Электронная библиотека » Александр Константинов » » онлайн чтение - страница 2


  • Текст добавлен: 28 февраля 2017, 18:51


Автор книги: Александр Константинов


Жанр: Физика, Наука и Образование


Возрастные ограничения: +12

сообщить о неприемлемом содержимом

Текущая страница: 2 (всего у книги 12 страниц) [доступный отрывок для чтения: 3 страниц]

Шрифт:
- 100% +

Миф четвертый: большинство наших болезней – от радиации

После Чернобыля кое-кто чуть не все свои недуги стал связывать с радиацией. И основания для таких суждений имелись: например, у членов аварийных бригад – ликвидаторов. Большая их часть, почти 70 %, – по-настоящему больные люди [1]. Причём недуги у них самые разные (подробнее – в главе 9). И причина, казалось бы, очевидная – радиация. А ведь чернобыльское загрязнение задело всех нас. Выходит, и наши болезни тоже могут быть от радиации?



Но большинство специалистов по радиационной гигиене рассуждает иначе. Ну о каких массовых заболеваниях, обусловленных облучением, можно говорить всерьёз? Посмотрите, какие скромные дозы получила основная часть ликвидаторов – около 0,1 Зв. Для сравнения: в 1948–1957 годах население Челябинской области набирало в разы больше. А болели-то люди куда меньше (рис. 4.1).

Ещё разительнее отличаются дозы, полученные ликвидаторами чернобыльской аварии и персоналом (то есть работниками) ФГУП «ПО «Маяк» (город Озёрск Челябинской области). После войны на этом сверхсекретном заводе нарабатывали плутоний для ядерных зарядов. Тысячи рабочих и инженеров получили дозу 1,7–2,7 Зв. Это в 20–30 раз больше, чем у ликвидаторов. Но такого роста болезней, как у ликвидаторов, у «маяковцев» не было.

Значит, причина массовых болезней ликвидаторов кроется не в радиации. Или не только в радиации. А в чём же тогда? «Так ясно же, – утверждают многие специалисты, – виновата радиофобия: те ужасы, которые нагнетались в газетах, по телевидению и радио».


Рис. 4.1 Аварийные дозы облучения персонала и населения СССР (графическая обработка данных [2–7])


Ликвидаторов сделали больными (или даже убили) журналисты!

Но далеко не все согласятся и с таким мнением.

Читатель, я могу предположить, какая точка зрения вам ближе. Если по своей профессии вы далеки от радиации, то первая. И знаете, вы правы. А, так вы атомщик? К тому же с высшим образованием? Тогда вам ближе вторая точка зрения. И вы правы. Вы спросите: как это может быть? Ведь прав может быть лишь кто-то один? И вы тоже правы.

А теперь серьёзно. О чём спор? Разве врачи не могут доказать: вот эта болезнь у ликвидатора Иванова – от радиации, Петрову надо было меньше «водку пьянствовать», а Михайлов у нас шибко нервный, вот здоровье и не уберёг.

В этом-то и проблема! Медицина в большинстве случаев не способна дать чёткий ответ. Особенно, когда речь идёт о возникновении раковых заболеваний при облучении дозами менее 100 мЗв. Вы спросите: «Почему»? Да потому, что малые дозы радиации действуют на наш организм точно так же, как и многие другие поражающие факторы, например, химические агенты или стрессы. Как сказал бы профессионал: у них общий механизм действия. Возможно, вы о нём слышали. Это образование так называемых свободных радикалов [2].

Сейчас мы подошли к чрезвычайно интересному и важному вопросу. Ведь свободные радикалы оказались ключом к разгадке многих болезней цивилизации, и не только тех, что связаны с радиацией. Присмотримся к ним внимательнее. Сначала проясним, что же представляют собой эти самые радикалы, а затем попробуем понять, как они влияют на здоровье.



Вообще-то свободные радикалы известны давным-давно. Так называют «неправильные» осколки молекул и атомов. Почему неправильные? Потому что они имеют неспаренный электрон. Трудность понимания сути свободных радикалов возникла оттого, что эти вопросы мы не «проходили» в школе. И привыкли считать, что молекулы могут распадаться лишь двумя способами: на другие молекулы (либо атомы) либо на ионы.

Возьмём, к примеру, молекулу воды (как говаривал Дукалис из «Улиц разбитых фонарей»: «Из всей школьной химии я помню только одну формулу: молекулы воды – аж два: ноль».

Как может распадаться эта молекула?

Во-первых, на газообразный водород и кислород:

2Н2О2Н2 + О2

Второй вариант – диссоциация на ионы:

Н2ОН+ + ОН-

Но, оказывается, возможен и третий вариант. В результате необычно мощного воздействия, например, ионизирующего излучения, наша молекула разваливается на два незаряженных осколка:

Н2ОН. + ОН.

Вот эти-то осколки (точка обозначает неспаренный электрон) и называют свободными радикалами. Они чрезвычайно неустойчивы, могут существовать лишь доли секунды и всё это время ищут другой атом, чтобы отобрать у него электрон и спарить со своим. Иными словами, эти частицы очень активны, даже агрессивны. Найдя другую частицу, свободные радикалы объединяются. Например, объединиться могут два свободных радикала:

ОН. + ОН.Н2О2

Образуется молекула перекиси водорода. Тоже свободный радикал, но более устойчивый, чем исходные.

Свободный радикал может объединиться и с молекулой:

О. + О2О3

Образуется озон, который также относится к свободным радикалам; опять же он более устойчив, чем атомарный кислород (О.).



Но хватит уже химии. Вспомнился реальный случай с одной школьницей. Та, сдав на «отлично» выпускной экзамен, спрашивает учительницу:

– Мариванна, а вопрос можно?

– Конечно, Светочка.

– Вы обещаете ответить честно?

– Да, да.

– Мариванна, а вы сами-то верите во все эти молекулы?

Но это к слову. Итак, свободные радикалы – не экзотика, мы с ними давно знакомы, взять ту же перекись водорода или озон.

Известно, что свободные радикалы всегда присутствуют в органах и тканях живого организма. Они участвуют во многих реакциях, являются частью нашей защитной системы, регулируют обменные процессы, включая гибель устаревших и изменённых клеток, а также их замену [8].

Но почему в последние десятилетия так возрос интерес к этим самым свободным радикалам? К ним и к их еще более известным «противникам» – антиоксидантам?

Всё началось в 1956 году. Тогда американский ученый Дэнхем Хармен выдвинул сенсационную гипотезу (теперь это признанная теория свободных радикалов). В чём её суть?

Хармен открыл новую, уже негативную роль свободных радикалов в организме. Он предположил, что избыток свободных радикалов является причиной большинства болезней возраста. Точнее, их преждевременного проявления. Рак, сердечно-сосудистые заболевания, болезнь Альцгеймера и даже старость в 60 лет, – и одна из главных причин этого букета – свободные радикалы. Но почему болезни-то разные – у разных людей? А здесь действует принцип: где тонко, там и рвется. Не совсем понятно? Сейчас мы во всем разберёмся.

Давайте сравним две группы людей. В первую включим людей курящих, а также проживающих на экологически– или радиационно-загрязнённых территориях; тех, кто питается неправильно (много жареного, копчёного, жирного, мало витаминов); испытывающих хронические стрессы; старых и пожилых. То есть людей, которые подвергаются воздействию факторов риска, внешних или внутренних (возраст).

А во второй группе соберём людей, которые таким воздействиям не подвергаются. Очевидно, люди из второй группы в среднем окажутся здоровее. Вопрос в другом. Именно этот вопрос задал себе Хармен: «А что общего в организмах людей внутри каждой из групп»? Иначе говоря, чем отличаются люди из первой группы? У них что, температура тела выше? Вряд ли. Давление? Не факт. Состав крови? Уже тепло.

Оказалось, у людей из первой группы всегда повышена концентрация свободных радикалов в клетках – в сравнении с людьми из второй группы. Это вполне объяснимо. Раз человека атакуют повреждающие агенты, организм должен от них защищаться. А если повреждающих факторов много, и на организм они нападают агрессивно, защитные системы будут перенапрягаться. Что приведёт к усиленной работе окислительных систем. Свободные радикалы, образуясь в большом избытке, могут выйти из-под контроля.

А дальше включается механизм цепной реакции. Что это означает? Аналогия: от маленькой зажжённой спички может разгореться большой пожар. То же самое происходит и в случае воздействия радикалов на живую клетку. А роль такой горящей спички может выполнять радиация или другой повреждающий агент [2, 9]. Именно так всё и происходит. Догадка же Хармена заключалась вот в чём: избыток радикалов сам является сильнейшим повреждающим агентом.

Знаете, что ещё это напоминает? Борьбу организма с инфекционными болезнями. От вирусов и бактерий организм защищается, повышая температуру тела. Естественная реакция организма полезна – до поры, до времени. Но температура выше 39 °C, – сама становится опасной для организма. И требуются меры для её снижения.

Когда на человека набрасываются разные повреждающие агенты, организм переходит на военное положение. И происходит срыв, несоразмерный ответ: свободные радикалы образуются в огромном избытке. Это явление называется оксидантным стрессом. Название «стресс» (в переводе с английского «напряжение») выбрано не случайно. Так же, как в случае с известным физиологическим, или психоэмоциональным стрессом – разные причины могут привести к одинаковому ответу организма.

Смысл теории свободных радикалов иллюстрирует схема (рис. 4.2).

Почему же теория свободных радикалов стала столь популярной? Да потому, что даёт практический выход. Оказывается, с оксидантным стрессом можно бороться напрямую. Просто снижая концентрацию радикалов в клетках организма. Именно с этой целью применяют вещества и препараты, которые называют антиоксидантами.


Рис. 4.2 Причины и последствия избытка свободных радикалов в организме


А теперь важнейшее следствие. Радикалы, которые образуются в результате радиационного облучения, точно такие же, как и те, что образуются под воздействием химических загрязнителей, табачного дыма, хронических психоэмоциональных стрессов или в результате старения организма. «На свободных радикалах, – как выразился один ученый, – нет ярлычков: этот – от радиации, а тот – от курения».

Важно понять, что повреждения в клетках, органах и тканях оказывают именно свободные радикалы, а не сами ионизирующие излучения [8, 10–12]. Именно так: ионизирующие излучения приводят к образованию радикалов, а уже их избыток повреждает клетки. Потому-то медицина и не может чётко доказать вину радиации в возникновении раковых заболеваний (кстати, в научной литературе можно встретить разные термины для таких болезней: рак, онкологические заболевания, злокачественные опухоли, злокачественные новообразования; близкое понятие – канцерогенный, то есть приводящий к раку).

Вот в какие дебри нам пришлось залезть, чтобы лишь приблизиться к ответу на вопрос: насколько радиация виновна в наших болезнях?

Сейчас можно с большой долей уверенности сказать: если речь идёт о малых дозах, то вряд ли именно радиация является главным виновником наших болезней. Имеется много куда более весомых причин. Но самый опасный случай – когда разные повреждающие факторы встречаются вместе. Большинство неинфекционных болезней – это болезни сочетаний.

Литература

1. Яблоков А.В. Миф о безопасности малых доз радиации: атомная мифология. – М.: Центр экологической политики России, ООО «Проект-Ф», 2002. – 145 с.

2. Радиация: Дозы, эффекты, риск / Перевод с английского. – М.: Мир, 1988. – 79 с.

3. Ларин И. Невсесильная радиация. – Энергия, 1994, № 12. – С. 5–8.

4. Ларин В. Сороковка, плутоний и здоровье людей. – Энергия, 1996, № 6. – С. 19–29.

5. Безопасная опасность / Велихов Е.П., Глазовский Н.Ф., Клюев Н.Н. – Вокруг света, 2003, № 7. – С. 18–29.

6. Иванов В.К. Ликвидаторы. Радиологические последствия Чернобыля. – Центр содействия социально-экологическим инициативам атомной отрасли, 2010. – 30 с.

7. Проблемы ядерного наследия и пути их решения. – Т. 1. – Под общей редакцией Е.В. Евстратова и др. – 2012 г. – 356 с. / Цит. по: А. Журавлёв. О радиации, как главном «препятствии» в освоении космоса.

8. Булдаков Л.А., Калистратова В.С. Радиоактивное излучение и здоровье. – М.: Информ-Атом, 2003. – 165 с.

9. Маргулис У.Я. Атомная энергия и радиационная безопасность. – 2-е изд., перераб. и доп. – М.: Энергоатомиздат, 1988. – 224 с.

10. Экологические и гигиенические проблемы здоровья детей и подростков / Под редакцией А. А. Баранова, А. А. Щеплягиной. – М.: Изд-во «Информатик», 1998. – 333 с.

11. Радиация, молекулы и клетки / Журбин Е.Я. и др. – М.: Знание, 1984. – 160 с.

12. Дёмин В.Ф. Линейная зависимость доза – эффект для радиационного и химического канцерогенного риска. – Атомная энергия, 2002. – Т. 93. – Вып. 4. – С. 309–315.

Миф пятый: лучевая болезнь угрожает всем

У многих мелькает мыслишка: дескать, все мы немного чернобыльцы, все под богом ходим, и от лучевой болезни никто не застрахован. А так ли это?

Тут важно понять главное. Облучение может привести к двум видам заболеваний, или, по-научному, эффектов. Первые наступают быстро, к ним относится и лучевая болезнь. Вторые могут достать человека через годы и десятки лет, о них речь в следующей главе.


Таблица 5.1 Классификация доз при однократном облучении


Лучевая болезнь – тяжёлое, иногда смертельное заболевание. Но нам эта напасть, слава богу, не грозит. Почему? Дело в том, что лучевая болезнь может возникнуть только при больших дозах облучения.

А что значит: «большие дозы»? Все дозы облучения условно делятся на три группы: большие, средние и малые (таблица 5.1).

Так вот, при дозах до 1 Зв лучевая болезнь не возникает. По-научному это называется дозовый порог.

Получить большую дозу в обычных условиях немыслимо. Один и более зиверт – цифры аварийные. А варианты аварийных ситуаций можно пересчитать по пальцам:

– Ядерная война (Хиросима, Нагасаки).

– Ядерная авария, когда цепная реакция деления выходит из-под контроля. На наших и зарубежных предприятиях такие неконтролируемые вспышки происходили главным образом в конце 1940-х и в 1950-х годах.

– Серьёзная радиационная авария на атомном предприятии.

Самыми известными в СССР были две – в 1957 году на ФГУП «ПО «Маяк» (город Озёрск Челябинской области) и чернобыльская катастрофа.

– Облучение от неграмотного обращения с так называемыми закрытыми источниками ионизирующего излучения. Таковые применяют геологи, строители (например, для определения уровня цемента в бункере), машиностроители (для контроля качества сварных швов), медики (для лечения раковых опухолей).



Особую опасность представляют «источники-беспризорники». Потеряют источник, а потом кто-то найдет. И не дай бог, захочет посмотреть, что внутри. Раздолбает кувалдой, а внутри красивое сияние: светится цезий-137. И были случаи, когда этой гадостью мазали руки; так и называется: эффект светящихся рук. Сегодня все закрытые источники строго учитывают, а вот раньше – что было, то было.

Ах, да, большая доза облучения возможна и вне аварийной ситуации, в контролируемых условиях – лучевая терапия онкологических больных. В результате направленного облучения опухоль погибает, а пациент может страдать хронической лучевой болезнью лёгкой степени.

В других случаях получить дозу выше 1 Зв невозможно. Даже при испытаниях первых атомных бомб, когда самолет с простейшей защитой кабины от внешнего излучения несколько раз заходил в облако атомного гриба, – исследователи получали по 20 рентген (0,2 Зв) [1].

Но вернемся к лучевой болезни. Наиболее опасной считается острая лучевая болезнь (ОЛБ). Она возникает при однократном облучении большой дозой радиации. Количество облучённых людей, заболевших ОЛБ, не так уж велико. Всего в бывшем СССР – 344 случая. В том числе 42 – персонал ФГУП «ПО «Маяк» и 134 – участники и ликвидаторы чернобыльской аварии. 71 случай закончился гибелью облученных [2, 3].

А что это такое – ОЛБ? Взгляните на таблицу 5.2.

Следует подчеркнуть: дозы облучения приведены здесь для случаев однократного облучения всего тела человека проникающими ионизирующими излучениями (гамма-лучи), а последствия – для случаев, когда лечение не применялось.


Таблица 5.2 Последствия ОЛБ в зависимости от дозы облучения [4–6]


Почему же ОЛБ так опасна? При облучении большими дозами повреждаются многие системы и органы человеческого тела. А наиболее чувствительными являются молодые и растущие клетки – кровь, кроветворные органы и особенно эмбриональная ткань.

Нехватка эритроцитов в крови приводит к развитию анемии (малокровию), человек ощущает сильную слабость.

Недостаток тромбоцитов приводит к безостановочному кровотечению; особенно опасны внутренние кровотечения, приводящие к образованию язв кишечника и перитониту.

Дефицит лейкоцитов снижает сопротивляемость инфекциям: ослабленный человек может умереть от обычной простуды.

Однако от лучевой болезни погибают не всегда. Обследование работников ФГУП «ПО «Маяк», которые облучились в 1950–1958 гг. и страдали ОЛБ, показало: после лечения у 80 % из них было достигнуто полное трудовое и социальное восстановление. Примечательно, что средний возраст перенесших ОЛБ работников составил на момент обследования 70 лет [7].

От чего же зависит исход ОЛБ? В первую очередь от дозы облучения. Радиационная медицина из всей области больших доз выделяет три особые точки.

Первая из них – один грей. Лучевая болезнь у взрослого человека возникает только выше этого порога. При дозах менее 1 Гр даже лёгкая степень «лучёвки» невозможна, могут проявляться лишь отдельные симптомы переоблучения: временное изменение состава крови, эритема кожи и другие. Поэтому-то лучевую болезнь и относят к пороговым заболеваниям.

Вторая точка – так называемая полулетальная поглощённая доза. Выражение «полулетальная» вовсе не означает, что человек, её получивший, становится ни жив – ни мёртв. На самом деле такая доза вызывает гибель половины облучённых в течение 30 суток (в отсутствие лечения). Вводится это понятие (ЛД50/30) в связи с тем, что люди отличаются индивидуальной чувствительностью к облучению. В условиях острого, то есть кратковременного, продолжительностью не больше суток, облучения всего тела для молодых и здоровых людей ЛД50/30 ≈ 3,5 Гр.

Третья точкаминимальная абсолютно смертельная доза – вызывает стопроцентную гибель облученных в течение тридцати суток в условиях, когда не применяется лечение. В случае острого гамма-облучения ЛД100/30 = 6 Гр.

Интересен такой радиобиологический парадокс. Шесть грей, или 6 Дж/кг – энергия мизерная: только-только нагреть человеческое тело на 0,001 °C. Это тепловая энергия, заключённая в стакане кипятка. Но эта пустячная энергия смертельно опасна.

Выходит, важно не только количество, но и форма энергии [6]. Ионизирующие излучения – энергия сверхконцентрированная, способная рождать свободные радикалы, повреждающие спираль ДНК.

Простое сравнение. В одном случае бьют молотком по клавиатуре компьютера. В другом – лёгкое нажатие клавиш – и компьютер заражён вирусом. Во втором случае результат может оказаться куда разрушительней.

Итак, первое. На исход ОЛБ сильнее всего влияет доза облучения.

Второе – индивидуальная чувствительность человека. Само понятие полулетальной дозы говорит о том, что разные люди по-разному реагируют на одинаковую дозу облучения.

Третье – возраст и пол. Дети, люди пожилые и ослабленные болезнями более чувствительны к радиации. А женщины более устойчивы, чем мужчины.

Четвёртое – меры лечения, которые будут (или не будут) приняты к облучённому человеку. Тщательный уход, изоляция и введение антибиотиков помогают избежать инфекционных осложнений. Переливание крови, а в крайних случаях пересадка костного мозга, иногда спасают облученных дозами 10 Зв.

Многое зависит от самого человека. Люди с сильным типом нервной системы, перенесшие очень высокие дозы облучения, до 5–6 Гр, в ряде случаев после соответствующего лечения выздоравливали и даже возвращались к труду.

А с другой стороны, некоторые больные даже лёгкой степенью ОЛБ не могли восстановиться, ибо воспринимали болезнь как смертный приговор.

Более распространённой, но менее опасной формой лучевой болезни является хроническая лучевая болезнь (ХЛБ). Она возникает при облучении большими дозами не за один раз, а порциями (дробное облучение) или непрерывно (хроническое облучение).

В отношении лучевой болезни действует правило: два грея сразу хуже, чем три грея в течение года. При дробном и хроническом облучении организм способен выдержать и 10 Гр.

Суть ХЛБ иногда понимают неправильно: как ОЛБ, перешедшую в хроническую форму. Такого не бывает: ОЛБ либо приводит к гибели, либо заканчивается выздоровлением. А ХЛБ – самостоятельное заболевание, которое развивается в результате длительного облучения дозами от 1 Гр и более. И смертельные исходы от ХЛБ не зарегистрированы: после прекращения облучения человек выздоравливает.

Основное число больных ХЛБ в России появилось в первые десять лет развития атомных технологий. Из них 87 % (около 1500 случаев) – на ФГУП «ПО «Маяк» [8, 9]. Почему так много? В те годы наша страна наращивала промышленную наработку плутония для атомных бомб, а уровень технологий был низким. В отделении химического производства плутония не было ни дистанционного управления, ни даже герметичных шкафов. В 1949–1950 гг. содержание альфа-активных аэрозолей на рабочих местах могло в десятки тысяч раз превышать современные допустимые нормы [10].

Но при соблюдении норм радиационной безопасности Советский Союз гонку вооружений проиграл бы. Сегодня известно, что опасность мировой ядерной войны была реальной. Соединённые Штаты планировали уничтожение нашей страны (американцы спустя годы рассекретили свои планы). И не будь у Советского Союза атомной бомбы, радиационная обстановка у нас могла быть гораздо, гораздо хуже. Десятки наших городов могла постичь участь Хиросимы и Нагасаки.

Руководство страны оказалось перед тяжёлым выбором: либо позволить Соединенным Штатам стать монополистом в ядерных вооружениях, либо подвергнуть риску здоровье персонала ядерных объектов, прежде всего ФГУП «ПО «Маяк». Выбрали второй вариант. Работники предприятий ядерно-оружейного комплекса «порциями» получали по сути аварийные дозы, но в контролируемых условиях.

Какими же оказались последствия переоблучения? Из 1500 случаев ХЛБ тяжёлая форма болезни развилась только у 3,9 % облученных [8]. Когда появились открытые публикации по этой теме (1993 год), большинство больных ХЛБ были живы, и часть из них продолжала работать в условиях без профессиональных облучений. Более 120 человек достигли возраста от 71 до 88 лет.

Можно не верить статистике, но вот конкретные факты.

Многие известные учёные, конструкторы, руководители атомной отрасли прожили долгую жизнь. А ведь они работали с ядерными материалами, и многие при этом переоблучались.

Андрей Анатольевич Бочвар (металлургия плутония) прожил 84 года.

Юлий Харитон, один из руководителей советского проекта атомной бомбы, – 91 год.

Ефим Павлович Славский – один из руководителей проекта по созданию советского ядерного оружия, позднее руководитель советской атомной промышленности, – 93 года.

Николай Антонович Доллежаль (конструктор ядерных реакторов) – 101 год.

Дмитрий Шустов (радиохимик). Принимал участие в испытании первой серийной (а всего третьей по счету) атомной бомбы в 1951 году. В день испытаний ему пришлось на самолете войти в «ножку» ядерного гриба и сделать в ней несколько кругов. Но самое интересное, что в 1996 году, когда Дмитрий Шустов давал интервью [11], ему шёл 95-й год. На вопрос корреспондента, как ему удалось выжить и сохранить здоровье, долгожитель отшутился: «Я часто мыл руки, и не только перед едой».



Аркадий Бриш (конструктор ядерных боеприпасов, разработчик и испытатель первого советского заряда для атомной бомбы) в 2014 году, в 97-летнем возрасте, прочитал лекцию на Выставке достижений народного хозяйства.

Эти сведения вовсе не доказывают безвредность больших доз радиации. Какая уж там безвредность! Просто иллюстрация: даже серьёзное облучение – угроза не фатальная.

После Чернобыля напуганные журналистами люди стали искать у себя признаки лучевой болезни. При этом неискушённый человек доверял «ужастикам», а не разъяснениям специалистов.

Важно понять, что облучение человека большими дозами скрыть невозможно. Да, радиация поражает невидимым клинком. Но любое переоблучение сегодня – это аварийная ситуация, которую легко обнаружить. А утаить диагноз лучевой болезни совершенно немыслимо.

Но большие дозы – это не только лучевая болезнь. Ведь радиация бьёт по иммунной системе человека, а это может вызвать самые разные недуги.

Наибольшие опасения вызывают онкологические заболевания. О них – в следующей главе.


Литература

1. Огородников Б.И. Ловушка для радиоактивных аэрозолей («Фильтры Петрянова»). – Энергия, 1998, № 8. – С. 34–39.

2. Дощенко В.Н. До Чернобыля был Челябинск. – Энергия, 1994, № 6. – С. 40–41.

3. Большов Л.А. Ядерные технологии и проблемы экологии. Сборник докладов Второй научно-технической экологической конференции Минатома России «Экология ядерной отрасли» (Москва, 6 июня 2001 г.). – М., 2001. – С. 24–35.

4. Ильин Л.А., Кириллов В.Ф., Коренков Ю.П. Радиационная гигиена: Учебник. – М.: Медицина, 1999. – 384 с.

5. Радиация: Дозы, эффекты, риск / Перевод с английского. – М.: Мир, 1988. – 79 с.

6. Маргулис У.Я. Атомная энергия и радиационная безопасность. – 2-е изд., перераб. и доп. – М.: Энергоатомиздат, 1988. – 224 с.

7. Окладникова Н.Д., Пестерникова В.С., Сумина М.В., Дощенко В.Н. Последствия и исходы острой лучевой болезни (40–45 лет наблюдения). – Медицинская радиология и радиационная безопасность, 2000, № 2. – С 16–22.

8. Безопасная опасность / Велихов Е.П., Глазовский Н.Ф., Клюев Н.Н. – Вокруг света, 2003, № 7. – С. 18–29.

9. Булдаков Л.А., Калистратова В.С. Радиоактивное излучение и здоровье. – М.: Информ-Атом, 2003. – 165 с.

10. Ядерная индустрия России / Под ред. А.М. Петросьянца и др. – М.: Энергоатомиздат, 1999. – 1040 с

11. Огородников Б.И. Икар, сохранивший крылья. – Энергия, 1997, № 37. – С. 41–50.


Страницы книги >> Предыдущая | 1 2 3 | Следующая
  • 0 Оценок: 0

Правообладателям!

Данное произведение размещено по согласованию с ООО "ЛитРес" (20% исходного текста). Если размещение книги нарушает чьи-либо права, то сообщите об этом.

Читателям!

Оплатили, но не знаете что делать дальше?


Популярные книги за неделю


Рекомендации