Текст книги "Шпаргалка по органической химии"
Автор книги: Алена Титаренко
Жанр: Химия, Наука и Образование
сообщить о неприемлемом содержимом
Текущая страница: 2 (всего у книги 10 страниц) [доступный отрывок для чтения: 3 страниц]
9. Предельные углеводороды (алканы). Номенклатура алканов и их производных
Углеводороды – это простейшие органические соединения, которые состоят из двух элементов – углерода, водорода.
Предельные углеводороды, или алканы.
(международное название), – это соединения, состав которых выражается общей формулой СnН2n+2, где n – число атомов углерода.
Особенности предельных углеводородов (алканов):
1) в молекулах предельных углеводородов атомы углерода связаны между собой простой (одинарной) связью;
2) остальные валентности насыщены атомами водорода;
3) алканы также называются насыщенными углеводородами, или парафинами;
4) первым членом гомологического ряда алканов является метан (СН4);
5) начиная с пятого углеводорода название образуется от греческого числительного, которое указывает число углеродных атомов в молекуле;
6) в гомологическом ряду наблюдается изменение физических свойств углеводородов: а) повышаются температуры кипения и плавления; б) возрастает плотность;
7) алканы начиная с четвертого члена ряда (бутана) имеют изомеры.
Номенклатура алканов и их производных.
При отрыве атома водорода от молекулы алкана образуются одновалентные частицы, которые называются углеводородными радикалами.
Радикалы образуются не только органическими, но и неорганическими соединениями.
Если отнять от молекулы углеводорода два атома водорода, получаются двухвалентные радикалы.
Для названия изомеров применяются две номенклатуры: 1) рациональная – старая; 2) заместительная (систематическая или международная) – современная. Предложена Международным союзом теоретической и прикладной химии ИЮПАК.
Особенности рациональной номенклатуры: 1) по рациональной номенклатуре углеводороды рассматриваются как производные метана, у которого один или несколько атомов водорода замещены на радикалы; 2) рациональная номенклатура удобна для не очень сложных соединений.
Особенности заместительной номенклатуры: 1) по заместительной номенклатуре основой для названия служит одна углеродная цепь, а все другие фрагменты молекулы рассматриваются как заместители; 2) если в формуле содержится несколько одинаковых радикалов, то перед их названием указывается число прописью, а номера радикалов разделяются запятыми.
Химия – это наука о качественных изменениях тел, происходящих под влиянием изменения количественного состава (Ф. Энгельс).
Явление изомерии в ряду углеводородов – это изомерия углеродного скелета молекул, который обусловливает возможность существования разных веществ одного и того же состава.
10. Химические свойства метана и его гомологов
Принадлежность веществ к группе предельных углеводородов определяется характером строения.
Основные свойства метана:
1) это газ без цвета и запаха (СН4);
2) в два раза легче воздуха;
3) образуется в природе в результате разложения без доступа воздуха остатков животных и растительных организмов;
4) может быть обнаружен в заболоченных водоемах, каменноугольных шахтах;
5) содержится в природном газе, который широко используется в качестве топлива в быту и на производстве;
6) в молекуле метана химические связи атомов водорода с атомом углерода имеют ковалентный характер.
Молекула метана имеет тетраэдрическую форму, а не плоскую.
Когда атом углерода вступает во взаимодействие с атомами водорода, s-электроны наружного слоя в нем распариваются, один из них занимает вакантное место третьего р-электрона и образует при своем движении облако в виде объемной восьмерки, перпендикулярное по отношению к облакам двух других р-электронов.
Атом при этом переходит в возбужденное состояние. Все четыре валентных электрона становятся неспаренными, они могут образовывать четыре химические связи.
Противоречия: 1) три р-электрона должны образовывать три химические связи с атомами водорода во взаимно перпендикулярных направлениях (под углом 90°); 2) четвертый атом водорода мог бы присоединяться в произвольном направлении.
Разрешение противоречий: 1) в процессе образования химических связей облака всех валентных электронов атома углерода (одного s– и трех р-электронов) выравниваются, становятся одинаковыми; 2) облака принимают форму несимметричных, вытянутых в направлении к вершинам тэтраэдра объемных восьмерок. Несимметричное распределение электронной плотности означает, что вероятность нахождения электрона по одну сторону от ядра больше, чем по другую; 3) угол между осями гибридных электронных облаков равен 109°, что позволяет им максимально удаляться друг от друга; 4) такие облака могут значительно перекрываться электронными облаками водородных атомов, что ведет к большому выделению энергии и образованию прочных, одинаковых по свойствам химических связей.
Гибридизация может распространяться на разное число электронных облаков.
Шаростержневая модель молекулы:
1) детали, изображающие атомы, соединяются на некотором расстоянии друг от друга посредством стерженьков, символизирующих валентные связи; 2) модель дает наглядное представление о том, какие атомы с какими соединены, но она не передает относительных размеров и внешней формы молекулы.
11. Строение и номенклатура углеводородов ряда метана
Строение углеводородов.
В природном газе и особенно в нефти содержится много углеводородов, сходных с метаном по строению и свойствам.
Предельные углеводороды (неразветвленного строения): 1) метан; 2) этан; 3) пропан; 4) бутан; 5) пентан; 6) гексан; 7) гептан; 8) октан; 9) нонан; 10) декан.
Для наименования всех предельных углеводородов принят суффикс – ан.
С увеличением молекулярной массы последовательно возрастают температуры плавления и кипения углеводородов.
Первые четыре вещества (С1 – С4) при обычных условиях – газы.
Все предельные углеводороды нерастворимы в воде, но могут растворяться в органических растворителях.
Общая формула углеводородов: СnH2n+2, где n – число атомов углерода в молекуле.
Пространственное и электронное строение молекул пропана и бутана.
Атомы углерода в них расположены не по прямой линии, а зигзагообразно.
Причина – в тетраэдрическом направлении валентных связей атомов углерода.
Если к одному атому углерода присоединился другой атом углерода, то у этого последнего остались три свободные валентности, все они направлены к вершинам тетраэдра. Следующий атом углерода может присоединиться только в одном из этих направлений.
Углеродная цепь неизменно принимает зигзагообразную форму.
Угол между ковалентными связями, соединяющими атомы углерода в такой цепи, как и в молекуле метана, 109° 28′.
Зигзагообразная цепь атомов углерода может принимать различные пространственные формы.
Это связано с тем, что атомы в молекуле могут относительно свободно вращаться вокруг простых сигма-связей.
Углеродная цепь получается сильно изогнутой. Если повернуть атом углерода, то молекула примет почти кольцеобразную форму.
Такое вращение существует в молекулах как проявление теплового движения (если нет препятствующих этому факторов).
Наиболее энергетически выгодной является форма с наибольшим удалением атомов друг от друга.
Все эти разновидности легко переходят одна в другую, при этом их химическое строение (последовательность связи атомов в молекулах) остается неизменным.
Свойство атомов углерода соединяться друг с другом в длинные цепи связано с положением элемента в Периодической системе Д.И. Менделеева и строением его атомов.
При химической реакции у атома углерода трудно полностью оторвать четыре валентных электрона, а также присоединить к нему столько же элетронов от других атомов до образования полного октета.
12. Химические свойства предельных углеводородов
1. Горение углеводородов на воздухе и выделение большого количества теплоты.
Продукты горения подтверждают наличие углерода и водорода в метане. Если поджечь газ, собранный в стеклянном цилиндре, то после прекращения горения стенки внутри цилиндра становятся влажными.
При добавлении в цилиндр известковой воды она становится мутной.
При горении метана образуются вода и оксид углерода (IV).
2. Смесь метана с кислородом или воздухом при поджигании может взрываться.
Наиболее сильный взрыв получается, если смешать метан с кислородом в объемном отношении 1:2. Оптимальное отношение объемов при взрыве метана с воздухом 1:10.
Взрыв меньшей силы может происходить и при некоторых других объемных отношениях газов.
Наиболее опасными являются смеси метана с воздухом в каменноугольных шахтах, заводских котельных, квартирах.
Для обеспечения безопасности работы в шахтах устанавливают автоматические приборы – анализаторы, сигнализирующие о появлении газа.
Горение углеводородов, которые имеют значительную молекулярную массу.
Парафин – это смесь твердых углеводородов.
Если поместить в фарфоровую чашечку кусочек парафина, расплавить и поджечь его, то при горении образуется много копоти.
Когда горят газообразные вещества, они хорошо смешиваются с воздухом и поэтому сгорают полностью.
При горении расплавленного парафина кислорода не хватает для сгорания всего углерода и углерод выделяется в свободном виде.
3. При сильном нагревании углеводороды разлагаются на простые вещества – углерод и водород.
Эти реакции могут служить подтверждением молекулярной формулы вещества: при разложении метана образуется двойной, а при разложении этана – тройной объем водорода по сравнению с объемом исходного газа (объем углерода как твердого вещества в расчет не принимается).
4. Реакция с галогенами (хлором).
Если смесь метана с хлором в закрытом стеклянном цилиндре выставить на рассеянный солнечный свет (при прямом солнечном освещении может произойти взрыв), то произойдет постепенное ослабление желто-зеленой окраски хлора при взаимодействии его с метаном.
Химическая реакция заключается в разрыве одних связей и образовании новых.
Атомы хлора имеют в наружном слое по одному неспаренному электрону, становятся свободными радикалами.
Когда атом-радикал, который обладает высокой химической активностью, сталкивается с молекулой метана, его электрон начинает взаимодействовать с электронным облаком атома водорода. Между этими атомами устанавливается ковалентная связь и образуется молекула хлороводорода.
13. Применение и получение предельных углеводородов
Сферы применения предельных углеводородов:
1) метан в составе природного газа находит все более широкое применение в быту и на производстве;
2) пропан и бутан применяются в виде «сжиженного газа», особенно в тех местностях, где нет подвода природного газа;
3) жидкие углеводороды используются как горючее для двигателей внутреннего сгорания в автомашинах, самолетах;
4) метан как доступный углеводород в большей степени используется в качестве химического сырья;
5) реакция горения и разложения метана используется в производстве сажи, идущей на получение типографской краски и резиновых изделий из каучука;
6) высокая теплота сгорания углеводородов обусловливает использование их в качестве топлива;
7) метан – основной источник получения водорода в промышленности для синтеза аммиака и ряда органических соединений.
Наиболее распространенный способ получения водорода из метана – взаимодействие его с водяным паром.
Реакция хлорирования служит для получения хлорпроизводного метана.
Особенности хлорметана: 1) это газ; 2) это вещество, которое легко переходит в жидкое состояние; 3) это вещество, которое поглощает большое количество теплоты при последующем испарении.
Особенности дихлорметана, трихлорметана и тетрахлорметана: 1) это жидкости; 2) используются как растворители; 3) применяются для тушения огня (особенно когда нельзя использовать воду); 4) тяжелые негорючие газы этих веществ, которые образуются при испарении жидкости, быстро изолируют горящий предмет от кислорода воздуха.
Из гомологов метана при реакции изомеризации получаются углероводороды разветвленного строения.
Они используются в производстве каучуков и высококачественных сортов бензина.
Получение углеводородов: 1) предельные углеводороды в больших количествах содержатся в природном газе и нефти; 2) из природных источников их извлекают для использования в качестве топлива и химического сырья.
Особенности синтеза метана: 1) синтез метана показывает возможность перехода от простых веществ к органическим соединениям. Реакция идет при нагревании углерода с водородом в присутствии порошкообразного никеля в качестве катализатора; 2) синтез метана – реакция экзотермическая. Сильное нагревание не будет повышать выход продукта, равновесие сместится в сторону образования исходных веществ; 3) при слабом нагревании будет недостаточна скорость образования метана; 4) оптимальная температура синтеза метана примерно 500 °C; 5) для разложения метана необходима температура 1000 °C.
14. Алкины (ацетиленовые углеводороды)
Алкины – это углеводороды, в молекулах которых два атома углерода находятся в состоянии sp-гибридизации и связаны друг с другом тройной связью.
Общая формула: CnH2n–2, где n > 2.
Особенности алкинов: 1) длина связи в алкинах равна 0,120 нм; 2) каждый атом углерода в состоянии sp-гибридизации связан с двумя другими атомами; 3) может присоединять еще два атома.
Существует два типа изомерии алкинов: 1) изомерия положения тройной связи; 2) изомерия цепи.
Первые два члена гомологического ряда – этин и пропин – изомеров не имеют.
Для бутинов возможен только один вид изомерии – изомерия положения тройной связи.
Существует два типа номенклатуры: 1) международная номенклатура: этин; пропин; 2) рациональная номенклатура: ацетилен; метиацетилен.
Физические свойства алкинов: 1) С2Н2…С4Н6 – газы; 2) С5Н8…С15Н28 – жидкости; 3) С16Н30… – твердые вещества; 4) плохо растворимы в воде.
Химические свойства алкинов: обладают большой реакционной способностью, характеризуются реакцией присоединения, тройная связь содержит две π-связи.
Реакции присоединения:
1) присоединение водорода (гидрирование). На I ступени образуются алкены, на II ступени – алканы.
2) присоединение галогенов (галогенирование). HC≡CH + HCl → CH2=CHCl → CH3-CHCl2;
На I ступени образуются дигалогеналкены, на II – тетрагалогеналканы.
Реакция алкинов с бромной водой – качественная реакция на алкины. Бромная вода обесцвечивается;
3) присоединение галогеноводородов (гидрогалогенирование).
На I ступени образуются моногалогеналкены, на II – дигалогеналканы;
4) присоединение воды (гидратация).
Ацетилен образует альдегид, его гомологи – кетоны (реакция М.Г. Кучерова):
Реакция окисления: 1) горение (полное окисление): 2С2Н2 + 5O2 → 4СO2 + 2Н2О; 2) неполное окисление (под действием окислителя типа КМnO4, К2Сr2О7).
При действии сильных окислителей (КМnO4 в нейтральной среде, К2Сr2О7 в кислотной среде) алкины окисляются с разрывом молекулы по тройной связи (кроме ацетилена).
Конечным продуктом реакции являются карбоновые кислоты: СН3-С≡С-СН3 + 3[О] + Н2О → 2СН3-СООН – этановая (уксусная) кислота.
При неполном окислении ацетилена образуется двухосновная щавелевая кислота: СН≡Н + 4[О] → НООС-СООН.
15. Непредельные (ненасыщенные) углеводороды
Непредельные углеводороды – это углеводороды, в молекулах которых имеются атомы углерода, которые связаны между собой двойными или тройными связями.
Ненасыщенные углеводороды – это углеводороды, молекулы которых имеют меньшее число атомов водорода, чем насыщенные.
Особенности непредельных углеводородов:
1) первыми представителями гомологических рядов непредельных углеводородов являются этилен (с двойной связью) и ацетилен (с тройной связью);
2) двойная связь состоит из одной δ-связи и одной π-связи;
3) по своей природе π-связь резко отличается от δ-связи. Основные отличия π-связи от δ-связи:
а) π-связь менее прочная при перекрывании электронных облаков вне плоскости молекулы;
б) двойная связь изображается двумя одинаковыми черточками, но при этом учитывается их неравноценность;
4) тройная связь состоит из одной δ-связи и двух π-связей.
Особенность тройной связи ацетилена и его гомологов: из электронного строения видно, что кратные связи (двойные и тройные) сравнительно легко (легче, чем одинарные) разрываются при химическом взаимодействии.
Гомологические ряды непредельных углеводородов и их особенности:
1) соединения гомологического ряда этилена выражаются общей формулой СnН2n;
2) названия гомологов по рациональной номенклатуре производятся от названий соответствующих предельных углеводородов путем замены окончаний (-ан на – илен);
3) по заместительной номенклатуре названия этиленовых углеводородов производятся от названий предельных углеводородов при замене окончаний – ан на – ен (-ен – двойная связь).
Общее международное название этиленовых углеводородов – алкены.
Олефины – это непредельные углеводороды ряда этилена, которые содержат одну двойную связь;
4) гомологический ряд ацетилена выражается формулой СnН2n-2;
5) название ацетиленовых углеводородов по заместительной номенклатуре производятся от названий предельных углеводородов при замене окончаний – ан на – ин.
Алкины – это общее название ацетиленовых углеводородов по заместительной номенклатуре.
Важным источником получения этилена и его гомологов служат газообразные и жидкие продукты крекинга углеводородов нефти.
Крекинг – это процесс расщепления углеводородов с длинными цепями на молекулы меньшей длины.
При крекинге наряду с предельными углеводородами всегда получаются и непредельные, которые образуются при крекинге, а также получаются дегидрированием предельных углеводородов, содержащихся в попутных газах нефтедобычи.
16. Этилен и его гомологи
Особенности строения этилена: 1) это бесцветный газ; 2) немного легче воздуха; 3) почти не имеет запаха; 4) плотность этилена при нормальных условиях – 1,25 г/л; 5) молярная масса газа – 1,25 г/л х 22,4 л/моль = 28 г/моль; 6) относительная молекулярная масса этилена – 28 г/моль; 7) не может иметь более двух атомов водорода; 8) молекулярная формула этилена – С2Н4; 9) в его молекуле атомы углерода соединены с меньшим числом атомов водорода, чем в молекуле этана; 10) атомы соединяются в соответствии с валентностью; 11) молекула этилена симметрична, т. е. каждый атом углерода в ней связан с двумя атомами водорода. Четвертые единицы валентности атомов углерода не могут оставаться свободными, они соединяются друг с другом, образуя вторую связь между атомами углерода; 12) в молекуле этилена устанавливается двойная связь. Каждая валентность атома углерода обусловливается наличием неспаренного электрона в его наружном электронном слое; 13) в молекуле этилена сохраняется четырехвалентность углерода и правило электронного октета для его атомов.
Особенности sр2-гибридизации:
1) гибридные облака принимают одинаковую форму несимметричных, вытянутых в одну сторону объемных восьмерок;
2) при образовании химических связей они расходятся на наибольшее удаление друг от друга – это достигается тогда, когда угол между их осями будет составлять 120°;
3) у атомов углерода остается еще по одному р-электрону.
Облако этого электрона не затронуто гибридизацией, оно не изменило своей формы и также имеет вид объемной восьмерки с равномерным распределением электронной плотности по обе стороны ядра;
4) оси электронных облаков перпендикулярны плоскости атомных ядер и оказываются наиболее удаленными от электронных облаков, которые участвуют в образовании химических связей.
Сигма-связь – это первая, более прочная связь, которая образуется при перекрывании электронных облаков в направлении прямой, соединяющей центры атомов.
Сигма-связь – это обычные ковалентные связи атомов углерода с атомами водорода.
Молекулы предельных углеводородов содержат только сигма-связи.
Пи-связь – это менее прочная связь, которая образуется при перекрывании электронных облаков вне плоскости атомных ядер.
Электроны π-связи и δ-связи теряют свою принадлежность к определенному атому.
Особенности δ-связи и π-связи:
1) вращение атомов углерода в молекуле возможно в случае, если они соединены δ-связью;
2) появление π-связи лишает атомы углерода в молекуле свободного вращения.
17. Строение и номенклатура углеводородов ряда этилена
Строение углеводородов: 1) этилен – первый представитель гомологического ряда веществ, в молекулах которых имеется двойная связь между атомами углерода; 2) ближайшие гомологи этилена – пропилен и бутилен; 3) названия углеводородов ряда этилена образуются путем изменения суффикса – ан соответствующего предельного углеводорода на – илен (этилен, пропилен и т. д.).
Особенности систематической (международной) номенклатуры: а) названия этих углеводородов принимают суффикс – ен (этен, пропен, бутен и т. д.); б) гомологи этилена должны отличаться друг от друга по составу молекул на группу атомов СН2; в) в молекуле каждого непредельного углеводорода при образовании двойной связи на два атома водорода меньше, чем в молекуле соответствующего предельного углеводорода; г) состав углеводородов ряда этилена (этена) выражается формулой СnН2n; д) непредельные углеводороды могут образовывать радикалы.
Реакция присоединения, характерная для всех алкенов:
1. Присоединение водорода.
Эта реакция протекает в присутствии катализатора – мелко раздробленного никеля, платины или палладия – при комнатной температуре.
Реакция гидрирования, или гидрогенизация, – это присоединение водорода к веществу.
При гидрогенизации олефины превращаются в предельные углеводороды.
2. Присоединение галогенов.
Реакция протекает при обычных условиях.
Дихлорэтан – это жидкость, которая хорошо растворяет органические вещества.
Реакция присоединения брома служит качественной реакцией на непредельные углеводороды.
3. Присоединение галогеноводородов.
Галогенопроизводные углеводороды можно получить двумя путями:
1) присоединение к этилену хлороводорода;
2) замещение водорода в этане на хлор.
4. Присоединение воды.
Реакция протекает в присутствии катализатора – серной кислоты.
Сначала происходит присоединение серной кислоты к этилену по месту разрыва двойной связи с образованием этилсерной кислоты.
Затем этилсерная кислота при взаимодействии с водой образует спирт и кислоту.
Реакция присоединения воды к этилену в присутствии твердых катализаторов используется для промышленного получения этилового спирта из непредельных углеводородов, которые содержатся в газах крекинга нефти (попутных газах), а также в коксовых газах.
Важным химическим свойством этилена и его гомологов является способность легко окисляться при обычной температуре.
При этом окислению подвергаются оба атома углерода, соединенные двойной связью.
Этилен горит светящимся пламенем с образованием оксида углерода и воды: С2Н4 + 3O2 → 2СO2 + 2Н2О.
Правообладателям!
Данное произведение размещено по согласованию с ООО "ЛитРес" (20% исходного текста). Если размещение книги нарушает чьи-либо права, то сообщите об этом.Читателям!
Оплатили, но не знаете что делать дальше?