Автор книги: Ханнс-Кристиан Гунга
Жанр: Прочая образовательная литература, Наука и Образование
Возрастные ограничения: +16
сообщить о неприемлемом содержимом
Текущая страница: 5 (всего у книги 17 страниц) [доступный отрывок для чтения: 6 страниц]
Филогенетически легкое, как и плавательный пузырь, – производное бокового выпячивания передней кишки; у птиц помимо этого образовались еще воздушные мешки. Эти выпячивания связаны с более или менее длинной, укрепленной хрящевыми кольцами, дыхательной трубкой, трахеей. С эволюционной точки зрения большая производительность легких была достигнута, так как значительно увеличилась площадь их поверхности. У взрослого мужчины эта поверхность газообмена имеет площадь приблизительно 100 м2; газообмен осуществляется в 300 млн крошечных пузырьков, легочных альвеол. Эти альвеолы оплетены густой сетью тончайших кровеносных сосудов, капилляров, и именно здесь происходит обмен газами – насыщение красных кровяных клеток (эритроцитов) кислородом и удаление образованной в ходе обмена веществ двуокиси углерода (CO2). Анатомически различают правое и левое легочные крылья. Правое крыло состоит из трех долей, левое – из двух. Между обоими легочными крыльями, как известно, расположено сердце. Здесь также в легкие входят бронхи и кровеносные сосуды из системы кровообращения.
Когда 380 млн лет назад эволюция выбрала вместилищем для легких грудную клетку, ей пришлось одновременно найти в шее и в груди место для дыхательной трубки – трахеи. Эволюция приняла решение разместить эту «вентиляционную шахту» перед пищеварительной трубкой, пищеводом. Такая пространственная близость трахеи и пищевода была не беспроблемным решением, и до сих пор оно подчас приводит к трагическим последствиям. Согласно данным, опубликованным в 2015 году объединенной рабочей группой научных медицинских обществ, в Германии при проглатывании и вдыхании инородных предметов в 4 % случаев наступает летальный исход в результате обструкции дыхательных путей. Чаще всего такое случается с маленькими детьми в возрасте от 6 месяцев до 4 лет; у мальчиков это наблюдают почти в два раза чаще, чем у девочек. В основном вдыхают такие пищевые продукты, как орехи, виноградины, морковь, а дети более старших возрастов – мелкие игрушки и их детали.
Другим не столь драматичным следствием выхода позвоночных животных на сушу и приспособления и перестройки дыхательных органов явилась икота, на медицинском жаргоне называемая singultus. Этот распространенный несколько странный рефлекс нашел отражение во всех языках мира: hiccough (по-английски), hoquet (по-французски), hipo (по-испански), singhiozzo (по-итальянски), hikka (по-шведски) или sekseke (фарси) – и это далеко не полный список. Нейронный механизм этого рефлекса и его физиологическое значение пока неясны, но есть довольно отчетливые указания на то, что этот феномен возник в тот период, когда первые амфибии – по меньшей мере время от времени – покидали воду и перемещались по суше. Икота – это мощный, непроизвольный вдох, сопровождающийся характерным звуком и встречающийся во всех возрастных группах, от младенцев до глубоких стариков. Остро активируются двигательные центры продолговатого мозга и центры, управляющие работой мускулатуры грудной клетки и диафрагмы; происходит смыкание голосовых связок, что и производит характерный для икоты звук. Эта почти одновременная активация различных двигательных центров наблюдается сегодня у тех позвоночных животных, которые могут чередовать дыхание в атмосфере и в воде; к таким животным, например, относятся лягушки и двоякодышащие рыбы. В результате была предложена гипотеза о том, что икота – часть и проявление архаического двигательного механизма, который при переходе к жаберному дыханию за счет смыкания голосовых связок препятствовал попаданию воды в дыхательные пути и легкие. У человека этот рефлекс проявляется смыканием голосовых связок на фоне резкого сильного вдоха, что бывает, например, при употреблении холодных напитков. Играет ли он какую-то роль и при грудном вскармливании, когда младенцу приходится одновременно сосать и дышать, – это вопрос, который в настоящее время активно обсуждается.
В течение следующих 100 млн лет – от конца девона в каменноугольном периоде и до середины пермского периода на Земле – среди позвоночных животных доминировали амфибии, хотя они в большой степени продолжали зависеть от водной среды, в особенности во время размножения. Из этих амфибий в ходе пермского периода развились первые по-настоящему наземные животные – амниоты. Оболочки яиц амниот позволяли эмбриону поглощать кислород из атмосферы и выделять в нее возникающий в процессе обмена веществ углекислый газ. Одновременно у них был создан анатомический барьер, который задерживал влагу в яйце для развития и роста эмбриона. В результате этого эволюционного шага амниоты обрели способность откладывать яйца на суше. В отличие от амниот амфибии, как правило, мечут икру в воду. Первые амниоты появляются в верхнем каменноугольном периоде. Несколько миллионов лет спустя амниоты разделились на две эволюционные ветви. Одна группа была представлена синапсидами, предками млекопитающих, а вторая – зауропсидами, от которых произошли ящерицы, змеи, крокодилы, динозавры и птицы. Первые синапсиды возникли 315 млн лет назад, и уже в нижнем пермском периоде представители этой группы, пеликозавровые, стали самой распространенной и анатомически наиболее крупной группой наземных позвоночных животных. Роль этих пеликозавровых очень важна, поскольку из них в среднем пермском периоде развились терапсиды, которые, в свою очередь, дали начало цинодонтовым, предкам млекопитающих животных.
Развитие истинных млекопитающих эволюционно происходило во множество этапов; при этом среди прочего произошли изменения черепа, приведшие к облегчению его конструкции, улучшилось обоняние, некоторые части челюстей преобразовались в слуховые косточки, а коренные зубы претерпели сложные изменения коронки, что позволило улучшить обработку и усвоение пищи. Последнее привело к усилению обмена веществ, к повышению температуры тела и к расширению возможностей жизнедеятельности, включая способность к ночной активности; с эволюционной точки зрения это большое преимущество, которое было подкреплено тем, что уже у ранних млекопитающих развился меховой покров, защищавший организм от потерь тепла.
Эти изменения в плане строения млекопитающих следует понимать как постепенный процесс, который начался около 270 млн лет назад в среднем пермском периоде и длился около 70 млн лет. В среднем триасе, то есть 240 млн лет назад, мы видим уже множество видов, похожих на млекопитающих. Первые истинные млекопитающие обнаруживаются в отложениях нижнего юрского периода. От рептилий отделились в мезозое еще и птицы. Нет ничего удивительного, что все пресмыкающиеся ближе к птицам, чем к млекопитающим. К настоящему времени те рептилии, линия развития которых, как было сказано выше, привела к появлению млекопитающих, вымерли. Однако бесспорно, что в мезозое рептилии и среди них археозавры были позвоночными животными, господствовавшими на суше и в воздухе. К самым выдающимся представителям этой группы животных, без сомнения, относятся динозавры, которые в течение 200 млн лет определяли вид животного царства наземных позвоночных; и только 65 млн лет назад они сравнительно внезапно исчезли с лица Земли.
По своему строению динозавры значительно отличались от рептилий тем, что их конечности располагались непосредственно под телом, что в некоторых случаях позволяло им очень быстро передвигаться по суше, особенно таким двуногим бегунам, как тираннозавр (Tyrannosaurus rex). Но особо выделялись некоторые представители динозавров, зауроподы – огромными размерами. Они представляют самых крупных наземных животных, когда-либо обитавших на Земле. Выставленный в берлинском музее естествознания Brachiosaurus brancai – представитель этих зауропод; на сегодня это самый большой из полностью сохранившихся экземпляров. Этот скелет был обнаружен в 1910 году в Восточной Африке, в ходе легендарных экспедиций в Тендугуру (1909–1913 годы). И сегодня большая часть тех находок хранится в подвалах музея естествознания в Берлине. Для научного исследования доступны кости, и у физиологов существует великое множество вопросов. Как могли зауроподы достичь таких огромных размеров? Как быстро должны были они расти и какой обмен веществ мог поддерживать такой рост? Каким был рацион питания зауропод, сколько еды должны были они поглощать ежедневно и как они ее переваривали? Как функционировали их легкие? И как вообще было возможно поддерживать кровообращение в голове на высоте 12 м над землей? Какое давление для этого должно было развивать сердце? Если есть в мире что-либо «экстремальное», так это организм зауропод.
Мне выпала честь и удача принять участие в разгадке этой тайны. Дело было в один из серых, промозглых ноябрьских дней в Берлине. Падение стены состоялось за год до этого, и от физиологического института Свободного университета в Далеме я поехал в центр воссоединенного города, мимо главного здания Шарите на Луизенштрассе к музею естествознания на Инвалиденштрассе. В правом крыле здания находился вход для сотрудников палеонтологического собрания. В последние дни Второй мировой войны в это крыло попала авиационная бомба; некоторые невосполнимые образцы были повреждены. На руинах этого крыла в 1990 году уже росли высокие деревья. Здесь я познакомился с высоким человеком с редкими светлыми волосами. На вид ему можно было дать лет пятьдесят пять. Это был доктор Гейнрих, хранитель, отвечавший за палеонтологическое собрание; к нему у меня было дело.
За полгода до этой встречи нам с Карлом Киршем, во время дружеского чаепития, пришла в голову довольно причудливая идея. Мы решили, что можно найти способ рассчитать размеры сердца, легких и желудочно-кишечного тракта Brachiosaurus brancai или вычислить, какое давление крови было необходимо для того, чтобы обеспечить кислородом головной мозг этого животного. Фактически, для того чтобы это сделать, существуют так называемые аллометрические функции, которые в последние десятилетия усиленно вычисляются биологами во множестве кропотливых работ с различными организмами, млекопитающими, рептилиями, птицами и другими. При этом оценить биологические или физиологические величины организма можно, если знать – да-да! – если знать массу тела. Но как измерить массу тела вымершего зауропода? На весы его не поставишь. И вот тут-то мне и пришла в голову идея воспользоваться для этого фотограмметрией и дистанционным зондированием, методами, с которыми я близко познакомился, делая дипломную работу в Испании, а потом изучая обратную сторону Луны. Так методы космических исследований стали интересны и для музея естествознания. Именно этот план я и хотел обсудить с хранителем музея.
Однако в тот ноябрьский день 1990 года мы пошли не в зал динозавров; вместо этого доктор Гейнрих повел меня на третий этаж музея, мимо великолепных находок, немного, надо сказать, запыленных. Но каждая окаменелость была вручную аккуратно занесена в каталог и снабжена рукописной табличкой. Мы остановились перед каталожным шкафом, стоявшим в середине помещения между витринами с ископаемыми остатками неподалеку от окна с решетчатым переплетом. Интересно, что он собирается мне показать? Гейнрих открыл шкаф и осторожно выдвинул один из ящиков. Я сразу узнал покрытую корабельным лаком ручной работы раму медового цвета. Все вместе напоминало картину размерами 40×50 см. Передо мной была палеонтологическая Мона Лиза, литографический археоптерикс, берлинский экземпляр, самая известная в мире окаменелость – в обычном ящике каталожного шкафа! Ее обнаружили около 1875 года на Блюменберге неподалеку от Айхштетта. Нашедший этот артефакт Якоб Нимейер обменял его на корову ценой 150–180 марок. Находка была едва не переправлена в Лондон, но ее в 1879 году за 20 000 марок купил Вернер фон Сименс и передал на хранение в Минералогический музей Университета Гумбольдта в Берлине. На рубеже XIX и XX веков этот археоптерикс (древняя первоптица) воплотил собой победную поступь эволюционного учения Дарвина. Доктор Гейнрих внимательно посмотрел на меня и понял, какой подарок он мне сделал, показав этот предмет хранения.
Нам предстояло много работы, чтобы с помощью новых подходов и методов ближе познакомиться с брахиозавром. Конкретная работа с Brachiosaurus blancai напомнила мне и о многом другом. Двадцатью годами раньше, в июле 1969 года, сразу после того как «Аполлон-11» совершил посадку на Луне, один близкий друг нашей семьи подарил мне деревянный ящик, в котором лежали различные минералы, окаменелости и даже угольно-черный метеорит, а также три тома «Космоса», сочинения, изданного в 1909, 1910 и 1912 годах. В первом томе 1909 года содержалась история об археологических находках, относящихся к юрскому периоду; в ней шла речь о профессоре Фраасе, хранителе собрания природных древностей Штутгарта; этот Фраас был первым ученым, который занялся раскопками мест находок зауропод в Восточной Африке, на территории современной Танзании. В 1906 году один горный инженер, работавший в Тендагуру, в Восточной Африке, наткнулся в горах на исполинские кости. Профессор Эберхард Фраас, признанный немецкий специалист по динозаврам мезозоя, сделал по дороге крюк, чтобы осмотреть находку. В то время эти области в Восточной Африке были частью немецких колоний так же, как Камерун и германская Юго-Западная Африка. Особые отряды охраняли границы этих стран и обеспечивали сопровождение экспедиций, в том числе и экспедиции Фрааса. С великим трудом и с таким же великим безрассудством они подавляли восстания местных туземцев, отчасти это носило характер геноцида, как это было и в 1904 году при подавлении восстания герреро в немецкой Юго-Западной Африке. Тогда, в конце шестидесятых, когда я читал эти рассказы в «Космосе», я ничего не знал о немецких зверствах в африканских колониях. В памяти у меня запечатлелась выцветшая черно-белая фотография из «Космоса»: пожилой господин в военной форме и в классическом пробковом шлеме, сидящий на фоне низкорослого кустарника. У ног господина, словно охотничий трофей, лежала огромная, окаменевшая конечность. Эта фотография, очевидно, воспламенила мое воображение. Э. Фраас в своем рассказе сообщал о месте находки, о ее значении и о трудностях – сначала с носильщиками по сухой дороге в Линди, а затем с морским транспортом при перевозке ископаемых остатков от побережья Восточной Африки в Германию. Впоследствии сообщения о находке и описание места, где она была сделана, привели к организации всеобъемлющих раскопок, самых крупномасштабных в истории немецкой палеонтологии – к германской экспедиции в Тендагуру с 1909 по 1913 год. Эта экспедиция проводилась под эгидой и на средства Берлинского музея естествознания; в ней подчас принимали участие и до 1000 местных помощников.
Восемьдесят лет спустя, при содействии и с помощью сотрудников музея естествознания я, применяя брусья и другие механизмы, при поддержке со стороны музея и института фотограмметрии и дистанционного зондирования Берлинского технического университета, вкатил через главный вход музея на Инвалиденштрассе огромную подъемную платформу и с нее провел многочисленные замеры скелета брахиозавра. С помощью системы автоматизированного проектирования, которая в то время только вошла в моду, было создано трехмерное компьютерное изображение скелета Brachiosaurus brancai. Основываясь на этих данных, мы смогли с помощью вычисления аллометрических функций оценить размеры органов и их функции. Мы установили предположительное гидростатическое расстояние между сердцем и головным мозгом, рассчитали потребное давление крови, рассмотрели темпы роста и суточную потребность в энергии этого исполинского травоядного. Теперь возникли новые вопросы, касающиеся терморегуляции, теплообмена и пищеварения, а также преимуществ и недостатков гигантского размера тела.
Измерение скелета брахиозавра в музее естествознания
Это основополагающие биологические вопросы о роли, которую играют масса тела, площадь поверхности тела и фрактальная геометрия тканей в строении организма. Например, на клеточном уровне не обнаруживается никакой разницы между размерами и функциями печеночной клетки землеройки весом 5 г и такой же клетки слона весом 5 млн г. Оба эти животные – млекопитающие, способные существовать в одинаковых природных условиях.
Сначала в Берлине образовалось маленькое научное сообщество, заинтересовавшееся этими вопросами; затем такие же сообщества появились и в других городах республики. В конечном счете больше десяти лет спустя, в 2004 году состоялось учреждение исследовательской группы 553 при Немецком научном обществе «Биология зауропод 553» под руководством боннского палеонтолога Мартина Зандера. Двенадцать научных коллективов посвятили себя интенсивному изучению темы гигантизма зауропод, а четыре года спустя Spiegel на первой полосе сообщил об «измерении динозавров». В 2010 году результаты исследований были, наконец, опубликованы в журнале Biological Reviews. Исследовательская группа пришла к некоторым интересным новым выводам о тех причинах, которые могли привести к возникновению гигантизма у зауроподов. В частности, среди прочего мы установили, что предположительно у зауроподов, в результате специфического сочетания родовых наследственных признаков и ключевых эволюционных приобретений на различных уровнях, был запущен замечательный эволюционный каскад, приведший к гигантизму. К этим ключевым эволюционным инновациям, с большой долей вероятности, можно отнести длинную шею – самый выдающийся анатомический признак строения тела зауропод. Длинная шея сделала возможным эффективный сбор пищи, так как зауроподам был доступен в качестве источника пищи больший объем пространства, нежели другим травоядным. В спокойном положении при такой длине шеи, согласно нашим расчетам, зауроподу для сбора пищи было доступно пространство объемом 150 м3. Исходя из биомеханических соображений – для того чтобы уменьшить вес самой шеи – было необходимо по ходу эволюции уменьшить размер головы и создать пустотелые кости, так называемый пневматизированный скелет. Уменьшение размера головы оказалось возможным, потому что растительный материал надо было только сорвать с ветви, но не было необходимости его жевать. Брахиозавр, скелет которого находится в музее естествознания, должно быть, поедал в сутки около 350 кг растительного материала (в сыром весе), что соответствует приблизительно 120 кг сухого веса. Из этих 120 кг, по нашим расчетам, в кровь всасывалось около 60 кг питательных веществ.
Для того чтобы выполнить эти расчеты, нам пришлось прибегнуть к помощи Ботанического сада в Далеме (Берлин), а также Биохимического института Свободного университета. Ботанический сад предоставил нам для анализа образцы древовидных папоротников и других растений, которые уже в юрском периоде служили зауроподам источником питания. Так как в то время на Земле еще не было цветковых растений, то представить себе меню зауропод не составило особого труда для специалистов по палеонтологической физиологии питания: папоротники, полевые хвощи, саговники, гинкго и хвойные – только эти растения могли играть в питании основную роль. Энергетическую ценность пищевых продуктов можно определить с помощью калориметра; у папоротника энергетическая ценность равна 3,5 ккал/г, а у гинкго – 6,1 ккал/г. Для усвоения пищи в желудочно-кишечном тракте зауроподы не располагали ни механизмом интенсивного пережевывания, ни механизмом измельчения пищи в желудке за счет проглоченных камней, как это наблюдается у страусовых. Эти механизмы, согласно данным других участников группы 553, только ограничили бы усвоение пищи. Аллометрические расчеты величины желудочно-кишечного тракта и основного обмена зауропод показали, что необходимого измельчения целлюлозы удавалось добиться, предположительно, за счет удлинения времени пребывания пищи в желудке и кишечнике.
Выраженное формирование воздухоносных полостей в скелетной системе (ее пневматизация) было у зауропод в ходе их эволюционной истории тесно связано с развитием органа дыхания, состоявшего из множества воздушных мешков – таких же, как у современных птиц. Такое основанное на воздушных мешках дыхание обеспечивает, в отличие от легких, которыми дышим мы, лучший с точки зрения физиологии дыхания газообмен, позволяет уменьшить массу тела и лучше отдавать тепло, что особенно важно для организмов с большой массой тела. Улучшенное дыхание сделало возможным увеличение скорости метаболизма у зауропод, а следовательно, повысило и уровень основного обмена. Этот уровень – свойство, очевидно возникшее уже на ранней стадии эволюции динозавров. Анализ костного материала показал, что предельный возраст зауропод не превышал 80–100 лет. Рост зауропод был наиболее быстрым в возрасте от 15 до 30 лет. Увеличение массы в этот период составляло около 10 кг в сутки. Это увеличение скорости роста вело к увеличению скорости размножения у зауропод в сравнении с крупными млекопитающими. Кроме того, как яйцекладущие рептилии, зауроподы оставляли и более многочисленное потомство. В то время как у зауропод увеличение массы тела вело к увеличению числа яиц в кладке, у сухопутных млекопитающих наблюдают противоположную тенденцию. Рептилии обладают в основном эктодермальным обменом веществ, то есть в большой степени зависят от температуры окружающей среды и при низкой интенсивности обмена сильно ограничены в своей активности.
Новые данные об обмене веществ в костях, о биомеханике, о питании и размножении были дополнены новыми сведениями о сердечно-сосудистой системе. Так, сердце, для того чтобы обеспечить кровью головной мозг, должно было протолкнуть кровь на высоту около 8 м, что требует давления в несколько сотен миллиметров ртутного столба. Миллиметр ртутного столба (мм Hg) – это единица измерения давления. По историческим причинам именно эта единица до сих пор используется в медицинской практике вместо международной единицы – паскаля, так как до недавнего времени артериальное давление крови измеряли с помощью ртутных тонометров, в которых давление определяли по высоте ртутного столба. У человека разность давлений крови в сердце и головном мозге составляет около 30 мм Hg, а у жирафа, например, почти 200 мм Hg.
Вот видите, что может получиться, когда вместе с шефом, в моем случае с профессором Киршем, пьешь чай в пятницу вечером и вслух размышляешь о найденных в Восточной Африке костях. Но Восточная Африка – не только родина динозавров, именно там началось стремительное развитие человека.
Правообладателям!
Данное произведение размещено по согласованию с ООО "ЛитРес" (20% исходного текста). Если размещение книги нарушает чьи-либо права, то сообщите об этом.Читателям!
Оплатили, но не знаете что делать дальше?