Электронная библиотека » Вадим Романов » » онлайн чтение - страница 3


  • Текст добавлен: 21 июля 2014, 14:44


Автор книги: Вадим Романов


Жанр: Прочая образовательная литература, Наука и Образование


Возрастные ограничения: +12

сообщить о неприемлемом содержимом

Текущая страница: 3 (всего у книги 11 страниц) [доступный отрывок для чтения: 3 страниц]

Шрифт:
- 100% +

Найденный японцами способ решения продовольственной проблемы имеет определённые преимущества перед другими способами, – отмечает сайт Inhabitat. В настоящее время около 18 % выбросов, создающих парниковый эффект, приходятся на долю мясной промышленности. Кроме того, скотоводство потребляет слишком много ценных ресурсов, а также даёт общественности повод рассуждать о жестокости к животным.

Шитбургеры, как их уже условно прозвали японцы, способны разрешить все эти проблемы (кроме естественной брезгливости). К тому же продукты из такого квазимяса содержат меньше калорий, чем привычные гамбургеры. Отметим, что пока на вопрос, заданный сайтом Inhabitat, о готовности отведать шитбургеров большинство читателей отвечают отрицательно. Однако имеются и в духе японского «харакире» и патриоты-добровольцы.

Учёные не теряют надежды, что со временем потребители преодолеют психологический барьер, и у шитбургеров найдётся достаточно покупателей, который поймут все преимущества такого безотходного производства.

В случае массового распространения продукта стоить он будет столько же, сколько сейчас – гамбургеры из натурального мяса. Пока же, учитывая расходы на научно-исследовательскую работу, они обходятся в 10 ÷ 20 раз дороже традиционной продукции.

Отметим, что полностью отвергать эти разработки японских учёных не следует, так как они вполне могут быть использованы после доработки, если не для людей, то по крайней мере, для корма животным.

2.2. Экскреты в решении проблем космонавтики

Успешные полеты космонавтов вокруг Земли на космических кораблях и орбитальных станциях и высадка человека на Луну, запуски автоматических межпланетных станций к Луне, Венере и Марсу создают реальные предпосылки полётов человека к другим планетам. Чтобы осуществить такие полёты, которые будут длиться многие месяцы и, возможно, годы, необходимо решить очень сложные инженерно-технические и медико-биологические проблемы [50].

Одна из таких проблем – разработка и создание системы, неограниченно долго обеспечивающая людей в космическом корабле и в случае высадки на другие планеты всем необходимым для нормальной жизни: кислородом, пищей, водой. Эта система должна, кроме того, очищать среду от углекислого газа и токсичных продуктов жизнедеятельности.

При нормальном функционировании организма человеку необходимо в сутки около 1 кг кислорода, 2,2 кг воды (для питья), около 0,5 кг сухой пищи и примерно 1,8 кг воды для санитарных нужд; всё вместе это составляет около 5,5 кг.

Получается, что годовой запас жизненно необходимых веществ для одного космонавта составляет около 2 т! Вес системы жизнеобеспечения растёт пропорционально увеличению числа членов экипажа и длительности полёта. Например, для экипажа из 5 космонавтов при трехгодовом полёте он составляет около 30 т без учёта аппаратурной части системы. Ясно, что стартовый вес корабля будет слишком большим. Такие корабли пока невозможно оторвать от Земли и вывести на межпланетную траекторию. Кроме того, взятые с Земли продовольственные запасы могут в конце концов истощиться и время полёта и пребывания космонавтов на других планетах окажется несовместимым с жизненными потребностями людей.

Возникает вопрос – может ли быть создана система, которая достаточно длительное время обеспечит жизнь людей в космическом полёте? Учёные пришли к выводу, что теоретически такую систему можно создать при использовании мусорных экскретов человека – отбросов, отходов, мусора и газов. Кроме того, на борту межпланетного корабля и на планетных станциях необходимо разместить и рационально скомпоновать сообщества различных организмов, которые обеспечивали бы полный биологический круговорот веществ, подобный тому, который существует на Земле. Зелёные растения на борту корабля при использовании солнечного света или бортовых источников ядерной энергии теоретически позволяют создать такие замкнутые экологические системы [50]. Они должны включать и экипаж космонавтов, благодаря чему в непрерывном круговороте будет находиться одно и то же взятое с Земли количество веществ. Человек, поглощая кислород, будет выдыхать углекислый газ, растения же, поглощая его, а также усваивая воду и минеральные соли, будут вновь и вновь создавать пищевые вещества и выделять кислород. Движущей силой этого процесса явится световая энергия. Твёрдые и жидкие отбросы жизнедеятельности человека после их биологической трансформации могут быть использованы для получения животного белка, для минерального питания растений и для получения чистой воды. Таким образом, замкнутый экологический комплекс позволяет непрерывно циклически воспроизводить на борту космического корабля все необходимые для жизни человека условия.

Строго говоря, материальный баланс твёрдых, жидких и газообразных веществ на борту космического корабля выдержать не удастся. Неизбежны потери газов и жидкостей через микроскопические щели в конструкции летательного аппарата (ЛА). Потери будут также при шлюзованиях экипажа во время выполнения наружных ремонтных работ, при выходах и входах в жилой блок с поверхности осваиваемой планеты, при удалении накопившегося мусора и лишних отбросов. Уменьшение или увеличение массы содержимого ЛА может произойти при заборе проб материальных тел с осваиваемой планеты или при удалении из него тела погибшего космонавта. Все возможные ситуации заранее учесть невозможно…

Какие же растения целесообразно выращивать в квазизамкнутом пространстве космолёта? Особенный интерес представляют одноклеточные зелёные водоросли, например хлорелла, имеющая небольшие размеры, очень быстро размножающаяся и отличающаяся высокой активностью фотосинтеза. Эта водоросль может культивироваться в питательных средах, поглощая за короткий срок большое количество углекислого газа, выделяя кислород и накапливая значительные количества питательной биомассы. Биомасса хлореллы содержит до 50 % белков, до 20 % жиров, углеводы, витамины и другие ценные вещества. Важно, что процесс выращивания водорослей может быть автоматизирован.

Отмечается [50], что достигнутая в лабораториях интенсификации роста и биосинтеза микроскопических водорослей, позволяют уже сейчас обеспечить с их помощью воспроизводство воздуха и пищи на одного человека. Найдены и пути управления качественной стороной фотобиосинтеза водорослей. Можно получать от них биомассу, которая по соотношению белков, жиров и углеводов практически полностью копирует соотношение этих веществ в пищевом рационе человека. Это не значит, конечно, что в составе замкнутого экологического комплекса будут только одноклеточные водоросли. В него, безусловно, должны быть включены привычные для человека высшие растения, а также животные белки и некоторые микроорганизмы.

Работа по созданию замкнутого экологического межпланетного комплекса связана с большими трудностями. Все звенья замкнутого биологического сообщества должны быть строго согласованы друг с другом, в определённой зависимости соподчинены и взаимно обеспечивать друг друга веществами и энергией. Должны быть учтены возможные негативные воздействия на отдельные организмы изолированной экологической системы. Потоки космической радиации, действие перегрузок, невесомости и всех тех факторов, с которыми неизбежно столкнётся живой организм в специфических условиях космического полёта, не должны разрушить это хрупкое биологическое сообщество.

Однако эти трудности не описывают всех проблем. Одной из новых проблем длительных космических полётов при освоении планет солнечной системы является проблема образования твёрдых и жидких отходов, не утилизируемых традиционными способами [87]. Иными словами, как и на земле в ограниченном объёме космического аппарата неизбежно возникнет вопрос – куда девать мусор? Причём мусорные экскреты могут частично быть токсичными и трудноутилизируемыми на земле, а в условиях ограниченных по объёму и техническим возможностям космолёта – вообще неутилизируемыми.

Опасными и токсичными отходами, которые в настоящее время считаются трудноутилизируемыми [59], являются:

– ртутьсодержащие отходы, приборы;

– лабораторные отходы и остатки реактивов;

– органические растворители, в том числе галогенсодержащие;

– оксиды, соли, щёлочи;

– неорганические и органические кислоты;

– лакокрасочные отходы, масла, отходы нефтепереработки;

– гальваношламы, электролиты;

– отходы средств защиты растений (пестициды);

– лекарственные средства, отсевы лекарственного сырья; лекарственные неликвиды;

– другие высокотоксичные и трудно утилизируемые вещества, возникающие при полёте межпланетного корабля.

Именно мусорная проблема, а не проблемы создания и надёжного функционирования навигационных, пилотажных, двигательных установок или систем жизнеобеспечения космолёта может остановить развитие космонавтики!

Парадоксально, но именно темпы «производства» мусорных экскретов в конечном итоге могут диктовать не только количество участников полёта, но и размеры летательного аппарата и его конструктивные особенности.

Проблема включает ряд задач, решение которых пока не найдено и может затормозить освоение небесных тел солнечной системы. Одна из задач – формирование технологий и конструкций, приводящих к минимизации отходов. Вторая задача – разработка конструкций космического оборудования, включая служебные системы и научную аппаратуру, приспособленного для использования в Космосе после истечения своего ресурса. Третья задача – выбор наиболее эффективных направлений применения в космическом полёте экскретов, образующихся в результате функционирования оборудования и жизнедеятельности экипажа. Фактически это та же задача избавления от отходов, отбросов и мусора, которая с переменным успехом решается человечеством на поверхности нашей планеты.

Важной информацией для анализа эффективности использования возникающих экскретов служат сведения об их возможном составе и количестве на борту летательного аппарата. Приближённо можно выделить следующие группы экскретов:

– отбросы жизнедеятельности экипажа (экскременты и другие отходы жизнедеятельности, биологические средства личной гигиены, отбросы медицинского, микробиологического и «садово-огородного» обеспечения);

– отходы функционирования служебных систем и научной аппаратуры;

– производственный и бытовой мусор.

Перечислим возможные источники мусорных экскретов космического летательного аппарата в период его межпланетного полёта. Источники отбросов – это экипаж космического аппарата и биологические системы его жизнеобеспечения. Источники отходов: узлы и агрегаты летательного аппарата, его энергетические и служебные системы.

Источниками мусора могут быть: упаковка рационов питания и объекты после уборки жилых и служебных помещений, ремонта аппаратуры и бытовой техники, включая систему жизнеобеспечения, систему обеспечения теплового режима и другие системы.

Возможные направления использования мусорных экскретов экипажа включают в себя:

– изготовление из отбросов подсобными средствами некоторых продуктов питания экипажа, а также использование отбросов для культивирования «огорода»;

– ремонт и формирование из отходов интерьера жилых отсеков;

– изготовление из мусора и отходов дополнительных средств радиационной и метеоритной защиты;

– доработка вышедшего из строя оборудования (отходов) для нецелевого его использования или возможного применения на других небесных телах.

Каждая из перечисленных выше задач требует тщательной теоретической и практической проработки, и подготовка экипажей для их решения потребует многолетних усилий мирового научного сообщества. Ни одна из стран, очевидно, не в состоянии в одиночку решить столь трудоёмкий и финансово затратный комплекс проблем.

Рассмотрим для примера, как мыслится решение задачи жизнеобеспечения экипажа космолёта. Независимо от того, когда начнется непосредственное исследование человеком далёких планет системы жизнеобеспечения (СЖО) пилотируемых космических кораблей должны быть рассчитаны на работу в течение очень продолжительных периодов времени. Между тем, современные СЖО способны работать лишь в течение нескольких недель [88].

Считается, что СЖО больших орбитальных космических станций и для полётов к Марсу будут значительно отличаться от СЖО современных кораблей типа «Аполлон» и «Союз». Полузамкнутая СЖО не удовлетворяет требованиям продолжительных полётов в космос. Когда начнётся исследование космического пространства за Луной или в районе ближайших планет, просто невозможно будет работать, непрерывно используя запасы продуктов СЖО, взятых на борт корабля.

Один из вариантов решения этой проблемы состоит в том, чтобы в какой-то, степени дублировать экологическую замкнутую систему, частью которой является на Земле человек. Для исследования открытого Космоса человеку, вероятно, потребуется создать микроклимат, в основе которого лежит непрерывный материальный и энергетический обмен между животным и растительным миром и круговорот воды. «Сердцем» такой системы является блок фотосинтеза, в котором выделяемый человеком углекислый газ преобразуется в кислород и углерод, являющийся составной частью питательных веществ для растений. Схема такой системы приведена на рис. 2.2.1 [88]. Основными узлами экологической системы являются источник энергии, блок фотосинтеза, устройство для обработки отходов жизнедеятельности, блок для обработки воды, регулятор состава атмосферы и блок получения продуктов питания.


Рис. 2.2.1. Замкнутая экологическая система, которую предлагают использовать в межпланетных космических полетах. В этой системе насос [1] смешивает воду, поступающую из сборника воды [2], с отходами жизнедеятельности космонавтов, находящимися в резервуаре [3]. Эта смесь размельчается в мельнице [4]. Далее в смесь вводят кислород [5], и она проходит через фильтр из волокон коры красного дерева [6], в котором бактерии и простейшие микроорганизмы усваивают часть содержащихся в ней питательных веществ. Температура смеси регулируется теплообменником [7]. Далее смесь поступает в аквариум с рыбками [8], поедающими вредные в данной экологической системе микроорганизмы. Проходя через мембранный диффузор [9], смесь очищается от токсичных примесей и СО2 и отделяется от водяных паров. Основная часть воды возвращается в описанный цикл [к насосу]; меньшая часть, содержащая неорганические питательные вещества с высокой концентрацией, периодически поступает в оранжерею [10]. Водяной пар, очищенный диффузором от бактерий и вирусов, проходят через конденсер [на рисунке не показан] и превращаются в воду, пригодную для питья. Растения в оранжерее усваивают углекислый газ и выделяют кислород, который возвращается в кабину. Рыбы и овощи идут в пищу космонавтам.


Каждый из этих узлов состоит из нескольких подсистем, и все они должны быть связаны друг с другом системой автоматического контроля и регулирования, с тем чтобы, например, постоянно поддерживать в космическом корабле заданную температуру, влажность и давление (в том числе и парциальное давление отдельных газов). Удерживать такую систему в состоянии требуемого динамического равновесия – задача поистине огромной трудности. Подробно вся сложность такой системы на примере блока фотосинтеза рассмотрена в работе [88].

Отмечается, что может быть, самым критическим фактором в замкнутой экологической системе космического корабля является сохранение равенства между дыхательным коэффициентом экипажа RQ (отношение объёма выделенного человеком углекислого газа к объему поглощенного кислорода) и коэффициентом ассимиляции водорослей AQ (отношение объёма усвоенного углекислого газа к выделенному кислороду). Это равенство должно соблюдаться с точностью до 1 %. Любое отклонение, превышающее эту величину, приведёт к уменьшению количества кислорода для дыхания космонавтов на 1 % в день. Поскольку коэффициент AQ зависит от количества подводимого к водорослям азота, то система, которая должна непрерывно регулировать состав атмосферы в космическом корабле и поддерживать требуемое соотношение RQ/AQ, будет весьма сложной, если не сказать больше.

Питанием для водорослей будут отходы жизнедеятельности космонавтов. Водоросли же в свою очередь будут служить пищей для экипажа космического корабля.

Помимо воды и углекислого газа для образования новой клеточной массы водорослям необходимы также связанный азот и определённые минеральные соли. Если предположить, что потребность космонавтов в пище будет покрываться только водорослями, то достаточно будет около 600 г сухих водорослей на 1 человека в день. Очень сомнительно, чтобы человек мог потреблять в пищу такое количество водорослей в течение продолжительного периода времени, хотя они и богаты необходимыми аминокислотами (за исключением серосодержащих метионина и цистина) и витаминами и содержат 40–60 % белков, 10–20 % жиров и 20 % углеводов. Эксперименты показали, что в суточной диете человека может содержаться около 100 г водорослей, большее количество водорослей в рационе вызывает у человека желудочно-кишечные расстройства.

Как в России, так и в США учёные считают, что в замкнутой экологической системе жизнеобеспечения в качестве компонентов или звеньев цепочки питания можно использовать промежуточные формы жизни. Среди них: дрожжи, плесень, грибы, водяных блох, улиток, полевых слизней, угрей и другую рыбу, кроликов, цыплят и коз. Берут в расчет также картофель, капусту и ряску. Водоросли будут поедаться рыбами или другими животными, которых в свою очередь будет употреблять в пищу экипаж космического корабля. Однако такие предложения упускают из виду огромные трудности, связанные с переработкой в замкнутой СЖО шерсти, когтей, рогов, требухи животных и т. п. То есть опять практически на каждом этапе реализации этого проекта возникает проблема избавления от неизбежно возникающих мусорных экскретов.

По словам известного микробиолога Роберта Г. Тишера, для космических кораблей «необходимо карликовое жвачное животное, размером, может быть, с кошку, не имеющее рогов, копыт, когтей, шерсти и т. п., которое можно было бы целиком употреблять в пищу».

И здесь с успехом могут быть использованы наработки учёных по производству искусственного мяса [30]. В частности, NASA разрабатывает продукты для долгосрочного космического путешествия, и в 2002 году уже провело эксперименты с тканями рыбы, доказав саму возможность выращивания в искусственных условиях вполне съедобного псевдомяса, правда, в очень небольших количествах.

Более масштабные эксперименты провели японские исследователи, предложившие синтезировать «квазимясо» из канализационных стоков, – пишет издание Digital Trends [48]. Этот способ после целенаправленной доработки, безусловно, может быть использован на космическом корабле.

Заметим, что это не первая попытка переключить человека на замкнутый пищевой цикл. Сообщается, например, что космонавты на Международной орбитальной космической станции «с удовольствием»? пьют воду, синтезированную из их пота и влаги, конденсируемой в результате дыхания, а также из мочи.



Сделанный с помощью микроскопа снимок миоцитов индейки, выращенных в лаборатории университета Мэриленда. Выглядит это «квазимясо» не особенно аппетитно (изображение с сайта umd.edu).


Остро стоящую проблему утилизации лишних отбросов на борту космического летательного аппарата можно будет частично решить, использовав их в качестве топлива. Американские учёные из Флоридского технологического института вывели особый вид бактерий, способных перерабатывать человеческие экскременты в биотопливо. Исследователи уверены, что на таком топливе в ближайшее время будут летать спутники, а в дальнейшем и межпланетные космические корабли [89].

В ходе исследования учёным удалось генетически модифицировать бактерию вида Shewanella MR-1, которая может производить водород из любого вещества биологического происхождения. Модифицированные бактерии стали вырабатывать водорода больше обычного, а также оказались устойчивыми к невесомости. Как полагают исследователи, созданный бактериями водород в топливных элементах будет превращён в электроэнергию и данная технология в ближайшее время может быть опробована на практике.

Особую роль экскретологические разработки призваны сыграть в «экскретологической космонавтике» – научном направлении, призванном изучать объекты конечного выделения космонавтов и астронавтов, осваивающих ОКП, планеты солнечной системы, ближний и дальний Космос. Как выше указывалось, особенностью космонавтики является особенно жёсткий подход к феномену мусора. От него на борту космического летательного аппарата следует избавляться как можно скорее, так как бортовой мусор в любых проявлениях – это лишний расход топлива и опасность «застрять в пути» на необъятных просторах.

Непременное правило, которым руководствуется космический конструктор, гласит: любая деталь или часть ракеты должна, по возможности, освоить несколько «смежных профессий», то есть выполнять сразу несколько назначений [190]. Например, пусть кресло для космонавта станет одновременно и аварийным запасом пищи. Специалисты фирмы «Грумман» считают, что за счёт съедобной внутренней отделки космического аппарата можно в десять раз уменьшить пищевые запасы на борту корабля.

Нечто в этом роде предложили специалисты американской фирмы «Грумман». Они запатентовали съедобный космический материал. Спрессованная при высокой температуре смесь из кукурузной крупы, молочного порошка, крахмала, муки и банановых хлопьев напоминает фибровый картон. Если такой материал покрыть снаружи фольгой или полиэтиленом, получатся прекрасные приборные доски и щиты, переборки между каютами, облицовочные плиты и панели, мебель и другие предметы внутреннего убранства космического корабля. При острой необходимости астронавтам придётся в буквальном смысле съедать свой корабль.

Другая проблема астронавтов связана с вопросом о «бренном теле». В связи с наметившейся в не столь отдалённом будущем перспективой длительных космических полётов специалисты аэрокосмической отрасли уже сейчас столкнулись со сложной экскретологической и морально – этической проблемой [101]. Её суть в вопросе – как поступить с телом космонавта, скончавшегося при выполнении космической миссии в дальнем Космосе, когда отсутствует физическая возможность доставить покойного на землю, чтобы похоронить согласно обряду той религии, которую он исповедовал. Это только в фантастических фильмах тело погибшего героя в сверкающей капсуле красиво удаляется от межгалактического звездолёта на фоне клубящейся туманности…

В действительности, как бы цинично это ни звучало, тело погибшего космонавта станет на борту корабля мёртвым грузом без кавычек, то есть экскретом. Это незапланированный дополнительный вес и занимаемый объём. Даже если на космических кораблях будут устроены специальные криогенные камеры для сохранения тела, работа подобных установок потребует дополнительных затрат энергии. Так что рациональный выход видится один – избавиться от трупа при первой же возможности скорее всего – через шлюзовую камеру.

Между тем, мёртвые человеческие тела в космолёте, даже формально, не могут рассматриваться как лишний груз или мусорные экскреты. Умершие астронавты скорее – герои нации, погибшие при выполнении важной национальной или общечеловеческой задачи, то есть – утраты.

Напомним, что «экскретами утрат являются, в частности, тела или фрагменты тел умерших или погибших людей, представляющих общественную, культурную, религиозную, культовую или патриотическую значимость» [1].

Как и обычные люди, космонавты, по крайней мере – часть из них, являются и, возможно будут являться в будущем, приверженцами разных религий. И чтобы космические похороны не выглядели кощунством, хотя бы часть традиционных погребальных обрядов над телом утраченного героя должна быть совершена. Но у разных религий разный подход к похоронам и сохранению или удалению останков.

Например, христианство дало однозначный ответ на этот вопрос. В таких случаях хоронить человека надо там, где его застигла смерть – в море, во льдах, в Космосе. Существует даже особый обряд погребения «на водах», который по аналогии может быть адаптирован и для «моря внешнего» – Космоса.

Сложнее дело обстоит в иудаизме, где существует незыблемое положение – останки должны быть захоронены в земле. В древности тела путешественников, умерших во время морских переходов, специально сохраняли тем или иным способом. Для иудеев (как и для мусульман) понятие смерти и мёртвое тело неразрывно связаны с понятиями сакральной нечистоты. Кроме того, большинство требований иудейского погребального обряда, например, открыть окна, чтобы впустить свежий воздух и вылить воду из всех сосудов в доме умершего, в условиях космического полёта заведомо невыполнимы.

Выход из, казалось бы, тупикового положения может быть найден, если космонавты возьмут с собой «миниатюрное кладбище» – символическую горсть родной земли в крошечном контейнере. Захоронение в нём части тела покойного, например, пряди волос, позволит решить этот вопрос. Погребальный контейнер может быть перезахоронен затем на Земле или другой планете. Такой обряд, по-видимому, может удовлетворить религиозные чувства большинства землян.

Внимание! Это не конец книги.

Если начало книги вам понравилось, то полную версию можно приобрести у нашего партнёра - распространителя легального контента. Поддержите автора!

Страницы книги >> Предыдущая | 1 2 3
  • 0 Оценок: 0

Правообладателям!

Данное произведение размещено по согласованию с ООО "ЛитРес" (20% исходного текста). Если размещение книги нарушает чьи-либо права, то сообщите об этом.

Читателям!

Оплатили, но не знаете что делать дальше?


Популярные книги за неделю


Рекомендации