Электронная библиотека » Брайан Клегг » » онлайн чтение - страница 2


  • Текст добавлен: 22 июня 2015, 02:30


Автор книги: Брайан Клегг


Жанр: Зарубежная образовательная литература, Наука и Образование


Возрастные ограничения: +16

сообщить о неприемлемом содержимом

Текущая страница: 2 (всего у книги 21 страниц) [доступный отрывок для чтения: 6 страниц]

Шрифт:
- 100% +
Затерянные в космосе

Раз уж мы остались без волосяного покрова, важным фактором выживания стало наличие одежды. И под водой, и на Северном полюсе одежда является непременным атрибутом снаряжения. Пожалуй, самым очевидным примером ее защитных свойств может служить космический скафандр. Тело человека никогда не было приспособлено для выживания в космосе. Там царит невообразимый холод – до ‑270 °С. Там нет атмосферы. Условия в космосе не имеют абсолютно никакого сходства с земными. И все же астронавты в специальных скафандрах регулярно выходят в открытый космос.

Однако выжить в космосе в течение короткого времени можно и без специальной защиты. Голливуд любит показывать в своих фильмах, что может произойти с человеком в таких условиях. Все это красиво, но совершенно не соответствует действительности. Самым курьезным образцом может служить основанный на романе Филиппа Дика фильм 1990 года «Вспомнить все» с Арнольдом Шварценеггером в главной роли. В этом фильме люди, оказавшиеся на поверхности Марса без защитного снаряжения, неимоверно раздуваются, а затем лопаются, и их внутренности разлетаются во все стороны.

На самом деле у Марса есть атмосфера (хотя ее давление составляет всего одну сотую от земного). Но даже если бы речь шла о безвоздушном пространстве, человек не раздулся бы и не лопнул. Он, конечно, испытал бы ряд неприятных моментов, когда газы выдавливаются из внутренних полостей тела, но его голова не может лопнуть как воздушный шарик.

Есть еще такая опасность, как закипание жидкости в теле. Чем ниже давление, тем ниже точка закипания любых жидкостей, и в космосе, где давление вообще отсутствует, у вас возникнут неприятные ощущения от пересыхания глаз, с поверхности которых будет улетучиваться вода. В некоторых фантастических романах утверждается, что в этих условиях в сосудах закипает кровь. Это звучит ужасно, но, по данным НАСА, кожа и стенки кровеносных сосудов достаточно упруги, чтобы не допустить этого.

Кто-то может решить, что в условиях космического холода человек мгновенно замерзнет. Однако вспомните о термосе, который сохраняет содержимое горячим в течение длительного времени. В вакууме тепло может передаваться только в виде излучения. Именно таким образом мы получаем тепло от Солнца, лучи которого преодолевают по пути к Земле безвоздушное пространство. Наше тело тоже излучает тепло в виде инфракрасных (невидимых) лучей, однако подавляющая доля его потерь приходится на теплопередачу, при которой поверхность кожи передает тепловые колебания составляющих ее атомов атмосферному воздуху. В процессе теплопередачи движение атомов кожи немного замедляется, а атомов воздуха, наоборот, ускоряется. В вакууме такого произойти не может.

Вы, конечно, потеряете часть тепла, но далеко не так быстро. На самом деле умереть в открытом космосе вы можете от отсутствия воздуха. Но для этого тоже понадобится несколько секунд. В 1965 году в НАСА произошел инцидент, демонстрирующий, что может произойти в таком случае. В ходе тренировок в вакуумной камере у одного из испытателей лопнул скафандр. Испытатель (выживший в результате этого происшествия) оставался в сознании на протяжении 14 секунд. По данным НАСА, предельный срок выживания в условиях вакуума не установлен, но предполагается, что он может составлять от одной до двух минут.

В некоторой степени одежда помогает нам выжить. Однако многие животные, защищенные лишь небольшим количеством меха и утолщенной кожей на подушечках лап, прекрасно чувствуют себя в окружающей среде, а нудисты наглядно демонстрируют, что ношение одежды зачастую обусловлено лишь социальными факторами, а не необходимостью защиты. Эти социальные факторы сформировались очень давно. Тканая одежда появилась не позднее 27 тысяч лет назад. Мы знаем об этом потому, что на раскопках древнего поселения вблизи Павлова (Чехия) были обнаружены образцы глины с отпечатками ткани.

И это отнюдь не самое древнее свидетельство того, что люди пользовались одеждой. В районе деревни Костенки (Россия) были найдены костяные иглы, возраст которых составляет около 40 тысяч лет. Предполагается, что они использовались для сшивания звериных шкур. Однако самые надежные данные, говорящие о том, как давно человек носит одежду, дают нам обычные вши.

Вошь как измерительный инструмент

Когда Роберт Гук впервые опубликовал свой научный труд «Микрография» («Micrographia»), наибольшее восхищение и отвращение вызвало, пожалуй, увеличенное изображение вши. В увеличенном виде вошь представляет собой поистине зловещее существо. Этот мелкий паразит обитает на человеческой коже и питается кровью. Многим еще со школьных времен известно, что головная вошь живет исключительно вблизи корней волос на голове. На других частях тела ее не найти. Однако у нее есть родственник, который относится к месту обитания не столь избирательно.

Платяная (или нательная) вошь произошла от головной вши 50–100 тысяч лет назад. Это удалось установить по изменениям ДНК обоих видов. Чем больше различий в ДНК, тем дальше от настоящего времени отстоит срок разделения популяций головной и платяной вшей.

Этот факт представляет для нас интерес с точки зрения истории одежды, так как считается, что появление платяной вши стало возможным лишь после того, как человек стал носить одежду. До этого она просто не могла выжить на открытом теле. Время появления платяной вши совпадает с временем, когда люди начали переселяться из Африки в места с более холодным климатом, что привело их к необходимости носить одежду.

Погружение в кожу

Тело человека защищено кожей. Как и в случае с волосами, цвет кожи зависит от наличия в ней меланиновых пигментов. Как и волосы, самый верхний слой кожи мертв. Крошечные отмершие чешуйки отслаиваются и опадают, внося немалый вклад в появление пыли в доме. Непосредственно под этим омертвевшим слоем, который носит название рогового, расположены еще два слоя – эпидермис, выполняющий защитные функции, и собственно кожа, или дерма. Клетки дермы постепенно поднимаются к поверхности и отмирают, образуя внешний слой. В дерме размещаются также меланоциты – клетки, производящие пигменты.


Строение человеческой кожи


Чем больше меланина вырабатывают меланоциты, тем темнее цвет кожи. Он свидетельствует о том, какое количество ультрафиолетовых лучей попадало на кожу в местах обитания наших предков. Ультрафиолетовые лучи занимают в спектре место между видимым светом и рентгеновскими лучами. Они обладают достаточной энергией, чтобы, проникнув сквозь кожу, повредить ДНК клеток. У людей, веками живших в краях, где ультрафиолетовое излучение было слабым, например, в северном полушарии, содержание меланина в коже меньше, чем у наших общих африканских предков.

Казалось бы, уменьшение защиты не имеет никакого смысла, а только повышает степень риска для здоровья, если впоследствии вы переедете туда, где солнечное излучение сильнее (например, в Австралию). Но на самом деле это имеет свои преимущества. Дело в том, что организму все равно требуется определенное количество ультрафиолета, который используется в производстве жизненно необходимого витамина D. Этот витамин почти не встречается в продуктах питания, но нужен организму для защиты от таких заболеваний, как, например, рахит. В северных широтах, где солнца мало, первопоселенцам требовалось больше ультрафиолета, проникающего сквозь кожу.

Это привело к тому, что кожа жителей северных регионов стала более бледной, а остатки меланина часто соединяются вместе, образуя родимые пятна и веснушки. Но даже в местностях, где солнца обычно бывает мало, уровень ультрафиолетового излучения может меняться, поэтому кожа сформировала такой защитный механизм, как загар. При сильном воздействии солнечного света меланоциты активизируются, производят больше меланина, и кожа темнеет. Это позволяет ей получать больше ультрафиолета и в то же время защищать более глубокие слои от повреждений.

Из чего все сделано?

Кератин – основной структурный материал внешних слоев кожи и волос – представляет собой белковое соединение. Молекула белка, в свою очередь, состоит из атомов. Если вернуться к волосу, который вы вырвали из головы, и начать рассматривать его под все более сильными микроскопами, то постепенно можно дойти до фундаментальных «кирпичиков», из которых состоит Вселенная. Чтобы понять, как устроено тело, необходимо задать себе вопрос, из чего состоит любое вещество (включая и ваш волос).

У древних греков на этот счет было две теории. Доминирующей была идея, что все на свете состоит из четырех элементов – земли, воздуха, огня и воды. Однако небольшая часть ученых полагала, что если взять любое вещество и начать делить его на все более мелкие части, то в конце концов можно дойти до некоторого предела. Эту конечную частицу они называли atomos (греч. неделимый). Данная теория оставалась невостребованной почти две тысячи лет – до тех пор, пока в начале 1800‑х годов английский ученый Джон Дальтон не сформулировал современную атомную теорию, предположив, что все элементы состоят из различных типов крошечных частиц (атомов), причем каждый тип соответствует конкретному элементу.

Под элементами в данном случае понимались не четыре компонента мира, о которых говорили древние греки, а химические вещества, которые не могли быть получены одно из другого. Это могли быть газы (например, водород или кислород), металлы (например, железо или свинец) и другие вещества (например, углерод или сера). Однако даже в начале XX века большинство ученых считали, что атомы – это скорее удобная концепция, объясняющая химические преобразования, чем реально существующие частицы. Лишь в результате исследований, начатых Альбертом Эйнштейном в 1905 году, было окончательно доказано, что атомы существуют.

Беспокойные молекулы

Атомы похожи на маленьких детей: они не могут находиться в покое. Вода в стоящем на столе стакане кажется неподвижной, но на самом деле молекулы воды находятся в постоянном и хаотичном движении. Эйнштейн догадался, что эффект, впервые обнаруженный шотландским ботаником Робертом Броуном в 1827 году, может быть объяснен именно движением молекул.

Наблюдая в микроскоп за пыльцой примулы в капле воды, Броун заметил, что частицы пыльцы непрерывно движутся. Поначалу он приписал это некой жизненной силе, содержащейся в пыльце, но затем выяснилось, что точно так же ведут себя частицы минеральной пыли и сажи. Дело было не в жизненной силе, а в активности самой воды. Этот эффект назвали броуновским движением. Эйнштейн понял, что оно создается за счет того, что хаотично двигавшиеся молекулы воды натыкаются на частицы пыльцы, и математически обосновал эту теорию. Немного позже, в 1912 году, французский физик Жан Перрен провел серию экспериментов и впервые доказал, что атомы и молекулы действительно существуют.

Сегодня мы можем не только разглядеть отдельные атомы, но и манипулировать ими. В 1989 году группа ученых из компании IBM впервые продемонстрировала, что электронный микроскоп может использоваться не только для наблюдения за объектами, но и для управления ими. В частности, с его помощью они научились перемещать отдельные атомы. Спустя два месяца ученые смогли составить из 35 атомов ксенона заглавные буквы IBM.


Буквы IBM, составленные из атомов ксенона. Публикуется с разрешения «Press Association Images»


Чуть раньше, в 1980 году, Ганс Демельт, работавший в Вашингтонском университете, изолировал ион бария (ион – это атом, в котором либо не хватает электронов, либо присутствуют лишние электроны, за счет чего он имеет электрический заряд). При подсветке лучом лазера ион бария был ясно виден невооруженным глазом в виде светящейся точки, перемещающейся в пространстве. Вы, конечно, можете возразить, что ион увидеть невозможно и что мы видим только отражающийся от него свет. Но ведь именно так мы видим и любой другой объект.

Пустые атомы и парение над стулом

Атомы нашего тела не только очень малы, но и состоят главным образом из пустоты. Если бы вам удалось сжать материю своего тела, сблизив до предела все частицы, из которых состоят атомы, то образовался бы кубик со стороной менее 1/500 сантиметра.

Одним из чудес космоса являются нейтронные звезды, в которых атомы сжаты до такого предела, что пустое пространство в них отсутствует. В одном кубическом сантиметре вещества, из которого состоит нейтронная звезда (это чуть больше кусочка сахара), содержится около 100 миллионов тонн материи. Целая звезда тяжелее Солнца была бы размером примерно с остров Манхэттен.

Но не опасайтесь, с вашим телом такого не произойдет. Без мощного гравитационного воздействия атомы останутся стабильными. Они образуют молекулы, в частности молекулы кератина, из которых состоит волос, и удерживаются вместе благодаря электромагнитной силе – одной из четырех фундаментальных сил, о которых мы более детально поговорим в 6‑й главе. Молекула может состоять из атомов одного элемента. Так, например, молекула кислорода, которым мы дышим, содержит два одинаковых атома. Но молекула может также состоять из атомов различных элементов. К числу сложных молекул относятся, например, хлористый натрий (обыкновенная поваренная соль) и тот же кератин.

Атомы, из которых состоит вся материя, никогда не соприкасаются друг с другом. Чем ближе они находятся друг к другу, тем больше отталкивающая сила, возникающая в результате взаимодействия их электрически заряженных составных частей. Аналогичное явление мы можем наблюдать, если попытаемся сблизить одноименные полюса двух мощных магнитов. Даже когда кажется, что два тела соприкасаются, на самом деле это не так. Допустим, когда вы сидите на стуле, вы фактически не прикасаетесь к нему. Ваше тело парит над сиденьем на бесконечно малом расстоянии, поддерживаемое отталкивающими силами между атомами.

Возьмите пару магнитов и вспомните, какое удивление вызывало у вас в детстве их взаимодействие. Пожалуй, отталкивание одноименных полюсов представляется даже более таинственным явлением, чем притяжение. Но оно происходит всегда, когда сближаются два предмета. Взаимодействие, удерживающее атомы ваших ягодиц от соприкосновения с атомами сиденья, имеет скорее электрическую, чем магнитную природу, но в принципе оно схоже с отталкиванием одноименных магнитных полюсов.

Проникновение во внутренности атома

Уже вскоре после того, как в 1912 году было доказано существование атомов, выяснилось, что само название «атом» не вполне корректно. Атом не является неделимым. В нем имеются составные части. Ученым уже было известно, что атом содержит отрицательно заряженные частицы – электроны, которые могут его покидать. Поначалу предполагалось, что они находятся внутри положительно заряженной массы подобно сливам внутри сливового пудинга (такое описание предложил английский физик Дж. Томсон). Однако один новозеландец с пышными усами, работавший в Кембриджском университете, доказал, что это совсем не так.

Эрнест Резерфорд выдвинул идею бомбардировки атома другими частицами, чтобы понаблюдать за их реакцией. Это то же самое, что бросать мяч в невидимый предмет и по отскоку судить о свойствах предмета. В роли мяча выступали открытые незадолго до этого альфа-частицы, испускаемые радиоактивными веществами (позднее было установлено, что альфа-частица – это ядро атома гелия). При попадании на экран, покрытый флюоресцентным составом, эти частицы производили слабые вспышки. Помощники Резерфорда в темной комнате могли наблюдать за вспышками, вызванными отклонением альфа-частиц от золотой фольги.

Сила воображения, без которой немыслима никакая наука, позволила Резерфорду и его команде предположить, что какая-то из альфа-частиц может отразиться от атома золота в прямо противоположном направлении. Так оно в конце концов и случилось. Результат поразил исследователей. По словам Резерфорда, это было то же самое, как если бы артиллерийский снаряд отразился от папиросной бумаги и полетел обратно. Он догадался, что в атоме должно быть маленькое, но очень плотное, положительно заряженное ядро, которое способно оттолкнуть альфа-частицу. Резерфорд впервые предложил знакомую нам картину атома, похожего на Солнечную систему, в центре которой располагалось положительно заряженное ядро (этот термин он позаимствовал у биологии), а вокруг него – отрицательно заряженные электроны, напоминавшие планеты.

Сливовый пудинг Томсона ушел в небытие. Ядро было настолько меньше самого атома, что его сравнивали с блохой посреди кафедрального собора. По размерам оно составляло 1/100 000 от всего атома и состояло из положительно заряженных частиц, названных протонами. Однако в ядре содержалось до 99,9 процента всей массы. На каждый протон приходился один вращавшийся вокруг него электрон, который уравновешивал электрический заряд. В результате атом оставался нейтральным.

Однако даже эта усовершенствованная картина была еще далека от идеала. В 1932 году в ядре была обнаружена еще одна частица – нейтрон. Он обладал такой же массой, как протон, и с его помощью удалось найти объяснение одной загадке. Дело в том, что существует несколько разновидностей одного и того же элемента, которые называются изотопами. Они не отличаются друг от друга в химическом отношении, но их атомы имеют разный вес. Нейтрон помог разъяснить ситуацию. Количество заряженных частиц определяло, что это за элемент и в какие химические реакции он может вступать, а различия в весе атома зависели от количества нейтронов.

Атом не похож на миниатюрную Солнечную систему

Именно так мы до сих пор и представляем себе атомы, из которых состоит наше тело. Однако после 1932 года наука шагнула далеко вперед. Сегодня ученым известно, что электроны не летают вокруг ядра подобно планетам, вращающимся вокруг Солнца. Планетарная модель атома доказала свою несостоятельность. Если бы она соответствовала действительности, у нас возникли бы проблемы. Заряженная частица при ускорении испускает энергию в форме света. А ведь вращение по орбите неизбежно связано с ускорением. Дело в том, что ускорение означает изменение не столько скорости как таковой, сколько вектора скорости.

Скорость представляет собой числовую величину, например 50 километров в час. Вектор скорости – это более многозначное понятие, объединяющее в себе и скорость, и направление движения, например 50 километров в час в северном направлении. Ускорение возникает, когда происходит изменение одной из двух составляющих вектора скорости. Так что даже если мы будем продолжать двигаться с той же скоростью 50 километров в час, но изменим северное направление на восточное, возникнет ускорение. Таким образом, если представить себе, что электрон с бешеной скоростью носится вокруг ядра подобно миниатюрной планете, он постоянно будет менять направление движения и, следовательно, находиться в состоянии непрерывного ускорения. А это значит, что он будет терять энергию, испуская свет, и в доли секунды врежется в ядро. Как следствие, все атомы во Вселенной мгновенно самоуничтожатся.

Квантовый переход

Понять, почему мир до сих пор не исчез в грандиозной вспышке света, помогла квантовая теория. Она утверждает, что привычный образ электрона как крошечной частицы, вращающейся по орбите вокруг ядра, неверен. Электрон в любой момент времени находится не в какой-то определенной точке, а одновременно во всех точках, расположенных вокруг ядра, каждая из которых обладает различной вероятностью. Его конкретное местоположение можно установить только в момент наблюдения. Лучше всего представить себе электроны в виде расплывчатого облака вокруг ядра. Конечно, такую картину нарисовать сложнее, поэтому во многих учебниках все еще присутствует старая планетарная модель.

Электроны, создающее это облако, могут существовать только при определенном уровне энергии. Можно представить себе, что они передвигаются по заданным рельсовым путям. Если придать им дополнительный импульс энергии, они перескакивают на другой путь. Но этот импульс должен иметь строго определенную величину, так как электрон не может находиться где-то посредине между путями. Такие фиксированные импульсы энергии называются квантами. От этого слова и произошло название «квантовая теория».

Правда, термин «квантовый переход» («квантовый скачок») в нашей повседневной речи приобрел в последнее время какой-то странный смысл. В физике под ним понимается переход в новое состояние, для которого требуется минимально возможное количество энергии. Поэтому странно слышать, когда квантовым скачком называют какие-то грандиозные преобразования.

Обычно энергию, необходимую для перехода электрона на более высокий уровень, дает свет. Свет несет энергию (и это замечательно, потому что именно так энергия Солнца доходит до нас через безвоздушное пространство космоса). А когда электрон опускается на более низкий уровень, он сам излучает свет. Поскольку электрон может находиться только на одном из предназначенных для него энергетических уровней, эта энергия передается строго определенными порциями – квантами. Свет тоже состоит из определенных порций – частиц, называемых фотонами.


Страницы книги >> Предыдущая | 1 2 3 4 5 6 | Следующая
  • 0 Оценок: 0

Правообладателям!

Данное произведение размещено по согласованию с ООО "ЛитРес" (20% исходного текста). Если размещение книги нарушает чьи-либо права, то сообщите об этом.

Читателям!

Оплатили, но не знаете что делать дальше?


Популярные книги за неделю


Рекомендации