и гидры, есть органы свечения и опсины. У гребневиков, или ктенофор, опсины тоже есть. В некоторых случаях эти организмы имеют нейронную сеть и большое количество опсинов, что позволяет предположить, что они воспринимают широкий диапазон света. А кубомедуза – одна из стрекающих кишечнополостных, по форме напоминающая коробку, – обладательница восемнадцати генов опсинов и сложного светочувствительного органа, оснащенного даже линзой!
Но именно у позвоночных гены опсина действительно закрепились. И хотя те мягкие организмы, которые непосредственно предшествуют позвоночным на древе жизни, такие как морские ежи, асцидии и кишечнодышащие, имеют совсем мало генов опсина (менее пяти), у позвоночных – рыб, лягушек, ящериц и птиц – их уже гораздо больше (иногда более двадцати).
Как же число опсинов подскочило до двадцати? Если у предшествующих позвоночным животных их только пять, то и у общего предка позвоночных их должно было быть максимум пять. Появление большего числа генов опсинов совпадает с определенным событием в эволюции позвоночных, которое и проливает свет на еще один способ образования новых генов в геномах организмов.
У общего предка оболочников (асцидий и полухордовых) и позвоночных тоже было только пять опсинов. По мере того как оболочники делились на разные ветви, у них все еще оставалось по пять генов или даже меньше. Однако общий предок всех позвоночных (другой, не тот, кто был общим для позвоночных и оболочников) весь геном дублировал на себя, причем не один раз, а дважды. Дупликации целых геномов довольно распространены у растений (полиплоидия популярна среди них), но у животных они встречаются редко. А значит, это редкое двойное дублирование генома привело к увеличению генов в геномах позвоночных.
Но на этом пути с млекопитающими произошла забавная вещь: количество генов опсинов было сброшено до восьми. Яйцекладущий утконос, ближайший родственник сумчатых, сохранил одиннадцать опсинов, поэтому постепенная потеря генов у млекопитающих более чем вероятна: они остановились на восьми. Как вариант, некоторые гены опсинов у утконоса могли образоваться в результате дупликации генов (в отличие от дупликации всего генома). Такое изменение числа генов опсинов у млекопитающих вовсе не удивительно, если учесть, что их предок, скорее всего, вел ночной образ жизни и не нуждался в большом наборе светочувствительных молекул. Судя по всему, восемь генов опсинов стали своего рода золотой серединой для млекопитающих, хотя у людей в геномах их обычно девять. А еще одна интересная эволюционная штука случилась на пути к приматам. Восемь генов опсинов предка приматов включили родопсин, опсин L/M и опсин S, необходимые для цветного зрения. Опсин L/M – это один опсин, существующий в двух формах: L (длинноволновой) и M (средневолновой).
Из девяти опсинов в геноме человека в цветовом зрении используются родопсин, S-опсин на хромосоме 7 и два опсина (L и M) в Х-хромосоме. Людям нужны все три опсина, которые должны быть выражены в колбочках, чтобы цветовое зрение было нормальным, то есть трихроматическим. Но каждый опсин может мутировать и стать нефункциональным, может иметь пониженную функцию или реагировать на волну другой длины. Кроме того, существует вероятность, что в результате смешивания гена опсина L (красного) с зеленым геном опсина M возникнут гибридные опсины. Поскольку эти два гена имеют похожие последовательности, они часто выстраиваются друг напротив друга в хромосомах, поэтому может произойти рекомбинация, в результате которой появятся два продукта: один с красным геном спереди и зеленым геном сзади, а другой с зеленым геном спереди и красным геном сзади.
Из-за всех этих возможностей существует масса причин, по которым у мужчин может быть нарушено цветовое восприятие. И все из-за того, что L– и M-опсины связаны с X-хромосомой. Учитывая, что на разных хромосомах есть всего два локуса и существует только единственная комбинация, которая дает трихроматическое зрение (при наличии по крайней мере одного L, M и S), могут возникнуть некие другие комбинации генов, при которых цветовое зрение будет недостаточным.
9.1 Наш геном
В каждой клетке человеческого организма двадцать три пары хромосом. Существует двадцать две пары так называемых аутосом, пронумерованных от 1 до 22 (самая большая хромосома по количеству ДНК имеет номер 1, а самая маленькая – 22). Аутосомы – это совокупность хромосом, обычно не участвующих в определении пола. Последняя, или двадцать третья пара, – это половые хромосомы; у женщин есть две хромосомы одного и того же типа, называемые Х-хромосомами. (Х-хромосома – одна из самых больших хромосом в нашем геноме, она содержит примерно две тысячи генов.) У мужчин есть одна Х-хромосома с двумя тысячами генов и хромосома поменьше, содержащая около пятисот генов, – Y-хромосома. Большинство генов Y-хромосомы отсутствуют в X, поэтому у мужчин только одна копия любого гена, находящегося в X-хромосоме.
Комбинация опсинов у мужчины с нормальным цветовым зрением, или трихроматическим зрением, была бы LM/Y S/S или LM/Y S/z, где LM/Y представляет гены опсина из Х-хромосомы матери и Y-хромосомы отца, в которой отсутствует опсин. Символ z сообщает, что опсин нефункционален или отсутствует. Обозначения S/S и S/z указывают на возможные комбинации опсинов из хромосомы 7, по одной от каждого родителя. Если вам не повезло и вы родились мужчиной без функционирующих генов L, M и S (опять же представленных z), генетически у вас будет схема – zz/Y z/z, и тогда вы – обладатель монохроматического зрения и совсем не способны различать цвета. Другими словами, в ваших колбочках вообще нет опсинов. Какое-никакое зрение все еще остается, потому что в палочках присутствует родопсин, но жизнь ваша будет темной и мрачной. Это состояние характерно для большинства людей на острове Пингелап в Микронезии.
Другие условия, при которых мужчина будет иметь монохроматическое зрение, выглядят следующим образом: Lz/Y z/z, zM/Y z/z, zz/Y S/S или zz/Y S/z. В двух случаях гены опсина из Х-хромосомы матери содержат только L– (Lz/Y z/z) или M-опсин (zM/Y z/z), или, другими словами, только один опсин вместо обычно связанных двух, и мир предстанет перед вами в черно-белом цвете. В случаях zz/Y S/S и zz/Y S/z в колбочках находится только один вид опсина (S), и ваш черно-белый мир будет чрезвычайно контрастен. У женщин больше шансов восполнить недостающие Х-хромосомные опсины, и поэтому частота проявления монохроматического эффекта у них значительно ниже, чем у мужчин. В разных популяциях мужчины с дихроматическим зрением встречаются совсем не редко. Например, генотип приблизительно каждого десятого мужчины североевропейского происхождения выглядит следующим образом: Lz/Y S/S, Lz/Y S/s, zM/Y S/S или zM/Y S/s, то есть содержит два опсина в колбочках. Такие люди обладают дихроматическим зрением и не могут различать определенные комбинации цветов в зависимости от того, какие именно опсины смешиваются, чаще всего они страдают красно-зеленым дальтонизмом.
Существуют три основные разновидности дихроматического зрения: протанопия, дейтеранопия и тританопия. У протанопов не функционирует или отсутствует М-опсин (Lz/Y S/S или Lz/Y S/s), а следовательно, нет никаких красных колбочек. У дейтеранопов нет L-опсина (zM/Y S/S или zM/Y S/s), а значит, нет зеленых колбочек. Тританопы встречаются крайне редко: у них отсутствуют синие колбочки из-за нефункциональных S-опсинов (LM/Y z/z). Все эти комбинации генов опсина в организме человека приводят к снижению цветового зрения. Однако существуют и другие схемы, из-за которых может наблюдаться аномальная трихромазия. Речь идет о лицах с тремя типами опсинов, а следовательно, тремя видами колбочек, но один из этих опсинов – гибридный ген L/M, о котором я говорил ранее. Эти люди, как правило мужчины, видят мир трехцветным, но эти три цвета немного искажены по сравнению с теми, что видит нормальный трихромат.
Обратите внимание, что в описанных схемах цветового зрения гены теряются в результате мутаций или даже полного их удаления, но может произойти и обратное. Бывает, что в геноме возникает добавочный ген опсина или даже два. У многих животных появились дополнительные гены опсина, чтобы повысить их способность цветовосприятия. И это не просто добавление опсинов вне диапазона восприятия человека (от 400 до 700 нм). Нельзя сказать, что насекомые и другие животные не обладают дополнительными механизмами обнаружения за пределами диапазона от 400 до 700 нм.
Как отмечалось ранее, простые мутации в генах опсина могут менять длину волны света, на которую опсин будет реагировать с максимальным энтузиазмом. Если в организме есть опсин, который лучше всего реагирует на свет с длиной волны 560 нм, то опсины будут максимально реагировать на свет этой длины волны и меньше – на другие длины волн. Организмы могут видеть цвет на длинах волн, отличных от оптимальной длины волны для своих опсинов. Но если добавляется опсин, специфичный для определенной длины волны, не охваченной нормальными опсинами, то цветовое зрение акцентируется на длине волны, оптимальной для этого добавленного опсина, что обогащает цветовосприятие организма.
Например, у бабочек и ракообразных из отряда ротоногих ситуация доведена до крайности. Зрение у некоторых бабочек три– и тетрахроматическое, но у них добавились дополнительные опсины для более точной настройки восприятия цвета. У белянок целых семь опсинов цветового зрения, причем некоторые из них являются просто дополнениями, работающими немного по-другому. Ротоногие ракообразные удивительным образом обладают двадцатью опсинами для цветоощущения. Кроме того, у них есть шесть опсинов, которые обнаруживают поляризованный свет, и два – для восприятия люминесценции. Наличие двадцати опсинов означает, что по крайней мере двенадцать волн разной длины являются специфическими для опсинов этих организмов, и это усиливает трихроматическое цветовое зрение ротоногих и делает его в большей степени предназначенным для узких участков спектра.
Подобные дополнения к человеческому геному привели бы к появлению людей с так называемым тетрахроматическим зрением. У них было бы четыре вида колбочек, и в большинстве случаев у мужчин нет шанса получить правильные L– и M-опсины, потому что у них одна X-хромосома. Уж скорее они станут обладателями меньшего числа генов опсина по сравнению с нормальным трихроматическим состоянием. А вот женщинам выпало даже два шанса, ведь у них есть две Xs, что увеличивает возможность стать тетрахроматом. У таких особей был бы дополнительный вид колбочек, и теоретически они могли бы видеть больше цветов, чем трихроматы, в распоряжении которых уже миллионы цветов.
Науке известно очень немного случаев тетрахроматии у людей, и, даже когда та подтверждена на уровне генома, трудно определить диапазон цветового зрения, которым могут обладать эти женщины. Объясняется это тем, что наличие четырех видов колбочек не означает, что мозг сможет интерпретировать те сигналы, которые эти колбочки обнаружили как разные цвета. Как ни странно, но, чтобы найти тетрахроматических женщин, обычно надо начинать с поиска мужчин с измененным цветовым зрением. Это должны быть аномальные трихроматы, получившие гены «сверху». Матери передали этим мужчинам, своим сыновьям, Х-хромосому с аномальным рекомбинантным опсином, благодаря которому появляется четвертый тип колбочек. Если у матери также есть нормальные гены L– и M-опсина на другой Х-хромосоме и два нормальных S-опсина на двух хромосомах 7 в геноме, то появляются четыре колбочки: L, M, S опсины и L/M опсин (рекомбинантный ген, который она передала своему сыну с аномальной трихроматией). Теоретически такая женщина могла бы воспринимать четыре диапазона световых волн разной длины.
Найти потенциальных тетрахроматов не так уж сложно. Как правило, это женщины, считающие, что у них экстраординарное цветовое зрение. Существует простой тест, позволяющий определить, обладают ли они геномной предрасположенностью к тетрахроматическому цветовому зрению (он основан на упорядочении локусов генов опсина на Х-хромосомах). А вот найти геномных тетрахроматов гораздо сложнее, хотя некоторые исследователи предполагают, что до 2 % женщин на планете являются ими. В интернете можно прочитать несколько убедительных историй о женщинах с тетрахроматическим зрением (как правило, из мира искусства), но эти случаи редки (см. вставку 9.2). А иногда, даже если и удается отыскать геномных тетрахроматов, оказывается, что их цветовое зрение не лучше, чем у трихроматов. В 2010 году Габи Джордан и ее коллеги исследовали относительно большую популяцию с использованием аномального трихроматического подхода и обнаружили двадцать четыре женщины, которые были геномными тетрахроматами. Однако после нескольких тестов цветового зрения было установлено, что только у одной из них было что-то похожее на тетрахроматическое зрение.
9.2 Цветовое зрение у обезьян
У самцов узконосых обезьян, или обезьян Старого Света, встречается особенно интересная схема. У них есть две половые хромосомы – одна X и одна Y. L/M-опсин находится на X, и поэтому у самцов этого вида обезьян есть только одна копия L/M-опсина, и они по счастливой случайности получают либо L-опсин, либо M-опсин. Состояние с наличием одного L– или М-опсина и S-опсина называется дихромазией. Так или иначе, самцы этого вида различают только два цвета, потому что у них есть только два вида колбочек в сетчатке. У самок при этом два опсина, и в некоторых случаях они получают третий смешанный L– и M-опсин, и это позволяет им иметь трехцветное зрение, или трихромность. Кроме того, у некоторых самок схема будет либо M/M, либо L/L, и они будут видеть только два цвета. Самцы неизбежно будут дихроматами, а самки – трихроматами и дихроматами. Таким образом, в любой популяции узконосых обезьян существует три представления о мире цветов: дихроматический мир M, дихроматический мир L и трихроматический мир.
Кимберли Джеймсон и ее коллеги протестировали четырех человек, пытаясь найти связь между художественными способностями и тетрахроматическим зрением. Они разработали эксперимент, в котором сравнение производилось между двумя состояниями для каждой из двух переменных: художник-тетрахромат, художник-трихромат, нехудожник-тетрахромат и нехудожник-трихромат. Затем они рассмотрели три основных вопроса, сопоставив результаты теста цветового зрения у всех четырех участников, по следующей схеме:
• Влияет ли геномный состав индивида на цветовое зрение? Этот тест просто сравнивал художника-тетрахромата и нехудожника-тетрохромата с художником-трихроматом и нехудожником-трихроматом. Если усиленное цветовое зрение было обнаружено при наличии четырех генов опсина против трех, то оно имеет геномный компонент.
• Влияет ли художественное образование на цветовое зрение? В этом тесте художник-трихромат и художник-тетрахромат сравнивались с нехудожником-трихроматом и нехудожником-тетрахроматом.
• Наконец, предполагают ли художественное образование и геномный состав усиленное цветовое зрение? Этот тест включал сравнение художника-тетрахромата и нехудожника-трихромата с художником-трихроматом и нехудожником-тетрахроматом.
Только второй тест не дал значимых результатов, указывая на то, что художественного образования недостаточно для улучшения цветового зрения. Два других теста показывают, что существует геномный компонент и что образование и геномный компонент работают синергетически. Очевидно, что количество участников ставит полученные выводы под сомнение, но в качестве первой попытки понять тетрахроматическое улучшение цветового зрения это исследование установило довольно высокую планку.
Да, современные люди довольно сильно отличаются друг от друга по цветовосприятию. Но можем ли мы что-то сказать о наших близких вымерших родственниках, таких как неандертальцы? Благодаря удивительным разработкам технологий секвенирования генома ученые теперь могут изучать геномы вымерших или давно умерших особей. На данный момент самый старый образец для анализа ДНК – Homo sapiens возрастом 450 000 лет, найденный в Испании. Сейчас появляется все больше секвенированных геномов давно умерших неандертальцев и H. sapiens, и поэтому можно взглянуть на многочисленные ядерно-кодированные гены в геноме в том виде, в котором они существовали десятки тысяч лет назад. И, очевидно, поинтересоваться: воспринимали ли наши архаичные родственники цвет так же, как мы? Ведь наш современный стиль жизни требует улучшенного цветового зрения, которое, возможно, развилось недавно, уже после нашего расхождения с архаичными людьми. Кроме того, анатомические данные и экологическое распределение неандертальцев позволяют предположить, что они любили более тусклый свет, чем современные люди. Джон Тейлор и Томас Реймхен исследовали этот вопрос, изучив несколько геномов неандертальцев и некоторые современные ископаемые геномы H. sapiens. Кроме того, был исследован экземпляр третьего рода Homo, найденный в Денисовой пещере в Центральной Азии, называемый денисовским человеком, или денисовцем. Авторы не обнаружили значимых различий между нашими современными генами опсина и генами опсина неандертальцев, денисовца и давно умерших H. sapiens. Этот результат поразителен, учитывая, что проверенным геномам больше тридцати тысяч лет.
Правообладателям!
Это произведение, предположительно, находится в статусе 'public domain'. Если это не так и размещение материала нарушает чьи-либо права, то сообщите нам об этом.