Текст книги "Геометрия: Планиметрия в тезисах и решениях. 9 класс"
Автор книги: Андрей Павлов
Жанр: Математика, Наука и Образование
Возрастные ограничения: +12
сообщить о неприемлемом содержимом
Текущая страница: 2 (всего у книги 11 страниц) [доступный отрывок для чтения: 3 страниц]
Вершины многоугольника называются соседними, если они являются концами одной из его сторон. Вершины, не являющиеся соседними, называются противолежащими. Отрезки, соединяющие противолежащие вершины многоугольника, называются диагоналями.
Стороны многоугольника, исходящие из одной вершины, называются соседними сторонами. Стороны, не имеющие общего конца, называются противолежащими сторонами.
Параллелограмм – это четырёхугольник, у которого противолежащие стороны параллельны, т. е. лежат на параллельных прямых (рис. 41).
Рис. 41.
ABCD – параллелограмм, т. к. ВС||AD и АВ||CD.
Прямоугольник – это параллелограмм, у которого все углы прямые (рис. 42).
Рис. 42.
ABCD – прямоугольник, т. к. ∠А = ∠В = ∠С = ∠D = 90°.
Ромб – это параллелограмм, у которого все стороны равны (рис. 43).
Рис. 43.
ABCD – ромб, т. к. AD||ВС и АВ||DC и AB = BC = CD = AD.
Квадрат – это прямоугольник, у которого все стороны равны. Можно также сказать, что квадрат – это ромб, у которого все углы прямые (рис. 44).
Рис. 44.
ABCD – квадрат, т. к. ∠А = ∠В = ∠С = ∠D = 90° и АВ = ВС = CD = DA.
Трапецией называется четырёхугольник, у которого только две противолежащие стороны параллельны. Эти параллельные стороны называются основаниями трапеции. Две другие стороны называются боковыми сторонами (рис. 45).
Рис. 45.
ABCD и А' В' С' D' – трапеции, т. к. BC||AD, BC||AD.
Трапеция, у которой боковые стороны равны, называется раенобокой (рис. 46).
Рис. 46.
ABCD – равнобедренная трапеция (АВ = CD).
Отрезок, соединяющий середины боковых сторон, называется средней линией трапеции (рис. 47).
Рис. 47.
EF – средняя линия трапеции ABCD: AE = EB, DF = FC.
Пусть ВА – перпендикуляр, опущенный из точки В на прямую а, и С – любая точка прямой а, отличная от А. Отрезок ВС называется наклонной, проведённой из точки В к прямой а. Точка С называется основанием наклонной. Отрезок АС называется проекцией наклонной (рис. 48).
Рис. 48.
ВА – перпендикуляр к прямой а, ВС – наклонная.
Проведём на плоскости через точку О две взаимно перпендикулярные прямые х и у – оси координат. Ось х (она обычно горизонтальная) называется осью абсцисс, а ось у – осью ординат. Точкой пересечения О – началом координат – каждая из осей разбивается на две полуоси. Условимся одну из полуосей каждой оси называть положительной, отмечая её стрелкой, а другую – отрицательной.
Каждой точке А плоскости мы сопоставим пару чисел – координаты точки – абсциссу х и ординату у по следующему правилу.
Через точку А проведём прямую, параллельную оси ординат. Она пересечёт ось абсцисс х в некоторой точке Аx. Абсциссой точки А мы будем называть число х, абсолютная величина которого равна расстоянию от точки О до точки Аx. Это число будет положительным, если Аx принадлежит положительной полуоси и отрицательным, если А принадлежит отрицательной полуоси. Если точка А лежит на оси ординат y, то полагаем х равным нулю.
Ордината j точки А определяется аналогично. Через точку А проведём прямую, параллельную оси абсцисс х. Она пересечёт ось ординату в некоторой точке Аy. Ординатой точки А мы будем называть число у, абсолютная величина которого равна расстоянию от точки О до точки Аy. Это число будет положительным, если Аy принадлежит положительной полуоси, и отрицательным, если А принадлежит отрицательной полуоси. Если точка А лежит на оси абсцисс х, то полагаем у равным нулю.
Координаты точки записывают в скобках рядом с буквенным обозначением точки, например: А(х; у) (на первом месте абсцисса, на втором – ордината) (рис. 49).
Рис. 49.
Уравнением фигуры в декартовых координатах на плоскости называется уравнение с двумя неизвестными х и у, которому удовлетворяют координаты любой точки фигуры.
Например, уравнение прямой у = kx + b, где k – тангенс угла наклона прямой к оси Ох (рис. 50).
Рис. 50.
Если каждую точку данной фигуры сместить каким-нибудь образом, то мы получим новую фигуру. Говорят, что эта фигура получена преобразованием из данной. Симметрия относительно точки, симметрия относительно прямой, поворот, параллельный перенос – виды движений.
Два отрезка называют одинаково направленными, или сонаправленными, если они совмещаются параллельным переносом.
Векторы АВ и CD называют одинаково направленными, если отрезки АВ и CD одинаково направлены. Векторы АВ и CD называют противоположно направленными, если отрезки АВ и CD противоположно направлены. Первая буква в обозначении вектора является его началом, а вторая буква – его концом. Например, у вектора АВ точка А – начало вектора, а точка В – его конец (рис. 51).
Рис. 51.
Абсолютной величиной (или модулем) вектора называется длина отрезка, изображающего вектор. Обозначают модуль вектора (на пример, АВ) следующим образом:|АВ|. Очевидно, что |AB| = AB, где АВ – это длина отрезка АВ.
Начало вектора может совпадать с его концом. Такой вектор будем называть нулевым вектором.
Два вектора называются равными, если они совмещаются параллельным переносом. Это означает, что существует параллельный перенос, который переводит начало и конец одного вектора соответственно в начало и конец другого вектора (рис. 52).
Рис. 52.
Пусть вектор а имеет началом точку А1(х1; у1), а концом точку А2(х2; у2). Координатами вектора а будем называть числа a1 = x2 – x1, a2 = y2 – y1.
Суммой векторов а и b с координатами а1, а2 и BL, b2 называется вектор с с координатами a1 + BL, a2 + b2.
Разностью векторов а (a1; a2) и b (BL; b2) называется такой вектор с (с1; с2), который в сумме с вектором b даёт вектор а, т. е. b + с = а. Отсюда находим координаты вектора с = а – b: с1 = а1 – BL: с2 = а2 – b2.
Удобно производить разложение вектора по двум перпендикулярным осям. В этом случае составляющие вектора называются проекциями вектора на оси.
Произведением вектора а (a1; a2) на число k называется вектор с координатами (kа1; kа2).
Два вектора а и b называются коллинеарными (параллельными), если существует такое число k 0, что вектор а есть kb.
Разложить вектор а по векторам b и с – значит найти такие числа n, m, что а = nb + mc.
Скалярным произведением векторов а (a1; a2) и b (BL; b2) называют число a1BL + a2b2.
Углом между ненулевыми векторами АВ и АС называется угол ВАС. Углом между любыми двумя ненулевыми векторами а и b называется угол между равными им векторами с общим началом. Угол между одинаково направленными векторами считается равным нулю.
Если векторы перпендикулярны, то их скалярное произведение равно нулю. И обратно: если скалярное произведение отличных от нуля векторов равно нулю, то векторы перпендикулярны.
Вектор называется единичным, если его абсолютная величина равна единице. Единичные векторы, имеющие направления положительных координатных полуосей, называют координатными векторами или ортами.
Преобразование фигуры F в фигуру F1 называется преобразованием подобия, если при этом преобразовании расстояния между точками изменяются в одно и то же число раз. Это значит, что если произвольные точки X, Y фигуры F при преобразовании подобия переходят в точки X1, Y1 фигуры F1, то X1Y1 = k · ХУ, причём число k – одно и то же для всех точек X, Y. Число k называется коэффициентом подобия. При k = 1 преобразование подобия, очевидно, является движением.
Пусть F – данная фигура и О – фиксированная точка. Проведём через произвольную точку X фигуры F отрезок ОХ и отложим на нём отрезок ОХ1 равный k · ОХ, где k – положительное число. Преобразование фигуры F, при котором каждая её точка X переходит в точку X1 построенную указанным способом, называется гомотетией относительно центра О. Число k называется коэффициентом гомотетии, фигуры F и F1 называют гомотетичными.
На рис. 53 ⊿АВС и ⊿A1В1С1 – гомотетичны.
Рис. 53.
Две фигуры называются подобными, если они переводятся друг в друга преобразованием подобия.
Угол разбивает плоскость на две части. Каждая из частей называется плоским углом. Плоские углы с общими сторонами называются дополнительными.
Центральным углом в окружности называется плоский угол с вершиной в её центре. Часть окружности, расположенная внутри плоского угла, называется дугой окружности, соответствующей этому центральному углу. Градусной мерой дуги окружности называется градусная мера соответствующего центрального угла (рис. 54).
∠АОВ (угол α) – центральный.
Рис. 54.
Угол, вершина которого лежит на окружности, а стороны пересекают эту окружность, называется вписанным в окружность (рис. 55).
Рис. 55.
∠АСВ (угол β) – вписанный.
Геометрическую фигуру будем называть простой, если её можно разбить на конечное число плоских треугольников. Напомним, что плоским треугольником мы называем конечную часть плоскости, ограниченную треугольником.
Дадим определение площади для простых фигур.
Для простых фигур площадь – это положительная величина, численное значение которой обладает следующими свойствами:
1. Равные фигуры имеют равные площади.
2. Если фигура разбивается на части, являющиеся простыми фигурами, то площадь этой фигуры равна сумме площадей её частей.
3. Площадь квадрата со стороной, равной единице, равна единице.
2.2. Вопросы для самопроверки1. Как принято обозначать точки и прямые на чертеже или в тексте? (1)
2. Что такое отрезок? Нарисуйте произвольный отрезок и отметьте его концы. Как принято обозначать отрезок? (1)
3. Что такое полуплоскость? (1)
4. Что такое луч? Как принято обозначать луч? (1)
5. Какие лучи называются дополнительными? (1)
6. Что такое угол? Как принято обозначать угол? Нарисуйте произвольный угол и укажите его вершину и стороны. (1)
7. Какой угол называется развёрнутым? (1)
8. Как Вы понимаете фразу: «Луч проходит между сторонами данного угла»? (1)
9. В чём измеряют углы? Каковы градусная и радианная мера развёрнутого угла? (1)
10. Какие углы называют смежными? Чему равна сумма смежных углов? (1)
11. Какой угол называется: а) прямым; б) острым; в) тупым? (1)
12. Какие углы называются вертикальными? (1)
13. Какие прямые называются перпендикулярными? Как обозначается перпендикулярность прямых? (1)
14. Что называют перпендикуляром к прямой? Сделайте соответствующий рисунок и покажите основание перпендикуляра. (1)
15. Дайте определение биссектрисы угла. (1)
16. Какая прямая называется секущей по отношению к двум другим? (1)
17. Нарисуйте две прямые и третью – секущую по отношению к первым двум. Покажите на рисунке пары: а) внутренних односторонних; б) внутренних накрест лежащих; в) соответственных углов. (1)
18. Какие прямые называются параллельными? Как обозначается параллельность прямых? (1)
19. Что такое треугольник? Нарисуйте произвольный треугольник и укажите его вершины, стороны и углы. (1)
20. Какие фигуры называются равными? (1)
21. Какой треугольник называется равнобедренным? Нарисуйте равнобедренный треугольник, укажите его основание и боковые стороны. (1)
22. Какой треугольник называется равносторонним? (1)
23. Что такое высота треугольника? Нарисуйте прямоугольный и тупоугольный треугольники и проведите «на глазок» в каждом из них все высоты. (1)
24. Что такое биссектриса треугольника? (1)
25. Что такое медиана треугольника? (1)
26. Что такое внешний угол треугольника? (1)
27. Какой треугольник называется:
а) прямоугольным; б) остроугольным; в) тупоугольным? (1)
28. Что такое гипотенуза и катет? (1)
29. Что называют средней линией треугольника? (1)
30. Какой треугольник называется египетским? Приведите пример такого треугольника. (1)
31. Что такое окружность? (1)
32. Что такое круг? (1)
33. Что такое радиус окружности (круга)? (1)
34. Что такое хорда? (1)
35. Что такое дуга окружности? (1)
36. Что такое диаметр окружности (круга)? (1)
37. Что такое сектор круга? (1)
38. Что такое сегмент круга? (1)
39. Что такое серединный перпендикуляр к отрезку? (1)
40. Какая окружность называется описанной около треугольника? (1)
41. Какая окружность называется вписанной в треугольник? (1)
42. Что такое касательная к окружности? (1)
43. Как вы понимаете высказывания: «внутреннее касание окружностей», «внешнее касание окружностей»? (1)
44. Что такое общая касательная к окружностям? (1)
45. В каких случаях две окружности имеют: а) одну; б) две; в) три; r) четыре общих касательных? (2)
46. Что означает решить задачу на построение с помощью циркуля и линейки? (1)
47. Какой смысл вкладывается в следующие этапы решения задач на построение: анализ, построение, доказательство, исследование? (2)
48. Как вы понимаете термин «геометрическое место точек»? (1)
49. В чём состоит сущность метода геометрических мест, используемого при решении задач на построение? (2)
50. Что такое ломаная? (1)
51. Какая ломаная называется замкнутой? (1)
52. Дайте определение многоугольника (на плоскости). Нарисуйте произвольный пятиугольник, отметьте его вершины и проведите в нём все диагонали. (1)
53. Какой многоугольник называется выпуклым? (1)
54. Какой многоугольник называется правильным? (1)
55. Какой многоугольник называется: вписанным в окружность; описанным около окружности? (1)
56. Что называют периметром многоугольника? (1)
57. Дайте определение параллелограмма. (1)
58. Дайте определение прямоугольника. (1)
59. Дайте определение ромба. (1)
60. Дайте различные определения квадрата. (1)
61. Дайте определение трапеции. Какие стороны трапеции называются основаниями, какие – боковыми сторонами? (1)
62. Какая трапеция называется равнобокой? (1)
63. Что называют средней линией трапеции? (1)
64. Что называют наклонной, проведённой из точки, не лежащей на прямой, на эту прямую? Что называют проекцией этой наклонной? (1)
65. Как на плоскости вводится декартова система координат? (1)
66. Что такое абсцисса и ордината точки? (1)
67. Что называют уравнением фигуры? (1)
68. Какой геометрический смысл имеет число k в уравнении прямой у = kx + в?(1)
69. Что такое движение? (1)
70. Назовите виды движений на плоскости. Покажите на конкретных примерах, как построить образы фигур при данных видах движений. (1)
71. Какие два луча называются сонаправленными и противоположно направленными? (1)
72. Что такое вектор? Как обозначать вектор? (1)
73. Какие два вектора называются одинаково направленными и противоположно направленными? (1)
74. Что такое абсолютная величина (модуль) вектора? (1)
75. Какой вектор называют нулевым? (1)
76. Какие два вектора назьшают равными? (1)
77. Как вводятся координаты вектора через координаты его начала и конца? (1)
78. Что называют суммой векторов? Нарисуйте два произвольных вектора и покажите их сумму. (1)
79. Что назьшают разностью векторов? Нарисуйте два произвольных вектора и покажите их разность. (1)
80. Что называют проекцией вектора на ось? Покажите на рисунке. (1)
81. Что называют произведением вектора на число? Нарисуйте произвольный вектор а, а также b = 2а и с = -1/2а (1)
82. Что значит разложить вектор а по векторам b и с? (1)
83. Дайте определение скалярного произведения векторов. (1)
84. Что называют углом между векторами? Чем отличается угол между векторами от угла между прямыми? (1)
85. В каком случае скалярное произведение векторов равно нулю? (1)
86. Дайте определение координатного вектора (орта). (1)
87. Какое преобразование называется преобразованием подобия? (1)
88. Что такое гомотетия? (1)
89. Какие фигуры называются подобными? Как обозначать подобие фигур? (1)
90. Что называют центральным углом в окружности? (1)
91. Как определить градусную меру дуги окружности? (1)
92. Какой угол называется вписанным в окружность? (1)
93. Как в курсе геометрии вводится понятие площади? (2)
2.3. Темы для сообщений и рефератов1. Замечательные точки в треугольнике. (1)
2. Вневписанные окружности. (1–2)
3. Радикальная ось и радикальный центр окружностей. Пучки окружностей. (3)
4. Полярное соответствие. Принцип двойственности в геометрии. (3)
5. Отображения и преобразования множеств. Композиция преобразований. Аффинные преобразования плоскости. (3)
6. Инверсия плоскости относительно окружности. (3)
7. Понятие длины. Расстояние между фигурами. (2)
§ 3. Важнейшие теоремы и формулы школьного курса планиметрии
3.1. Справочная информацияПриведём без доказательства основные теоремы планиметрии.
Доказательства желательно изучать по вашему учебнику. Опасно изучать доказательство теорем по разным учебным пособиям – можно в погоне за простотой попасться на капкане «порочного круга». Приведём простой пример. Нужно доказать признаки параллельных прямых (если при пересечении двух прямых третьей сумма образовавшихся внутренних односторонних углов равна 180°, то прямые параллельны).
На рис. 56:m, n, a – прямые. Точка А – точка пересечения прямых m и а, В – точка пересечения прямых n и а.
Рис. 56.
Ученик привёл простое доказательство: если бы прямые m и n пересекались в некоторой точке С, то тогда из того, что сумма углов в треугольнике АСВ равна 180°, следует, что ∠АСВ = 0°, что невозможно. Значит, прямые m и n параллельны.
Но тут же ученику предложили доказать, что сумма углов в треугольнике равна 180°. Учащийся сослался на свойства параллельных прямых. Но сами свойства параллельных прямых он стал доказывать на основе признаков параллельности прямых. Круг замкнулся. Поэтому в повторении теории будьте последовательны и внимательны. При чтении доказательства теоремы особое внимание обращайте на то, где в доказательстве использованы условия теоремы, какие ранее доказанные теоремы при этом использовались.
В настоящем параграфе формулировки теорем приведены по учебнику А. В. Погорелова «Геометрия. 7–9 классы».
1. Теоремы о прямых (параллельность и перпендикулярность на плоскости)
Свойства параллельных прямых.
Две прямые, параллельные третьей, параллельны (рис. 57).
(а||с, b||с) → а||b.
Рис. 57.
Если две параллельные прямые пересечены третьей прямой, то внутренние накрест лежащие углы равны, а сумма внутренних односторонних углов равна 180° (рис. 58).
а||b → α = β
α + γ = 180°.
Рис. 58.
Признаки параллельности прямых.
Если при пересечении двух прямых третьей образующиеся внутренние накрест лежащие углы равны, то прямые параллельны (рис. 59):
внутренние накрест лежащие углы равны → а||b.
Рис. 59.
Если при пересечении двух прямых третьей сумма образовавшихся внутренних односторонних углов равна 180°, то прямые параллельны (рис. 60):
а||b.
Рис. 60.
Если при пересечении двух прямых третьей образующиеся соответственные углы равны, то прямые параллельны (рис. 61):
а||b.
Рис. 61.
Теоремы о существовании и единственности перпендикуляра к прямой. Через каждую точку прямой можно провести перпендикулярную ей прямую, и только одну (рис. 62).
Рис. 62.
Прямая b – единственная прямая, проходящая через точку А перпендикулярно а.
Из любой точки, не лежащей на данной прямой, можно опустить на эту прямую перпендикуляр, и только один (рис. 63).
Рис. 63.
Прямая b – единственная прямая, проходящая через точку А перпендикулярно а.
Связь между параллельностью и перпендикулярностью.
Две прямые, перпендикулярные третьей, параллельны (рис. 64).
(а ⊥ с, b ⊥ с) → а||b.
Рис. 64.
Если прямая перпендикулярна одной из параллельных прямых, то она перпендикулярна и другой (рис. 65):
(а ⊥ b, b||с) → а ⊥ с.
Рис. 65.
2 Теоремы об углах. Углы в треугольнике. Вписанные в окружность углы
Свойство вертикальных углов.
Вертикальные углы равны (рис. 66):
α = β.
Рис. 66.
Свойство углов равнобедренного треугольника. В равнобедренном треугольнике углы при основании равны. Верна и обратная теорема: если в треугольнике два угла равны, то он равнобедренный (рис. 67):
АВ = ВС → ∠А = ∠С.
Рис. 67.
Теорема о сумме углов в треугольнике.
Сумма внутренних углов треугольника равна 180° (рис. 68):
α + β + γ = 180°.
Рис. 68.
Теорема о сумме углов в выпуклом n-угольнике.
Сумма углов выпуклого n-угольника равна 180°·(n – 2) (рис. 69).
Рис. 69.
Пример:∠1 + ∠2 + ∠3 + ∠4 + ∠5 = 180°·(5–2) = 540°.
Теорема о внешнем угле треугольника.
Внешний угол треугольника равен сумме двух внутренних углов, не смежных с ним (рис. 70):
γ = β + α.
Рис. 70.
Теорема о величине вписанного в окружность угла.
Угол, вписанный в окружность, равен половине соответствующего q центрального угла (рис. 71):
Рис. 71.
3. Основные теоремы о треугольнике
Признаки равенства треугольников. Если две стороны и угол между ними одного треугольника равны соответственно двум сторонам и углу между ними другого треугольника, то такие треугольники равны (рис. 72).
Рис. 72.
⊿ABC = ⊿A1B1C1 т. к. АB = А1В1, АС = А1С1 и ∠A = ∠A1.
Если сторона и прилежащие к ней углы одного треугольника равны соответственно стороне и прилежащим к ней углам другого треугольника, то такие треугольники равны (рис. 73).
Рис. 73.
⊿ABC = ⊿A1B1C1 т. к. АC = А1C1, ∠A = ∠A1, ∠C = ∠C1.
Если три стороны одного треугольника равны соответственно трем сторонам другого треугольника, то такие треугольники равны (рис. 74).
Рис. 74.
⊿ABC = ⊿A1B1C1 т. к. АB = А1B1, АC = А1C1, BC = B1C1.
Признаки равенства прямоугольных треугольников.
Если гипотенуза и катет одного треугольника соответственно равны гипотенузе и катету другого треугольника, то такие треугольники равны (рис. 75).
Рис. 75.
⊿ABC = ⊿A1B1C1 т. к. ∠А = ∠А1 = 90°; BC = B1C1; AB = A1B1.
Если гипотенуза и острый угол одного треугольника соответственно равны гипотенузе и острому углу другого треугольника, то такие треугольники равны (рис. 76).
Рис. 76.
⊿АВС = ⊿А1В1С1, т. к. АВ = А1В1, ∠А = ∠A1 a ∠С = ∠С1 = 90°.
Свойство медианы равнобедренного треугольника.
В равнобедренном треугольнике медиана, проведённая к основанию, является биссектрисой и высотой (рис. 77).
Рис. 77.
(АВ = ВС, АМ = МС) → (∠АВМ = ∠МВС, ∠АМВ = ∠ВМС = 90°).
Свойство средней линии треугольника.
Средняя линия треугольника, соединяющая середины двух данных сторон, параллельна третьей стороне и равна её половине (рис. 78).
Рис. 78.
EF||AC, EF = 1/2АС, т. к. АЕ = ЕВ и BF = FC.
Теорема синусов.
Стороны треугольника пропорциональны синусам противолежащих углов (рис. 79).
Рис. 79.
Теорема косинусов.
Квадрат любой стороны треугольника равен сумме квадратов двух других сторон без удвоенного произведения этих сторон на косинус угла между ними (рис. 80).
Рис. 80.
а2 = b2 + с2– 2bc cos α.
Теорема Пифагора (частный случай теоремы косинусов).
В прямоугольном треугольнике квадрат гипотенузы равен сумме квадратов катетов (рис. 81).
Рис. 81.
с2 = а2 + b2.
4. Пропорциональность и подобие на плоскости
Теорема Фалеса.
Если параллельные прямые, пересекающие стороны угла, отсекают на одной его стороне равные отрезки, то они отсекают равные отрезки и на другой его стороне (рис. 82).
Рис. 82.
(АВ = BC, AA1||BB1||CC1) → A1B1 = В1С1, q и р – лучи, образующие угол α.
а, b, с – прямые, пересекающие стороны угла.
Теорема о пропорциональных отрезках (обобщение теоремы Фалеса).
Параллельные прямые, пересекающие стороны угла, отсекают от сторон угла пропорциональные отрезки (рис. 83).
Рис. 83.
или
Свойство биссектрисы треугольника.
Биссектриса угла треугольника делит противолежащую ему сторону на отрезки, пропорциональные двум другим сторонам (рис. 84).
Рис. 84.
Если α = β, то
или
Признаки подобия треугольников.
Если два угла одного треугольника равны двум углам другого треугольника, то такие треугольники подобны (рис. 85).
Рис. 85.
Треугольники ABC и A1B1C1 – подобные, т. к. α = α1 и β = β1.
Если две стороны одного треугольника пропорциональны двум сторонам другого треугольника, и углы, образованные этими сторонами, равны, то треугольники подобны (рис. 86).
Рис. 86.
Треугольники ABC и A1B1C1 – подобны, т. к.
и α = α1.
Если стороны одного треугольника пропорциональны сторонам другого треугольника, то такие треугольники подобны (рис. 87).
Рис. 87.
Треугольники ABC и A1B1C1 – подобны, т. к
5. Основные геометрические неравенства
Соотношение длин наклонной и перпендикуляра.
Если к прямой из одной точки проведены перпендикуляр и наклонные, то любая наклонная больше перпендикуляра, равные наклонные имеют равные проекции, из двух наклонных больше та, у которой проекция больше (рис. 88):
АА' < АВ < АС; если А'С > А'В, то АС > АВ.
Рис. 88.
Неравенство треугольника.
Каковы бы ни были три точки, расстояние между любыми двумя из этих точек не больше суммы расстояний от них до третьей точки. Отсюда следует, что в любом треугольнике каждая сторона меньше суммы двух других сторон (рис. 89):
АС < АВ + ВС.
Рис. 89.
Связь между величинами сторон и величинами углов в треугольнике.
В треугольнике против большего угла лежит большая сторона, против большей стороны лежит больший угол (рис. 90).
(BC < AB < AC) → (∠А < ∠С < ∠В).
Рис. 90.
6. Основные геометрические места точек на плоскости
Геометрическим местом точек плоскости, равноудалённых от сторон угла, будет биссектриса данного угла (рис. 91).
Рис. 91.
АК = AT, где А – любая точка на биссектрисе.
Геометрическим местом точек, равноудалённых от двух данных точек, будет прямая, перпендикулярная к отрезку, соединяющему эти точки, и проходящая через его середину (рис. 92).
Рис. 92.
MA = MB, где М – произвольная точка на серединном перпендикуляре отрезка АВ.
Геометрическим местом точек плоскости, равноудалённых от заданной точки, будет окружность с центром в этой точке (рис. 93).
Рис. 93.
Точка О равноудалена от точек окружности.
Местоположение центра окружности, описанной около треугольника.
Центр окружности, описанной около треугольника, является точкой пересечения перпендикуляров к сторонам треугольника, проведённых через середины этих сторон (рис. 94).
Рис. 94.
А, В, С – вершины треугольника, лежащие на окружности.
АМ = МВ и АК = КС.
Точки М и К – основания перпендикуляров к сторонам АВ и АС соответственно.
Местоположение центра окружности, вписанной в треугольник.
Центр окружности, вписанной в треугольник, является точкой пересечения его биссектрис (рис. 95).
Рис. 95.
В ⊿ABC отрезки AT и СК являются биссектрисами.
7. Теоремы о четырёхугольниках
Свойства параллелограмма.
У параллелограмма противолежащие стороны равны. У параллелограмма противолежащие углы равны.
Диагонали параллелограмма пересекаются и точкой пересечения делятся пополам (рис. 96).
Рис. 96.
АВ = CD, ВС = AD, ∠BAD = ∠BCD, ∠АВС = ∠ADC, AO = OC, BO = OD.
Признаки параллелограмма.
Если у четырёхугольника две стороны параллельны и равны, то он является параллелограммом (рис. 97).
Рис. 97.
ВС||AD, ВС = AD → ABCD – параллелограмм.
Если диагонали четырёхугольника пересекаются и точкой пересечения делятся пополам, то этот четырёхугольник – параллелограмм (рис. 98).
Рис. 98.
АО = ОС, ВО = OD → ABCD – параллелограмм.
Свойства прямоугольника.
Для прямоугольника характерны все свойства параллелограмма (у прямоугольника противолежащие стороны равны; у прямоугольника противолежащие углы равны (90°); диагонали прямоугольника пересекаются и точкой пересечения делятся пополам).
Диагонали прямоугольника равны (рис. 99):
АС = BD.
Рис. 99.
Признак прямоугольника.
Если у параллелограмма все углы равны, то он является прямоугольником.
Свойства ромба.
Для ромба характерны все свойства параллелограмма (у ромба противолежащие стороны равны – вообще все стороны по определению равны; у ромба противолежащие углы равны; диагонали ромба пересекаются и точкой пересечения делятся пополам).
Диагонали ромба пересекаются под прямым углом.
Диагонали ромба являются биссектрисами его углов (рис. 100).
Рис. 100.
AC ⊥ BD, ∠ABD = ∠DВС = ∠CDB = ∠BDA, ∠ВАС = ∠CAD = ∠ВСА = ∠DCA.
Признак ромба.
Если у параллелограмма диагонали перпендикулярны, то он является ромбом.
Свойства квадрата.
Квадрат обладает свойствами прямоугольника и ромба.
Признак квадрата.
Если диагонали прямоугольника пересекаются под прямым углом, то он – квадрат.
Свойство средней линии трапеции.
Средняя линия трапеции параллельна основаниям и равна их полусумме (рис. 101).
Рис. 101.
Критерии вписанного и описанного четырехугольников.
Если около четырёхугольника можно описать окружность, то суммы его противоположных углов равны по 180° (рис. 102).
∠А + ∠С = ∠В + ∠D = 180°.
Рис. 102.
Если в четырёхугольник можно вписать окружность, то суммы его противоположных сторон равны (рис. 103).
AB + CD = AD + BC.
Рис. 103.
8. Теоремы об окружностях
Свойство хорд и секущих.
Если хорды АВ и CD окружности пересекаются в точке S, то AS · BS = CS · DS (рис. 104).
Рис. 104.
Если из точки S к окружности проведены две секущие, пересекающие окружность в точках А, В и С, D соответственно, то AS · BS = CS · DS (рис. 105).
Рис. 105.
Число π.
Отношение длины окружности к её диаметру не зависит от радиуса окружности, то есть оно одно и то же для любых двух окружностей. Это число равно π (рис. 106).
Рис. 106.
9. Векторы
Теорема о разложении вектора по базису.
Если на плоскости даны два неколлинеарных вектора а и b и любой другой вектор с, то существуют единственные числа n и m, такие, что с = nа + mb (рис. 107).
где
Рис. 107.
Теорема о скалярном произведении векторов.
Скалярное произведение векторов равно произведению их абсолютных q величин (длин) на косинус угла между ними (рис. 108).
ОА · ОВ = ОА · OB · cos α.
Рис. 108.
Правообладателям!
Данное произведение размещено по согласованию с ООО "ЛитРес" (20% исходного текста). Если размещение книги нарушает чьи-либо права, то сообщите об этом.Читателям!
Оплатили, но не знаете что делать дальше?