Электронная библиотека » Арик Кершенбаум » » онлайн чтение - страница 7


  • Текст добавлен: 17 декабря 2021, 08:40


Автор книги: Арик Кершенбаум


Жанр: Прочая образовательная литература, Наука и Образование


Возрастные ограничения: +12

сообщить о неприемлемом содержимом

Текущая страница: 7 (всего у книги 26 страниц) [доступный отрывок для чтения: 9 страниц]

Шрифт:
- 100% +
Передвижение в различных текучих средах
Нейтральная плавучесть и движение в пределах одной среды

Если вы обитаете в пределах лишь одной текучей среды – воды, воздуха, жидкого метана, вам понадобится прилагать силу в отсутствие твердой опоры. Маховые или загребающие движения дают некоторую силу, и, разумеется, большинство животных так и поступает. Отталкивая текучую среду назад, можно получить силу, толкающую вперед. Но точные механизмы плавания животных в подвижной среде невероятно сложны и, как ни удивительно, зачастую еще не до конца понятны. Рассмотрим, например, человека в бассейне. Если вы руками оттолкнете воду назад, вы создадите силу, которая потянет вас вперед, но что дальше? Чтобы сделать следующий гребок, вам придется вытянуть вперед руки, но это создаст силу, тянущую назад, так что в результате вы не сдвинетесь с места. Конечно, вы скоро освоите плавание брассом, при котором, меняя конфигурацию рук, можно уменьшать эту силу по сравнению с силой гребка. Как вариант – выучиться плавать кролем, когда руки выносят вперед в воздухе, а не в воде, уменьшая тем самым тянущую назад силу.

Летающие и плавающие животные используют похожие приемы, меняя конфигурацию органа, создающего силу (крыла, плавника и т. д.), так что силы не нейтрализуют друг друга. Но выигрыш часто бывает ничтожным. Знаменитое (правда, ошибочное) утверждение гласит, что по законам физики шмель не может летать, но поскольку он не знает законов физики, то все же летает. На самом деле большинство насекомых, птиц и рыб не смогли бы летать или плавать только за счет маховых движений крыльев или плавников. Но им это удается, поскольку они используют огромный арсенал маленьких хитростей в отношении динамики подвижной среды, чтобы увеличить прилагаемую силу. В частности, многие животные, использующие динамику текучей среды, при движении создают вихри, вроде тех небольших водоворотов, которые возникают, когда вы делаете гребок в бассейне. Они – побочный результат движения, производящего силу. В местах завихрений движение среды ускоряется, и можно «поймать» эти вихри, чтобы получить небольшой дополнительный толчок вперед. Многие рыбы плавают, симметрично изгибая хвост из стороны в сторону, и его конфигурация не меняется (в отличие от рук человека, плывущего брассом). Как в таком случае получается устойчивая сила тяги, заставляющая тело двигаться вперед? И в этом случае ответ кроется в создаваемых вихрях, но только благодаря новейшим исследованиям с использованием методов моделирования движения частиц воды позади рыбы удалось понять, насколько завихрения среды важны для движения животных[50]50
  Подробное описание этого эффекта приводится в книге Мэтта Уилкинсона «Беспокойные создания», глава 4.


[Закрыть]
. Когда хвост рыбы изгибается из стороны в сторону, он создает вращающиеся кольца воды, наподобие колец дыма из трубки. Эти кольца периодически меняют направление вращения и толкают рыбу вперед.



Движение в текучей среде (будь то жидкость или газ) представляется правдоподобным сценарием для иных планет, но задача получить достаточно сильную суммарную тягу вперед напрямую зависит от свойств этой среды. Завихрения образуются в любой текучей среде, и, поскольку других возможностей летать для шмеля не существует, естественный отбор скорее всего придет к аналогичным решениям и на других планетах. Инопланетные пчелы будут жужжать так же, как наши.

Помимо очевидных гребных движений крыльев птиц и насекомых либо плавников рыб, есть и другие способы передвигаться в текучей среде. Как уже упоминалось, микроскопические существа могут использовать покров из мелких волосков, так называемых ресничек, скоординированное биение которых и обеспечивает продвижение в воде. В основном этот способ пригоден лишь при очень малых размерах, однако загадочные гребневики (одна из древнейших форм животных; они похожи на медуз, но не приходятся им близкими родственниками) используют набор колеблющихся ресничек для плавания, правда достаточно медленного (1–2 см/с).

Еще больше впечатляет реактивное движение кальмаров, осьминогов и «живых ископаемых» наутилусов. Выбрасывая назад на большой скорости струю воды, они создают резкую тягу вперед, что позволяет умчаться от хищников. Но в то время, как наутилусы используют реактивную струю постоянно, кальмары и осьминоги двигаются так лишь в крайнем случае – реактивное движение кажется невыгодным по сравнению с гребными движениями рыб и птиц. Однако реактивная струя, подобная той, которую выбрасывают кальмары, использовалась их родственниками, аммонитами, которые были чрезвычайно широко распространены в древних морях на протяжении более 300 млн лет. При подходящих условиях использование реактивной струи, вероятно, вполне целесообразный способ передвижения на любой планете.

Текучие среды редко бывают неподвижными. Прежде всего, разницы температур, которые могут возникать из-за нагрева от солнца сверху или разогретых пород снизу, дают различия в плотности и давлении, в результате чего появляются течения, переносящие газ или жидкость с места на место. Животные могут отдаться на волю течения, позволяя ему нести их куда угодно, и многие планктонные организмы и другие морские существа поступают именно так. Но собственное движение среды, как ни странно, можно еще использовать и для получения сил, направленных в другие стороны, что позволяет животному двигаться, не прилагая значительных усилий.



Птицы, как известно, тяжелее воздуха, и потому их тянет вниз, что грозит им катастрофой. Но птицы умеют изменять угол наклона крыла таким образом, что восходящий поток создает подъемную силу, уравновешивающую вес птицы. Чудесным образом они приобретают «нейтральную плавучесть», совсем как рыбы. Эта подъемная сила, создаваемая потоком воздуха, и есть та сила, благодаря которой держатся в воздухе самолеты, – я это упомянул на тот случай, если вас интересует, почему сопла самолета направлены не вниз, а назад (многие рано или поздно задаются этим вопросом). Движение вперед создает воздушные потоки над крыльями, которые создают подъемную силу.

Необходимость держаться в воздухе при планировании несколько ограничивает возможности птицы произвольно менять направление полета, но помимо того, что поток воздуха обеспечивает подъемную силу, птицы умеют менять конфигурацию своих крыльев, чтобы создавать силу, направляющую их полет влево или вправо, – ведь и дельтапланерист до определенной степени может управлять полетом. Рыбы и насекомые затрачивают немало энергии, чтобы создать поток текучей среды над своими плавниками или крыльями, но альбатрос пользуется непрерывными воздушными потоками не только для того, чтобы парить над морем, но и для перелетов.

В этом разделе я хотел подчеркнуть, насколько непросто двигаться в текучей среде – и дело не в специфике текучих сред, характерных для Земли, а в том, что столь ненадежная подвижная среда не обеспечивает точки опоры. С другой стороны, преимущества жизни в текучей среде огромны: она гораздо меньше препятствует движению, чем твердая. Поэтому у животных возникли разнообразные способы использования текучей среды себе на благо. Насекомые летают – иногда с трудом, но всегда довольно эффектно, дельфины стремительно плавают и резвятся, выпрыгивая из воды, медузы неспешно передвигаются ритмичными толчками, а аммониты когда-то рассекали моря, выбрасывая струи воды. Нельзя быть до конца уверенными, что животные исчерпали все возможные техники передвижения в текучей среде, однако, похоже, земные текучие среды (главным образом вода и воздух) не обладают никакими специфическими свойствами, которые привели бы к появлению особых стратегий передвижения, характерных именно для этих сред. Нельзя, конечно, исключать возможность, что в других мирах существуют неизвестные нам способы движения, но можно быть уверенными, что по крайней мере некоторые из способов, наблюдаемых на Земле, встречаются и на других планетах.

В воде (или любой другой жидкости) достичь нейтральной плавучести значительно легче, чем в воздухе или другом газе. Вода примерно в 1000 раз плотнее воздуха, поэтому между жидкостями и газами существуют некоторые важные различия. Твердым телам трудно удержаться в воздухе, поэтому освоить атмосферу для животных оказалось намного труднее, чем океан. Теоретически возможно представить себе животное, парящее в воздухе благодаря газовому мешку, наполненному, вероятнее всего, водородом, который, кстати, способны производить многие бактерии и другие микроорганизмы в процессе метаболизма. Это был бы невероятно эффективный способ путешествовать вокруг света, питаясь всевозможным «атмосферным планктоном» подобно тому, как синие киты поглощают огромное количество криля в океане. Вместо того чтобы затрачивать большое количество энергии, как ласточки и летучие мыши в погоне за добычей, которая сама использует активный полет, чтобы удирать от них, такой небесный кит мог бы планировать без усилий, собирая по пути столь же пассивно парящие в воздухе микроорганизмы.

Подобное воображаемое создание получило название «фортовский пузырь»[51]51
  Название дано в честь Чарльза Форта, уфолога, исследователя аномальных явлений (Саймон Конвей Моррис. Решение жизни). – Прим. ред.


[Закрыть]
или просто «флоатер»[52]52
  Саган К. Космос / Пер. с англ. А. Сергеева. – М.: Альпина нон-фикшн, 2020. С. 97.


[Закрыть]
, но на Земле таких существ нет. Почему это так и могут ли фортовские пузыри оказаться обычным явлением на других планетах? Помимо опасности катастрофического возгорания, которое стало причиной крушения дирижабля «Гинденбург» и ознаменовало конец эры водородного воздухоплавания у людей, должна быть еще какая-то причина, по которой эволюция животных не пошла по этому пути. Все дело в вязкости. В воде мелкие организмы почти не тонут, даже если они тяжелее воды. Течения и завихрения удерживают их на плаву, и даже слабого трепетания ресничек достаточно, чтобы их крохотные тельца висели в толще воды. С воздухом все иначе. Даже микроорганизму будет крайне трудно парить в столь разреженной среде, как атмосфера. От ресничек не будет никакого проку, и только движение воздушных потоков – которое, правда, бывает очень мощным – могло бы удержать эти существа в воздухе. В действительности на Земле, если подняться высоко над поверхностью, не найдется воздушных микроорганизмов, которые могли бы стать аналогом питательного планктона, поэтому нет и парящих китов, питающихся ими.

Но на других планетах среда может быть более благоприятной для «фортовских пузырей» или летучих китов. В более плотной атмосфере, например, на газовом гиганте наподобие Юпитера или на планете поменьше, где гравитация слабее земной, микроорганизмы могут парить достаточно долго, чтобы вокруг них сложилась целая пищевая цепочка и экосистема. Однако попытка развить этот мысленный эксперимент дальше приводит к новым проблемам. Маленькой планете со слабой гравитацией трудно удержать атмосферу, которая будет улетучиваться в космос. У Марса сила гравитации втрое меньше земной, а атмосфера в 200 раз более разреженная. На текущий момент у нас недостаточно знаний о поведении атмосфер газовых гигантов типа Юпитера, но результаты наблюдений говорят нам, что это очень бурная и неспокойная среда, неблагоприятная для развития жизни.

Как я уже упоминал во втором разделе, некоторые ученые допускают, что микроорганизмы могут жить в облаках Венеры. Для того чтобы на основе подобного воздушного планктона сложилась целостная экосистема, куда будут входить и крупные, питающиеся планктоном, «киты», организмы должны в ходе эволюции увеличиваться и одновременно с тем не падать на поверхность планеты. В жидкости животным несложно расти и сохранять нейтральную плавучесть, но в газовой среде укрупнение организмов должно сопровождаться постепенным наращиванием органов плавучести (например, пузырей с водородом). Это маловероятно, но ни в коем случае не исключено. Если, впрочем, в таких местах действительно существует жизнь, ее земные аналоги лучше искать среди морских животных, питающихся планктоном, а не среди наших летающих существ.

Движение на границе твердой и текучей сред

Мы, люди, прикованы к земле, наравне с гусеницами и слонами, но при этом прекрасно справляемся с движением на границе сред, а некоторые из наших родственников – например, гепарды и страусы – демонстрируют в этом отношении потрясающее мастерство. Движение по твердой поверхности, вероятно, важнейший из способов передвижения животных на нашей планете, так как, по-видимому, первые клетки, а возможно, и сама жизнь зародились на границе между твердой и жидкой средами[53]53
  Одна из теорий происхождения жизни отводит важное место химическим реакциям, происходившим на минеральной поверхности выходов горных пород, омываемых соленой жидкостью. Образ жировых отложений, образующих пузырьки (аналог клеточных мембран) на минеральных поверхностях, породил живописную метафору «первичной пиццы» и «первичного майонеза».


[Закрыть]
. Древнейшие формы жизни, существование которых достоверно доказано, – уже упоминавшиеся строматолиты – формировались на твердой поверхности, и предполагаемые одноклеточные, которые «паслись» на них, тоже передвигались по твердой поверхности, покрытой жидкостью. Древнейшие формы жизни, безусловно, очень тесно связаны с этим способом передвижения. Гравитация тянет вас вниз, а «вниз» в конечном итоге означает «на дно». Твердое дно, скорее всего, есть на любой планете. Так каким же образом можно передвигаться по твердой поверхности?

С упором на твердую поверхность создать силу для движения вперед гораздо легче, чем когда вы висите в текучей среде, но физические законы уже готовы подбросить вам коварную ловушку. Оттолкнуться от поверхности можно только при наличии трения, но трение снижает скорость. Это знакомо любому, кто пробовал кататься на коньках: конькобежцы способны мчаться невероятно быстро – но начинающие по большей части беспомощно скользят на месте, не в состоянии сдвинуться. Первые подвижные существа, возможно, напоминали одноклеточных амеб и ползали по поверхности, вытягивая вперед часть клетки, а затем подтягивая за ней остальное. В этом способе передвижения главное то, что в контакте с поверхностью постоянно находится вся клетка целиком. Поскользнуться вряд ли получится, зато много энергии уходит на противодействие трению. Это легко проверить в домашних условиях: попробуйте лечь пластом на ковер, вытянуться вперед и подтащить свое тело, не приподнимаясь с пола ни одной его частью. Дело это трудное и медленное. Чтобы освободиться от трения и вместе с тем продолжать использовать его для продвижения вперед, необходимо сократить контакт с полом до минимума – например, встать на ноги.

Ноги – позволяющие минимизировать контакт с поверхностью и вместе с тем отталкиваться от этой поверхности – настолько феноменально полезная адаптация, что трудно представить себе мир, где бы они не возникли в процессе эволюции. Среди земных животных, обитающих на поверхности суши или морского дна, вообще без ног обходится все-таки очевидное меньшинство (главным образом моллюски наподобие улиток и слизней), но подавляющее большинство приподнимает свое тело над поверхностью, избегая трения. Моллюски вполне могут занимать ниши, где ноги не так уж нужны – проблему трения они решают уникальным способом, выделяя скользкую слизь, – но всем известна медлительность улиток, и, хотя на других планетах могут обитать их аналоги, маловероятно, чтобы они стали господствующей формой жизни. Практически в любой среде у обладателей ног будет преимущество в скорости перед «слизняками». У змей тоже нет ног, но они происходят от ящериц, имевших ноги, и утратили их при адаптации к роющему образу жизни.



Ноги – несомненная адаптация к жизни на границе твердой и текучей сред. Тем, кто живет под землей или дрейфует в воде, они лишь мешают. Самые примечательные ноги у членистоногих, среди которых наиболее известны насекомые, пауки и крабы. Совсем другой тип ног независимо развился у позвоночных – рыб, которые приспособили свои плавники (использовавшиеся для движения в воде), чтобы приподниматься над грунтом. Многие рыбы, например глазчатая кошачья акула, и в наши дни «ходят» по морскому дну таким образом[54]54
  Мэтт Уилкинсон. Беспокойные создания.


[Закрыть]
.

Но, что существенно, человеческие ноги устроены совершенно иначе, чем ноги паука. У членистоногих имеется твердый экзоскелет с мягкими тканями внутри; у позвоночных же твердые кости внутреннего скелета, а мягкие ткани расположены снаружи. Два эволюционных пути привели к функционально сходным решениям проблемы передвижения по поверхности, причем были задействованы совершенно разные механизмы. Какой из них лучше? Оба хороши, и выбор не имеет значения. Каждая из инноваций основывалась на особенностях плана строения тела предков, накладывавших свои ограничения. Ноги позвоночных устроены так, потому что у рыб есть скелет, а не потому, что так задумано с целью разогнать гепарда до 100 км/ч. Ноги членистоногих устроены так, потому что экзоскелет спасает от высыхания на суше, а способность членистоногих не высыхать сыграла ключевую роль для их феноменального успеха.

Из всего этого следует важный вывод: у животных на других планетах, скорее всего, должны быть ноги, хотя и не обязательно устроенные известным нам образом. На строение их ног также будет накладывать ограничение их собственная эволюционная история. Если живые существа обитают на планете, где есть граница между твердой и текучей средами (а не просто бездонный океан), то без ног, очевидно, никак не обойтись. Но их эволюция, вероятно начавшаяся от разных отправных точек, также приведет к целому спектру разнообразных решений.

Помимо ног членистоногих и позвоночных, на Земле можно найти еще два типа решения (есть и другие, вроде «ног» осьминога, но они используются главным образом для того, чтобы хватать пищу и другие объекты, а не для того, чтобы приподнимать тело над землей). У онихофор (в англоязычной традиции их называют бархатными червями, хотя с червями родство у них очень дальнее, сейчас их выделяют в отдельный тип) на каждой стороне тела имеется ряд своеобразных коротеньких ножек. В отличие от ног членистоногих и позвоночных, эти ножки лишены твердых частей и, по сути, представляют собой наполненные жидкостью выпячивания, которыми можно переступать, поочередно растягивая и удлиняя различные сегменты тела. Эти движения удивительно напоминают движения червя, но, в отличие от червя, онихофора не прижата к грунту всем телом, а касается его только кончиками ног, что делает ее бесшумным и эффективным хищником. Это очень древний способ передвижения, и возможно, давними предками онихофор были одни из самых диковинных и невероятных ископаемых животных, которых только случалось находить. Галлюцигения жила более 500 млн лет назад, и ее отчетливо сохранившиеся отпечатки было настолько трудно интерпретировать, что при первоначальной реконструкции животное, у которого одновременно имелись ряды как ног, так и шипов, оказалось перевернутым ногами вверх[55]55
  Стивен Джей Гулд. Удивительная жизнь.


[Закрыть]
. Однако не вызывает сомнений, что это инопланетного вида существо ходило по морскому дну какими-то очень необычными ногами.



Четвертый тип земных ног принадлежит иглокожим – морским звездам и морским ежам, и это изобретение по причудливости затмевает даже галлюцигению. У морских звезд и других иглокожих твердый панцирь, пронизанный крошечными порами. Напрягая мускулы и открывая либо закрывая створки, они за счет нагнетания воды выталкивают часть плоти сквозь поры наружу, образуя короткие, похожие на щетинки, трубчатые, так называемые амбулакральные, ножки с присосками на конце. Благодаря этим многочисленным ножкам животное приподнимается над грунтом, и, скоординированно вытягивая и сжимая их, передвигается по морскому дну. Занятно, что движения этих ножек не синхронизированы, как во всех остальных случаях локомоции с использованием ног (у лошадей, жуков, даже у онихофор). Тем не менее с виду хаотическое движение множества ножек успешно направляет животное куда надо. Ножки иглокожих – важное напоминание нам о том, что привычные и наиболее знакомые эволюционные решения (обычно те, которыми мы пользуемся сами) представляют собой лишь малую долю всех возможностей. Не нужно фантазировать – достаточно просто поближе приглядеться к разнообразию решений, которые уже есть на нашей планете, чтобы представить себе возможные инопланетные экосистемы.

Так какой же тип планет благоприятен для живых существ, у которых ноги в основном отличались бы от наших? Особенности движения иглокожих просто поразительны, однако эти животные двигаются слишком медленно и редко – морские ежи обычно проползают не более нескольких сантиметров в день[56]56
  Скорость движения морских ежей на амбулакральных ножках (некоторые «шагают» и на иглах) – несколько сантиметров в минуту, но двигаются они очень мало. Морские звезды чуть шустрее, особенно если их потревожить, – несколько десятков сантиметров в минуту. – Прим. ред.


[Закрыть]
. Ясно, что в мире быстрых хищников вряд ли возникнет большое разнообразие животных с трубчатыми ножками. Конечно, морские ежи чаще всего увенчаны острыми иглами и не становятся легкой добычей для быстрых рыб (чьи передвижения ограничены текучей средой) или осьминогов и прочих хищников (передвигающихся по дну). Одно из возможных преимуществ многочисленных трубчатых ножек – умение справляться с неровной, труднопроходимой поверхностью. На пересеченной каменистой местности способность «ступать» по любой поверхности сама по себе может оказаться отдельным преимуществом. Острые выступы могут поранить большую ступню, но множество крохотных ножек позволяют безопасно пройти даже по битому стеклу.



Что еще важнее, многочисленные ноги или трубчатые ножки прекрасно подходят и для поверхностей с низким трением. На скользкой поверхности одна нога обеспечивает недостаточное сцепление и, соответственно, минимальную силу. Много мелких ножек в совокупности создают силу, способную привести животное в движение. Добавьте к этому какую-нибудь особо вязкую жидкость над твердой поверхностью, и животные с «традиционными» ногами окажутся в заметном проигрыше по сравнению с нашим гипотетическим инопланетянином, похожим на морского ежа. Это все равно что пытаться ходить по тефлоновой сковородке, наполненной маслом, и чем плотнее жидкость, тем большее сопротивление она оказывает, когда животное пытается набрать скорость.

Если обобщить вышесказанное, без ног трудно обойтись в любой экосистеме, существующей на поверхности. Они сокращают трение и таким образом увеличивают скорость животного, а скорость жизненно важна, чтобы поймать добычу или спастись от хищников. Этот ограниченный ресурс, время (в данном случае выражаемое через скорость) – такой же могущественный фактор, как пространство и энергия. Однако то, какими именно будут ноги, зависит одновременно от свойств твердой поверхности (гладкой или пересеченной, с низким или высоким трением) и текучей среды над ней (легкотекучей или вязкой). К счастью, у нас на Земле достаточно разнообразных адаптаций, чтобы мы могли представить себе хотя бы возможные механизмы, которые подошли бы в качестве потенциальных решений даже на планетах, невообразимо отличающихся от нашей.

Жизнь под землей

И в заключение рассмотрим животных, которые передвигаются внутри твердого грунта. Движение сквозь твердую среду представляется невозможным, и в определенном смысле так и есть, ведь твердое вещество не может обтекать вас, как вода или воздух. Но кроты, дождевые черви и некоторые другие животные, например роющие обитатели морского дна, все же ухитряются жить и двигаться в кажущейся твердой среде. Однако на самом деле в масштабах этих мелких животных почва не сплошь твердая, а просто состоит из твердых частиц, в промежутках между которыми достаточно текучей субстанции. Подземные животные в основном двигаются, попросту отталкивая твердые частицы с дороги или отгребая часть грунта перед собой назад – иногда почву для этого заглатывают и пропускают через кишечник, выбрасывая через анальное отверстие. Дарвина завораживало все, что имело отношение к дождевым червям, и он внимательно описывал механизмы их передвижения:

Способы выкапывания червями норок. – Это производится двумя способами: раздвиганием земли во все стороны и заглатыванием ее. В первом случае червь забирается вытянутым утонченным концом своего тела в какое-либо небольшое углубление или полость; и затем, как говорит Перрье, вдвигает сюда глотку, вследствие чего передний конец вздувается и раздвигает землю во все стороны[57]57
  Цит. по: Дарвин Ч. Образование растительного слоя земли деятельностью дождевых червей и наблюдения над их образом жизни / Пер. с англ. М. А. Мензбира // Сочинения. Т. 2. С. 154. – М.: Изд-во АН СССР, 1936.


[Закрыть]
.

В то время как дождевые черви совершают ритмичные волнообразные движения – цепляясь за окружающую почву передним концом тела и подтягивая вперед остальную его часть, – другие животные, например кроты, просто оттесняют землю к стенкам туннеля широкими лапами. Это возможно лишь потому, что земля на самом деле не монолит, она пронизана воздухом. В редких случаях животные по-настоящему роют ходы в твердой породе, или стачивая ее – как моллюски-камнеточцы, – или даже растворяя породу кислотой, как поступает другой двустворчатый моллюск, «морской финик» Lithophaga.

Однако целую экосистему, состоящую из подземных существ, представить себе трудно. Мы полагаем – причем с достаточной уверенностью, – что жидкость необходима для жизни. Химические реакции редко идут в твердых веществах и газах, поэтому для жизни непременно потребуется какая-нибудь жидкость. Даже если на планете большинство организмов обитает под землей, они, скорее всего, впервые появились и достигли разнообразия в текучих средах. На Земле подземная фауна, безусловно, довольно невелика, и большинство животных, которые все-таки обитают под землей, сохраняют жизненно важные связи с текучими средами. Сурикаты выходят из нор на поверхность кормиться, а живущие в песке моллюски выставляют наружу сифон, чтобы дотянуться до морской воды. Инопланетный мир с развитой подземной экосистемой стал бы величайшей неожиданностью, но вместе с тем редкой возможностью исследовать факторы, ограничивающие развитие жизни в условиях, которые мы, вероятно, даже не можем предсказать, исходя из наших знаний о биоразнообразии родной планеты.


Страницы книги >> Предыдущая | 1 2 3 4 5 6 7 8 9 | Следующая
  • 0 Оценок: 0

Правообладателям!

Данное произведение размещено по согласованию с ООО "ЛитРес" (20% исходного текста). Если размещение книги нарушает чьи-либо права, то сообщите об этом.

Читателям!

Оплатили, но не знаете что делать дальше?


Популярные книги за неделю


Рекомендации