Электронная библиотека » Джессика Сакс » » онлайн чтение - страница 7


  • Текст добавлен: 10 ноября 2015, 13:00


Автор книги: Джессика Сакс


Жанр: Биология, Наука и Образование


Возрастные ограничения: +12

сообщить о неприемлемом содержимом

Текущая страница: 7 (всего у книги 28 страниц) [доступный отрывок для чтения: 8 страниц]

Шрифт:
- 100% +
Кто здесь главный?

Джеффри Гордон, бывший гастроэнтеролог, ставший микробиологом и специалистом по кишечной микрофлоре, возглавляет процветающий новый Центр геномных исследований Университета Вашингтона в Сент-Луисе. Обширное, освещенное полосками солнечного света помещение лаборатории этого Центра располагается над прославленным университетским Центром секвенирования (прочтения ДНК-букв) генов – одним из главных участников проекта “Геном человека”: в его рамках к 2003 году были секвенированы все те 20 или 25 тысяч генов, которые читаются как Homo sapiens.

“Теперь пора взглянуть на человеческий геном шире, – говорит Гордон, – принимая во внимание, что наш организм содержит, по-видимому, в сотню раз больше микробных генов, чем человеческих”. В 2005 году Гордон и его коллеги из Стэнфордского университета в Калифорнии и Института геномных исследований в Мэриленде вложили средства, выделенные по нескольким многомиллионным грантам (как частными фондами, так и государственными учреждениями), в осуществление своей инициативы “Микробиом человеческого кишечника” – проекта, в рамках которого им предстоит выделить, секвенировать и проанализировать всю совокупность микробных генов, задействованных в поддержании здоровья и жизнедеятельности человеческого организма, а иногда и в возникновении неполадок в его работе. Один из аспектов этого огромного проекта состоит в том, чтобы подготовить характеристику генетических способностей кишечной микрофлоры. Другой – в том, чтобы полностью секвенировать геномы сотни самых многочисленных бактерий, обитающих в толстой кишке человека.

Этот проект, посвященный “другому геному человека”, представляет собой лишь один из дюжины с лишним исследовательских проектов, над которыми единовременно работают сотрудники Гордона, и все эти проекты направлены на изучение влияния на здоровье и болезни человека кишечных микроорганизмов, обитающих не только в толстой кишке, но и в других частях человеческого тела. Штат сотрудников его лаборатории состоит из постоянно эволюционирующей группы из двадцати с лишним аспирантов и постдоков, специалистов по широкому кругу дисциплин – от экологии бактерий до рентгеноструктурного анализа.

Гордон заинтересовался бактериями толстой кишки еще в семидесятых и восьмидесятых годах, когда работал гастроэнтерологом и изучал гены, управляющие делением клеток, благодаря которому выстилка человеческого кишечника непрерывно обновляется. Эта постоянная замена клеток (старые клетки гибнут, когда им исполняется всего три дня) не только делает выстилку кишечника устойчивой к повреждениям, но и не дает обитающим в толстой кишке бактериям ни проникнуть слишком глубоко, ни достичь слишком высокой численности: подавляющее большинство бактериальных клеток, сидящих на сброшенных клетках эпителия, ежедневно удаляется из организма при дефекации. Гордон осознавал, что все это деление клеток дается дорогой ценой: рождение каждой новой клетки сопряжено с риском какой-нибудь случайной мутации, которая может отключить механизм торможения деления и привести к образованию раковой опухоли. Гастроэнтерологов ничуть не удивляет, что рак толстой кишки составляет вторую по частоте причину смертей от рака в промышленно развитых странах (уступая только связанному с курением раку легких)41.

Ранние исследования Гордона были посвящены механизмам включения и выключения различных генов на определенных этапах развития клетки кишечной стенки, по мере того как клетка перемещается из углубления между ворсинками к вершине ворсинки. Он пришел к выводу, что гены при этом строго следуют поступающим откуда-то инструкциям. Но откуда? Рассуждая в традиционном ключе, Гордон стал бы искать источник подобных биохимических сигналов в тканях и органах, лежащих глубже выстилки кишечника. Вместо этого он заинтересовался возможностью того, что клетки кишечника маршируют по указке бактерий, сидящих на их наружной поверхности.

Гордон учитывал, что внутри толстой кишки в каждый момент времени обитают сотни разновидностей бактерий и других микроорганизмов, а значит, для проверки его теории требовалась некая упрощенная модельная система. Сотрудники лаборатории Гордона научились у Абигайль Сэльерс, микробиолога из Иллинойсского университета, искусству выращивания безмикробных мышей. С помощью таких мышей Гордон мог выяснить, что происходит, когда им по одному возвращают представителей микробиоты мышиного кишечника. Абигайль Сэльерс играла для его лаборатории роль неофициального наставника. Гордон получил от нее культуру клеток B. theta, выделенных из стула здорового человека. Ранее она выяснила, что B. theta растет не только в человеческом, но и в мышином кишечнике. Впоследствии Гордон установил, что эта бактерия играет в микробном сообществе кишечника особую, ведущую роль.

Например, исследования команды Гордона продемонстрировали, что когда мышь не получает своей обычной порции пищи, B. theta начинает жить подаянием. Абигайль Сэльерс уже выяснила, что B. theta переносит такие голодные времена, питаясь особым сахаром (фукозой), выделяемым клетками кишечника42. В лаборатории Гордона было показано, что клетки кишечника выдают это угощение только по требованию B. theta43. Вначале исследователи продемонстрировали, что клетки кишечника безмикробных мышей перестают выделять фукозу в течение недели после рождения. “Они как бы готовились к приему гостей, которые так и не появились”, – говорит Гордон. Но стоит впрыснуть порцию микробов из рода Bacteroides в глотку взрослой безмикробной мыши, как выделение сахара сразу возобновляется. На следующем этапе исследователи воспользовались тремя разными штаммами мутантных B. theta (которых тоже предоставила им Абигайль Сэльерс), чтобы разобраться, что именно при этом происходит. Одной группе безмикробных мышей они ввели мутантные клетки B. theta, не способные прикрепляться непосредственно к клеткам кишечника. Но клетки кишечника при этом все равно начинали выделять фукозу. Другой группе безмикробных мышей ввели клетки B. theta, не способные усваивать фукозу. И все равно клетки кишечника начинали ее выделять. Поток этой пищи не поступал лишь у третьей группы мышей, которым ввели монокультуру B. theta, не способную вырабатывать определенный белок – в нем исследователи и подозревали биохимический сигнал, означающий просьбу о подаянии. Иными словами, клетки кишечника начинали выделять сахар не просто в ответ на соприкосновение с бактериями или в случае недостатка фукозы. Ключом к их реакции был сигнал “покормите меня”, получаемый от B. theta и включающий в мышиных клетках ген, который без подобного сигнала отключается в течение первых нескольких дней жизни. Это открытие было первым из полученных Гордоном убедительных подтверждений его казавшейся некогда странной идеи, что кишечные бактерии могут напрямую управлять деятельностью клеток кишечника.

В девяностых годах, с появлением метода ДНК-микрочипов, в распоряжении Гордона оказалось новое мощное орудие для исследований в этой области. ДНК-микрочипы позволяют ученым одновременно проверять на предмет активности тысячи генов. Для этого используются тысячи помеченных флуоресцентными метками отрезков ДНК, расположенных в строго определенном порядке на сетке размером с предметное стекло44. В 2002 году в лаборатории Гордона использовали содержащий около 20 тысяч известных генов мыши “мышиный” микрочип и установили, что сотни из этих генов включаются, когда безмикробной мыши впервые вводят порцию B. theta45. Как и ожидал Гордон, среди этих генов было немало задействованных в процессах нормального созревания выстилки кишечника.

Кроме того, введение B. theta включало также мышиные гены, задействованные в синтезе особых транспортных молекул, необходимых клеткам кишечника для поглощения и использования многих питательных веществ, поставляемых им B. theta и родственными видами бактерий46. Все это усиливало складывавшееся у Гордона впечатление, что присутствие B. theta играет особенно важную роль в поддержании здоровья кишечника.

Команда Гордона завершила секвенирование всех 4779 генов B. theta, ответственных за синтез белков, в 2003 году – в тот же год, когда в рамках проекта “Геном человека” были секвенированы все гены Homo sapiens47. Исследователи выяснили, что более сотни своих генов B. theta использует для добычи непереваренных растительных углеводов, а еще 170 генов служат для расщепления этих углеводов на составляющие, которые может усвоить организм мыши (или человека). Кроме того, оказалось, что B. theta обладает сложным аппаратом, позволяющим отслеживать, какие питательные вещества доступны клетке в каждый момент времени, чтобы подбирать подходящие наборы биохимических инструментов для работы с ними.

Кроме того, секвенирование генома B. theta дало исследователям из лаборатории Гордона возможность получить ДНК-микрочип с генами этого микроорганизма, в дополнение к “мышиному” микрочипу. Теперь у них появился шанс выслушать обе стороны в биохимическом разговоре хозяина и микроба. В следующем, 2004 году они открыли, что главенствующее положение B. theta проявляется и за пределами кишечника. Исследователям удалось перехватить приказания, отдаваемые B. theta жировым клеткам брюшного отдела мыши48. При этом выяснилось, что B. theta останавливает синтез гормона, подавляющего образование жира, так называемого “индуцируемого голодом жирового фактора” – Fiaf (fasting-induced adipose factor). Данное открытие во многом объясняло одно сделанное ранее наблюдение. Когда безмикробным мышам вводили в глотку клетки B. theta, у животных немедленно начинал откладываться брюшной жир, и это притом, что они получали на 30 % меньше еды, а интенсивность обмена веществ у них повышалась так, что они сжигали почти на 30 % больше калорий. За четырнадцать дней жизни с B. theta мыши увеличивали свои запасы жира в среднем на 60 %.

“Мы видим здесь, как B. theta оказывает на своего хозяина гормоноподобное действие, – изумляется Гордон. – Бактерия как бы говорит хозяину: “Оставь это про запас, нам это может еще пригодиться”.

Дальнейшие исследования сложной структуры подобных симбиотических взаимоотношений, проводившиеся командой Гордона, показали, что на ранних этапах жизни организма клетки кишечника и иммунная система начинают выделять вещества, помогающие полезным бактериям, таким как B. theta, закрепляться на своем месте, в то время как другие, потенциально опасные микробы вымываются из толстой кишки49. B. theta, судя по всему, платит за это хозяину тем, что воздерживается от злоупотребления своим положением. Например, эти бактерии не начинают пастись на покрытых сахаром эпителиальных клетках, пока те не оказываются сброшены стенкой кишечника. Кроме того, они не начинают требовать сахара, пока в их распоряжении имеются запасы их обычной непереваренной растительной пищи.

Отсюда Гордон пришел к выводу, что все эти особенности позволяют B. theta придавать своей экосистеме определенную устойчивость. Когда не хватает поступающей извне пищи, бактерии обращаются за помощью к своему хозяину, а в лучшие времена обеспечивают хозяина дополнительными калориями и указанием запасать на черный день хотя бы часть этого подарка судьбы. В самое последнее время Гордон и его команда получили данные, указывающие на то, что представители другой обширной группы кишечных бактерий, отдела Firmicutes, возможно, способны добывать калории и делиться ими еще успешнее, чем бактерии из отдела Bacteroidetes (важнейшим представителем которого является B. theta)50. “Хотя жители переедающих стран могут и не оценить важность этих дополнительных калорий и жира, – говорит Гордон, – я полагаю, что человеческая история знала продолжительные периоды, когда такого рода динамикой и определялась разница между выживанием и смертью от голода”. Неудивительно, что открытия Гордона пробудили интерес к возможности способствовать похудению страдающих ожирением людей путем корректировки работы их кишечной микрофлоры.

Другие сотрудники лаборатории Гордона рассказывают еще об одном интересном результате: что происходит, когда мыши, внутри которой живет монокультура B. theta, впрыскивают клетки метаногенного микроорганизма Methanobrevibactersmithii. В кишечнике такой мыши в итоге оказывается в сто раз больше клеток B. theta, чем было бы без этого впрыскивания. Оказывается, такие метаногены, как M. smithii, существенно повышают эффективность жизнедеятельности клеток B. theta, питаясь ее отходами – водородом и углекислым газом – и превращая их в метан и воду. В отсутствие метаногенов накопление этих отходов замедляет обмен веществ B. theta и ограничивает способность этих бактерий размножаться51. В практическом плане такое повышение эффективности дает мышам, которым ввели клетки обоих микроорганизмов, дополнительные 15 % жира.

Сотрудница той же лаборатории Рут Ли в свою очередь начала масштабное исследование черт сходства и различий в микрофлоре человека и животных – чтобы лучше разобраться в эволюционных корнях нашего внутреннего государства. Как она отмечает, лишь восемь из пятидесяти пяти известных науке отделов бактерий планеты Земля имеют представителей, поселяющихся в пищеварительном тракте животных, что заставляет предположить высокую степень избирательности этих взаимоотношений. “Согласно нашей гипотезе, – говорит она, – они сформированы за миллионы лет коэволюции”.

Стоя над ведерком со льдом, которое набито пузырьками с фекалиями зверей из Сент-Луисского зоопарка (гепарда, льва, слона, кенгуру, гиены), а также образцами навоза, собранными коллегой по ходу собственных исследований у водопоя в Африке, Рут говорит: “Если мы, млекопитающие, действительно коэволюционировали вместе с нашей кишечной микрофлорой, то мы должны найти определенные черты сходства, заставляющие предположить, что некая древняя бактерия в свое время попала в организм некоего древнего предка всех этих видов и начала там свое дело”. Рут уже удалось найти немало общих черт подобного сходства. При этом из восьми отделов бактерий, встречающихся в кишечном тракте у млекопитающих (в том числе у людей), преобладают только три: Bacteroidetes, Firmicutes и Proteobacteria.

Если же сравнивать свойственных разным млекопитающим бактерий на уровне рода (систематической категории на одну ступень выше вида), то обнаруживается масса общих групп. Например, представители рода Bacteroides, такие как B. theta, B. vulgatus и B. distasonis, преобладают у всеядных млекопитающих (таких как мы сами, мыши или свиньи – питающихся как растительной, так и животной пищей). У растительноядных, таких как коровы, овцы или кролики, первое место занимают представители близкородственного рода превотелла (Prevotella ruminicola, P. brevis, P. albensis и др.). Специалист по эволюционной биологии ожидал бы появления именно такого рода различий в результате отделения новых ветвей древних млекопитающих, переходивших к иному образу жизни.

Новое окно в мир микробов

Методы выращивания анаэробных культур, разработанные Холдеман и Муром, наряду с использованными Гордоном способами “генетического подслушивания” сделали микрофлору толстой кишки самой изученной из множества микробных экосистем нашего организма. Но по меньшей мере 10 % видов бактерий, постоянно обитающих у нас в кишечном тракте, никто еще не выращивал в культуре и не описывал. В первые годы XXI века появилась новая революционная технология, которая дала науке возможность далеко продвинуться в поисках последних из них – самых загадочных обитателей нашего организма. Попутно она сильно озадачила мир медицины, обнаружив бактерий в таких частях нашего организма, в которых, как считалось, микробы могут оказаться только при серьезном расстройстве.

Эта технология – генное зондирование – появилась благодаря трудам микробиолога Карла Вёзе, работающего в Иллинойсском университете. В семидесятых и восьмидесятых годах Вёзе занимался поисками генетического мерила для определения степеней родства между разными группами бактерий нашей планеты. Ученые уже давно искали лучший способ объединять организмы в систематические группы, чем по внешним признакам, таким как внешний вид и особенности деятельности (эта тактика могла, например, приводить к попаданию в одну группу микробных аналогов бабочек и летучих мышей). Вёзе понял, что, поскольку все гены со временем накапливают не имеющие никаких последствий крошечные изменения, ему нужен был ген, который был бы одновременно жизненно необходимым всем живым клеткам и достаточно сложным, чтобы небольшие изменения в последовательности его ДНК-букв можно было использовать для измерения эволюционного расстояния. В качестве такого мерила Вёзе выбрал ген, кодирующий одну из ключевых частей бактериальной рибосомы – белковой фабрики бактериальной клетки. Это позволило ему открыть совершенно неожиданное разветвление древа жизни – древнее расхождение, в результате которого возникла отдельная ветвь похожих на бактерий микроорганизмов, которых он назвал археями. Как оказалось, генетически отличные от настоящих бактерий археи живут преимущественно в экстремальных условиях, таких как глубоководные “черные курильщики” и горячие серные источники, но среди них нашлось и несколько обитателей человеческого организма, таких как метаногенные Methanobrevibacter52.

Пока Вёзе перерисовывал древо жизни, один из его постдоков, Норман Пейс, понял, что подобный ключевой ген можно применить также в чем-то вроде ДНК-дактилоскопии, чтобы выявлять множество бактерий в образцах населенной ими среды, например почвы или воды. Иными словами, можно было сделать ДНК-зонд, который позволил бы искать рибосомные гены бактерий в почве или воде, используя в качестве мишени участок одного и того же гена, имеющегося у всех бактерий. Извлекая эти отрезки ДНК из образца, можно было затем изготовить тысячи копий подобных участков с помощью ПЦР, или полимеразной цепной реакции, – той самой методики амплификации (увеличения числа копий) генов, которую используют судмедэксперты для амплификации генетических “отпечатков пальцев”, оставленных на месте преступления. После этого можно было рассортировать эти фрагменты на основании небольших различий между ними. Красота нового метода состояла в том, что он позволил Пейсу выявлять бактерий в смешанном образце, используя ДНК-буквы единственного гена в качестве “штрих-кода”, – что намного проще, чем выделять и выращивать представителей каждого вида в культуре, впоследствии определяя их по химическим и визуальным отличительным признакам53.

К концу восьмидесятых микробиологи всего мира с энтузиазмом взяли на вооружение изобретенный Пейсом метод. При этом они остановились на одном рибосомном гене (кодирующем одну из частей рибосомы – так называемую 16S рРНК), чтобы использовать его в генетической дактилоскопии бактерий. Вскоре секвенирование этого гена у каждой исследуемой бактерии стало общей практикой54. В результате этих исследований была создана постоянно растущая библиотека вариантов гена 16S рРНК, которую можно было использовать для определения бактерий тем же способом, каким судебно-медицинские эксперты сравнивают обнаруженную на месте преступления ДНК с ДНК известных преступников.

Но, быть может, еще важнее было то, что зондирование с использованием гена 16S рРНК впервые дало микробиологам способ, позволяющий напрямую выявлять бактерий, которых нельзя выращивать в чистой культуре, то есть отдельно от сбивающей с толку мешанины из других микробов, вместе образующих единые природные сообщества55. Если же какой-либо “отпечаток” гена 16S рРНК отсутствует во всех библиотеках известных микроорганизмов, значит – эврика! – вы открыли новый вид. Более того, этот новый вид можно поместить в определенную систематическую группу, возможно – даже в какой-либо из уже описанных родов, сравнивая его с хорошо известными видами в поисках наиболее похожего.

Генные зонды Пейса открыли микробиологам новое окно в мир микробов. Например, в 1986 году Пейс опубликовал данные о том, что ранее неизвестные и не выращивавшиеся в культуре бактерии составили, как ни сложно в это поверить, 99 % всех бактерий в некоторых из исследованных им образцов почвы, грязи и воды56. Не могло ли оказаться, что это относится и к сложным микробным сообществам, населяющим человеческий организм?

В числе первых исследователей, занявшихся поисками генов 16S рРНК в человеческих тканях, были микробиологи Дэвид Релман из Стэнфордского университета и Кен Уилсон из Университета Дьюка. В 1991 году независимо друг от друга они оба занялись зондированием тканей пациентов, зараженных ВИЧ и страдающих болезнью Уиппла. Симптомы этой болезни, редко встречающейся у людей со здоровой иммунной системой, включают сильную потерю веса, артрит и повреждения различных органов57. В течение восьмидесяти пяти лет медикам не удавалось культивировать маленький палочковидный организм, который попадался им в тканях пациентов, и поэтому у них не было возможности ни определить его, ни сравнить с другими, известными разновидностями бактерий. Проведенное Уилсоном и Релманом секвенирование гена 16S рРНК этого загадочного микроба позволило уверенно отнести его к порядку актиномицетов (Actinomycetales) – бактерий, образующих ветвящиеся нити, напоминающие гифы грибов (к этому порядку относятся многие представители микрофлоры ротовой полости и кишечника). Еще важнее было то, что Уилсон и Релман дали медикам новый метод генетического анализа, позволяющий быстро диагностировать болезнь Уиппла, что было жизненно важно, потому что своевременное лечение соответствующим антибиотиком позволяет останавливать развитие этой инфекции раньше, чем она вызовет необратимые нарушения в сердце и головном мозге.

Еще через пару лет Релман продолжил поиски гена 16S рРНК, на этот раз в ротовой полости здорового человека (своей собственной), с единственной целью – оценить уровень разнообразия ее экосистемы. Он вернулся в лабораторию от зубного врача с несколькими заранее простерилизованными пробирками, в которых находились соскобы, взятые с его зубов непосредственно из-под края десен. Затем вместе с сотрудниками своей лаборатории он амплифицировал бактериальную ДНК из этих образцов и секвенировал 264 различных варианта гена 16S рРНК. Чуть больше половины соответствовали вариантам этого гена, отмеченным у известных бактерий, а тридцать пять оказались отличными настолько, что указывали на новые для науки виды (а не штаммы, то есть разновидности, уже известных видов)58.

Начиная с 1994 года Брюс Пейстер и Флойд Дьюхёрст из Института Форсайта, филиала Гарварда, проводят генное зондирование на ген 16S рРНК для намного более полного анализа микробиоты ротовой полости, оценивая уровень разнообразия микроорганизмов у десятков испытуемых, как здоровых, так и страдающих от различных стоматологических проблем. К настоящему времени им удалось обнаружить варианты этого гена у представителей семисот с лишним разновидностей бактерий ротовой полости, большинство из которых были ранее неизвестны. Во рту одного человека, по данным Пейстера и Дьюхёрста, их обычно одна или две сотни. Некоторые из этих бактерий всегда связаны с расстройствами, в то время как другие способствуют свежему дыханию и поддерживают здоровье ротовой полости59.

Ученые из Института Форсайта создали на основе своей обширной базы данных по гену 16S рРНК специальный ДНК-микрочип, который можно использовать как своего рода устройство для считывания штрих-кода, чтобы быстро определять, какие именно из двух сотен преобладающих разновидностей бактерий ротовой полости имеются у человека во рту и присутствуют ли они в большом или в малом количестве. Этот микрочип, хотя он еще и не готов к внедрению в стоматологическую практику, позволяет исследователям оценивать риск развития стоматологических заболеваний, выясняя, кого из “хороших парней” не хватает, а также кто из нарушителей порядка проник в ротовую полость. Он также позволяет им отслеживать, что происходит со сложными комплексами бактерий во рту пациента по ходу лечения, будь то обработка корневого канала или курс антибиотиков (то и другое иногда оказывается источником новых неприятностей).

ДНК-микрочипы позволили микробиологам отслеживать подобным образом изменения, происходящие и в других экологических нишах нашего организма. Например, в 2006 году Релман и Гордон вместе с учеными из Института геномных исследований в Роквилле (штат Мэриленд) завершили амбициозный проект по секвенированию гена 16S рРНК обитателей кишечного тракта. Они обнаружили в образцах стула двух здоровых взрослых людей больше двух тысяч различных вариантов этого гена, из которых около ста пятидесяти отличаются настолько, что соответствуют новым разновидностям бактерий, а тридцать пять – новым для науки видам60.

Тем временем Релман и его коллеги продолжают находить бактерий в тканях, которые долго считались безмикробными. “Может выясниться, что в человеческом организме не так уж много тканей, в которых нельзя обнаружить присутствие бактериальной ДНК”, – говорит Релман61. Представляют ли эти микробы скрытые инфекции или нормальную микрофлору – это еще предстоит выяснить. “На что я надеюсь, – говорит он, – так это на то, что, начав с образцов, взятых у здоровых людей, мы будем вправе предполагать, что обнаруженные у них микробы, вероятно, были с нами на протяжении какой-то части нашего пребывания на этой планете и вполне могут оказаться важными для нашего здоровья”.


Страницы книги >> Предыдущая | 1 2 3 4 5 6 7 8 | Следующая
  • 0 Оценок: 0

Правообладателям!

Данное произведение размещено по согласованию с ООО "ЛитРес" (20% исходного текста). Если размещение книги нарушает чьи-либо права, то сообщите об этом.

Читателям!

Оплатили, но не знаете что делать дальше?


Популярные книги за неделю


Рекомендации