Текст книги "Неоткрытые миры"
Автор книги: Николай Горькавый
Жанр: Книги для детей: прочее, Детские книги
Возрастные ограничения: +6
сообщить о неприемлемом содержимом
Текущая страница: 3 (всего у книги 14 страниц) [доступный отрывок для чтения: 5 страниц]
Сложная сказка о простых частицах
Королева Никки приехала в гости и присоединилась к детям, которые слушали традиционную вечернюю сказку, что читала их мать, Дзинтара.
– Из чего состоят наши тела, вода, камни, деревья и всё в природе, что нас окружает? Этим вопросом задавались ещё древние греки. Грек Демокрит был младшим сыном в богатой семье. Он взял свою долю наследства деньгами и отправился путешествовать. Он объездил многие страны и города, включая Египет, где жили и работали самые выдающиеся математики и учёные Средиземноморья. Он был равнодушен к славе и был всегда весёлым, за что получил прозвище «смеющийся философ». Демокрит стал учеником Левкиппа, и после долгих бесед и споров они пришли к выводу, что все тела нашего мира состоят из мельчайших неделимых частиц – атомов. Они цепляются друг за друга специальными крючками и образуют разные предметы. Между атомами лежит пустота.
Диоген Лаэртский, греческий историк, так описывал мировоззрение Демокрита: «Начала Вселенной суть атомы и пустота, всё остальное лишь считается существующим. Миры бесконечны и подвержены возникновению и разрушению. Ничто не возникает из несуществующего, и ничто не разрушается в несуществующее. Атомы тоже бесконечны по величине и количеству, они вихрем несутся по Вселенной и этим порождают всё сложное – огонь, воду, воздух, землю, ибо все они суть соединения каких-то атомов, которые не подвержены воздействиям и неизменны в силу своей твёрдости. Солнце и луна состоят из таких же телец, гладких и круглых, точно так же и душа; а душа и ум – одно и то же».
– Мне кажется, что моя душа отличается от души Андрея, – сказала Галатея, – Моя душа состоит из зелёных кругленьких телец, а его – склеена из коричневых квадратных частиц.
– Из кубических, – поправил педантичный Андрей младшую сестру.
– Именно это я и имею в виду! – хихикнула Галатея.
– Теория Левкиппа и Демокрита вызвала резкую критику. Афины, тогдашний центр европейской научной мысли, не признали этого учения. Платон высказался за то, что все книги Демокрита надо сжечь. Действительно, ни одной из его книг до нас не дошло, история сохранила лишь отдельные его высказывания. Ещё один титан античности, Аристотель, считал, что ветер, огонь, вода и земля являются непрерывными субстанциями, поэтому существование пустоты между атомами Демокрита противоречит законам природы. Даже спустя тысячи лет, в Средние века, церковь категорически отрицала учение, по которому всё в мире состоит из атомов, и жестоко преследовала сторонников атомизма, считая их еретиками.
История показала, что Демокрит был прав. Учение об атомах стало основой современного научного мировоззрения. По лестнице размеров астрономы идут вверх, в макромир, а физики и химики – вниз, в микромир, но куда бы мы не пришли, мы имеем дело с атомами. Но являются ли атомы простейшими и неделимыми элементами мира? Нет, атомы оказались далеко не такими круглыми и гладкими, как думал Демокрит. Учёные выяснили, что атомы сами состоят из более простых частиц, которые стали называть элементарными. Первой элементарной частицей стал отрицательно заряженный электрон, открытый Дж. Томсоном в 1897 году. Через двадцать с лишним лет Резерфорд и другие физики доказали существование ещё одной элементарной частицы – положительно заряженного массивного протона.
В начале XX века был период, когда, как казалось физикам, мечта человека о познании мельчайших неделимых частиц мира осуществилась. Трёх сортов стабильных частиц – электронов, протонов и фотонов – хватало для объяснения светового электромагнитного излучения от атомов и для построения самих атомов, положительно заряженные ядра которых состояли, по тогдашним воззрениям, из неравной смеси протонов и электронов, а оболочки – из отрицательно заряженных электронов. Значит, именно эти три частицы являются теми простейшими кирпичиками, из которых построен наш мир? Но модель атомного ядра, состоящего из протонов и электронов, вызывала сомнения. Резерфорд и другие физики подозревали, что в ядре существует нейтрон – нейтральная частица, которая прибавляет ядру массу, не добавляя заряд. Именно количеством нейтронов в ядре и отличаются друг от друга изотопы одного и того же химического элемента. В 1932 году нейтрон был открыт Чедвиком. Казалось, что можно вздохнуть с облегчением: мир атомов прекрасно строился из протонов, нейтронов и электронов. Добавить сюда фотоны – и получится, что для построения Вселенной достаточно всего четырёх сортов частиц, из которых только нейтрон был нестабильным и имел время жизни на свободе около четырнадцати минут, хотя внутри ядра он сохранял устойчивость и жил неограниченно долго.
Но была одна проблема: при бета-распаде нестабильных ядер оттуда вылетали электроны. Когда учёные подсчитали энергетический баланс этой реакции, то обнаружили, что энергия системы до распада и после различается, словно закон сохранения энергии не выполняется. Вольфганг Паули в 1930 году выдвинул идею нейтрино – лёгкой нейтральной частицы, которая уносит часть энергии бета-распада. С учётом нейтрино, которое было очень трудно обнаружить, закон сохранения удавалось спасти.
– Значит, для построения мира нужно было пять частиц? – уточнила Галатея.
– Для ядерных сил, скрепляющих атомное ядро, японец Юкава в 1934 году предложил модель, в основе которой лежит новая и нестабильная элементарная частица пимезон.
– Шесть частиц? – Галатея стала загибать пальцы на второй руке.
– В 1936 году нашли частицу, которую приняли за мезон Юкавы. Но это оказался мюон, совсем не та частица, которая ожидалась. Как сказал профессор Исидор Раби, когда был открыт мюон: «Кто заказал это?» Пимезон Юкавы был открыт в 1947 году.
– Уже семь частиц! – продолжила счёт девочка.
– Модель элементарных частиц затрещала по швам. В том же году были открыты две новые элементарные частицы – К-мезон и лямбда-гиперон. В 1955 году был открыт антипротон, в 1956 году – нейтрино, предсказанное Паули. Элементарные частицы посыпались, как горох из разорвавшегося мешка.
– Ой! – Галатея посмотрела на свои загнутые пальцы: её персональный компьютер исчерпал память.
– К ним пришлось добавить античастицы, которых, согласно уравнению Дирака, было ровно столько же, сколько обычных частиц. Элементарных частиц открывалось по несколько штук в год, и за несколько десятков лет учёные нашли сотни таких частиц. Целый зоопарк в микромире: даже нейтрино оказалось не одного, а трёх сортов – электронное, мюонное и тау-нейтрино. Стало понятно, что привычные «элементарные частицы» не могут претендовать на звание «элементарных», тем более что они крайне нестабильны и никак не походят на неизменные атомы Демокрита. Значит, они сами построены из более простых и неделимых частичек? Начались интенсивные поиски по-настоящему элементарных частиц. Но пусть лучше об этом расскажет известный физик Ричард Фейнман, или, вернее, его дух, который живёт в моём домашнем компьютере.
Динамики компьютера вдруг ожили, и дух Фейнмана сказал:
– Число частиц в мире не ограничено и зависит от энергии, потраченной на разрушение ядра. В настоящее время открыто более четырёхсот таких частиц. Мы не можем смириться с тем, что существуют четыре сотни элементарных частиц – это слишком сложно! Природа продолжает нагромождать эти частицы как бы с целью нас одурманить. Если 99 % явлений в мире можно объяснить при помощи электронов и фотонов, то оставшийся 1 % явлений потребует в десять или двадцать раз больше дополнительных частиц.
– И что же делать? – спросила Галатея.
– Думать! – рявкнули динамики голосом Фейнмана. – Великие изобретатели вроде Гелл-Манна чуть с ума не посходили, пытаясь вывести правила, которым подчиняются эти частицы, и в начале 70-х годов XX века создали теорию сильных взаимодействий (или «квантовую хромодинамику»), в которой основными действующими лицами являются частицы, получившие название «кварки». Все частицы, состоящие из кварков, разделяются на два класса: одни частицы, например протоны и нейтроны, состоят их трёх кварков (такие частицы получили ужасное название «барионы»), другие – например пион – состоят из кварка и антикварка (они называются «мезонами»), Дзинтара снова взяла нить повествования в свои руки.
– Физики любят исследовать элементарные частицы, сталкивая их лбами. Разгоняют частицы на ускорителях, и – бабах! – только искры из глаз у частиц сыплются. Физики изучают эти искры и траектории заплаканных частиц, разлетающихся после соударения, и узнают о строении частиц много нового.
– Ужас! – сказала Галатея. – Надо организовать союз защиты элементарных частиц.
– Таким способом Эрнст Резерфорд исследовал строение атома: облучил атомы положительно заряженными альфа-частицами и обнаружил, что альфа-частицы иногда сильно отклоняются при рассеянии на атомах. Это возможно, только если атом является не рыхлой крупной структурой, как думал Томсон, а содержит в себе крошечное и плотное ядро с положительным зарядом. Так Резерфорд доказал, что в атоме есть ядро с размером в десять тысяч раз меньше, чем сам атом.
Аналогичное открытие сделали физики более полувека спустя. Они по рассеянию протонов друг на друге нашли, что протон не представляет собой однородный шар – в нём прячутся маленькие и плотные части, которые позже стали называть кварками и глюонами.
Химик Менделеев проанализировал свойства химических элементов и нашёл в них закономерности, которые привели к открытию Периодического закона. На основании этого закона Менделеев предсказал существование ещё не открытых химических элементов и даже заранее вычислил их массу и другие характеристики.
Аналогично поступили и физики: они изучили свойства всех известных элементарных частиц и нашли, что их можно разделить натри группы: лептоны, кварки и кванты полей.
Исходя из этой классификации, шотландец Хиггс, бельгиец Энглерт и другие физики создали теорию элементарных частиц и предсказали открытие нескольких ранее неизвестных частиц, в частности бозон Хиггса. Для этих неоткрытых частиц удалось вычислить массу и другие характеристики. Несколько десятилетий экспериментаторы, работающие на ускорителях, искали эти частицы – и нашли абсолютно все, включая бозон Хиггса, который журналисты любят называть «частицей бога» – настолько фундаментальной во всех смыслах оказалась эта частица.
– Звучит как-то двусмысленно, – сказал Андрей, – Словно бог состоит только из бозонов Хиггса.
– Термин «божья частица» появился в заголовке книги нобелевского лауреата Леона Ледермана. Он сначала хотел назвать бозон Хиггса «чёртовой частицей», но редактор книги не согласился – и «чёртову» частицу переделали в «божью», тем более что в английском языке для этого просто нужно отрезать вторую половину слова.
– Как тонка оказалась грань между чёрным и белым! – хихикнула по-детски королева Никки, слушавшая сказку с таким же вниманием, как и дети.
– Эксперименты, полностью подтвердившие теорию кварков, сделали её Стандартной для элементарных частиц и фундаментальных взаимодействий. В 2013 году за эту теорию Питеру Хиггсу и Франсуа Энглерту была присуждена Нобелевская премия.
Что говорит Стандартная теория об основных группах элементарных частиц?
Самым известным представителем группы лептонов является электрон. Два других лептона – мюон и частица тау – похожи по свойствам на электрон, только гораздо тяжелее его и нестабильны. Мюон тяжелее электрона в 207 раз, и живёт он всего две миллионных доли секунды.
– Так мало? – удивилась Галатея.
– Так много! – возразила Дзинтара. – Другие нестабильные элементарные частицы живут гораздо меньше. Среди нестабильных частиц дольше мюона живёт только свободный нейтрон. Мюоны рождаются при столкновении космических лучей с атмосферой, но за счёт своей длинной жизни, которая дополнительно продлевается из-за скорости частицы…
– Согласно теории относительности Эйнштейна, – отметил педантичный Андрей, состоящий частично из коричневых кубиков.
– …мюоны могут достигать поверхности Земли. То есть мы все живём в потоке мюонов, летящих сверху. Исследователи пробуют использовать этот поток для просвечивания египетских пирамид и поиска там пустот, в которых могут размещаться гробницы фараонов.
– Да, это лучше, чем лопатой махать! – согласилась Галатея.
– Частица тау живёт в миллионы раз меньше, чем мюон, зато тяжелее электрона в три с половиной тысячи раз. Этим трём лептонам соответствуют три вида нейтрино. Все они стабильны. Нестабильный мюон любит распадаться на электрон и два вида нейтрино – мюонное и электронное, а частица тау может распасться на мюон, мюонное нейтрино и тау-нейтрино. Группа из шести лептонов дополняется шестью соответствующими античастицами.
Вторая группа элементарных частиц, самая загадочная – кварки. Это те самые внутренние уплотнения, найденные в протоне.
– Найденные в результате жестокого обращения с элементарными частицами, – отметила Галатея.
– В свободном состоянии никто кварки не наблюдал, они могут существовать только связанными друг с другом.
– Какая дружба! – снова не удержалась от комментария Галатея.
– Как и лептонов, кварков тоже шесть плюс столько же антикварков. Шесть кварков называют так: «нижний», «верхний», «прелестный», «очарованный», «странный» и «истинный». Самый лёгкий – «верхний кварк», всего лишь в несколько раз превосходит электрон по массе, зато самый тяжёлый – «истинный кварк» – в сотни тысяч раз тяжелее электрона.
– «Истинный» и «очарованный»! – восхищённо повторила Галатея, – Я уверена, что состою только из самых прелестных кварков!
– Соединения кварков называются адронами. Адронов очень много, но самые известные из них – протон и нейтрон, каждый из которых состоит из трёх кварков. Мезоны – это тоже адроны, возникшие при соединении двух кварков, но могут существовать адроны из четырёх и пяти кварков. Если принять заряд электрона за единицу, то все кварки имеют электрические заряды 1/3 и 2/3, только разного знака. Так как в природе не наблюдается элементарных частиц с таким дробным зарядом, то кварки должны соединяться таким образом, чтобы итоговая частица имела целый заряд (как у электрона) или была нейтральна.
– Какая избирательная у них дружба… – задумалась Галатея. – Значит, два кварка с электрическим зарядом в 2/3 никогда не смогут соединиться? Как это грустно! Вдруг они нравятся друг другу?
– В многочисленных столкновениях частиц в ускорителях рождается множество новых частичек, и некоторые из них являются просто возбуждённым состоянием какого-нибудь адрона, например протона. Но какие бы экзотические частицы не возникали, электрический заряд всегда сохраняется: суммарный заряд множества частиц, возникших при соударении, точно равен заряду частиц, которые столкнулись. Это правило называется законом сохранения электрического заряда. Кроме электрического заряда, кварки имеют такую характеристику, как «цвет» – «красный», «зелёный» и «синий», – и тоже подчиняются своеобразным законам сохранения: например, протоны и нейтроны – это бесцветные частицы, которые должны быть образованы кварками трёх разных цветов, которые в сумме дают белый цвет.
– Неправильно, я наверняка состою из цветных протонов, – хмыкнула Галатея.
– Очень интересным классом элементарных частиц оказались кванты поля. Один из них – фотон, отвечающий за электромагнитные взаимодействия, хорошо изучен. Но во Вселенной известно четыре фундаментальных взаимодействия. Учёные очень давно пытались объединить их. Например, Эйнштейн всю вторую половину своей жизни стремился слить гравитацию и электромагнитные взаимодействия в рамках единой теории, но ему это не удалось. А ведь он ещё не трогал ядерные и слабые взаимодействия! Современные физики пошли иным путём, отставив в сторону гравитацию и пытаясь объединить три других взаимодействия. Этот путь оказался успешнее: в 1967 году Стивену Вайнбергу, Шелдону Глэшоу и Абдус Саламу удалось объединить электрические и слабые взаимодействия. Эта теория получила общее признание, когда все элементарные частицы, предсказанные ею, были открыты. В 1973 году в единую теорию были включены сильные взаимодействия. Эта единая теория трёх фундаментальных взаимодействий и стала основой Стандартной теории, согласно которой переносчиками слабого взаимодействия стали бозоны трёх типов, а за сильное взаимодействие стали отвечать глюоны – восемь нейтральных частиц, не имеющих массы, что сближает их с фотонами.
– Значит, можно создать глюонный фонарик? – спросила Галатея.
Дзинтара задумалась:
– Ну, кварк-глюонные струи удается получить, но вот насчёт фонарика – не знаю…
– Итак, – сказал Андрей, – у нас есть следующее число «атомов» Демокрита: двенадцать лептонов, двенадцать кварков и двенадцать квантов?
– Нет, добавь сюда ещё и бозон Хиггса, тяжёлую частицу, которая играет важную роль в образовании частиц, в частности отвечает за появление массы у бозонов. Хиггс придумал поле, которое действует на бозоны, как вода на плавающие на ней пушинки одуванчика: без воды невесомые пушинки беззаботно летят в любом направлении, а при взаимодействии с водой становятся медленными, инертными. А бозон Хиггса – это волна на поверхности поля Хиггса. Его масса была вычислена из сложных уравнений, и именно такая частица была найдена в 2012 году при экспериментах на Большом Адронном Коллайдере. Это стало завершающим штрихом в подтверждении Стандартной теории. Она доказала, что в мире существует Квантовая Лестница, которая описывает три уровня энергии: атомный, ядерный и кварковый.
– Что это за лестница? – полюбопытствовала Галатея.
– Вы знаете про квантовые уровни в атоме – они дают разный цвет фотонам, вылетающим из атома, и связаны с перестройкой его электронных оболочек.
Внутри ядра атома тоже есть своя структура квантовых уровней, которые экспериментаторы изучают по дискретной энергии вылетающих из ядра электронов при ядерных превращениях.
Оказалось, что в таких элементарных частицах, как протоны и нейтроны, тоже существуют квантовые уровни, которые видны по энергиям вылетающих оттуда мезонов.
– Ух ты, действительно, лестница, идущая внутрь вещества, – поняла Галатея.
– Давно было известно, что химические связи между атомами и молекулами оказываются остаточным явлением от электромагнитного взаимодействия электронов и атомного ядра. Сейчас стало понятно, что ядерные силы между нуклонами ядра, связанные с обменом пимезонами, являются слабым отголоском могучих сил, которые удерживают кварки внутри каждого нуклона и не дают им вылетать наружу.
– Ой, какая сложная сказка получается! – пожаловалась Галатея. – А ведь обещали историю про самые простые частицы нашего мира.
– Да, но никто не обещал, что это будет простая история. И в ней ещё масса нерешённых проблем. Насколько полна Стандартная теория? Да, она не включает в себя гравитационное взаимодействие. Но недостаток ли это? Есть ли у гравитационного взаимодействия свой квант – гравитон? Неизвестно. Многие уверены, что есть. Так же был уверен и Менделеев, который оставлял в своей таблице место для элемента эфира – среды, в которой распространяется свет. Как потом выяснилось, никакого эфира нет, а электромагнитные волны прекрасно распространяются в вакууме. Есть и другое мнение – что гравитационное поле – особенное. Оно не квантовое, но создается коллективным действием обычных квантовых полей.
Есть ли ещё более фундаментальная теория всего, которая объединяет и элементарные частицы, и гравитационное поле и делает это на более простой основе, чем Стандартная теория?
Когда было завершено построение Стандартной модели, объяснившей все известные элементарные частицы и правильно предсказавшей серию новых частичек и бозон Хиггса, то огромное количество теоретиков в области элементарных частиц оказалось на перепутье: что делать дальше? Часть квантовых теоретиков прорвалась вслед за Гусом в космологию, породив там обширное поле теории инфляции, где растёт множество экзотических цветов. Значительная часть квантовых физиков решила остаться в долине элементарных частиц и строить новую теорию элементарных частиц и квантовых полей, которая бы включала и гравитацию.
Если обычная квантовая механика рассматривает элементарную частицу как точечный объект с некоторыми свойствами, то теория струн рассматривает такие частицы как очень маленькие струны, которые могут колебаться, возбуждаться, объединяться и т. д. Это позволяет избежать проблемы перенормировки, свойственной точечным квантовым объектам…
– Что это за проблема пере…сортировки? – полюбопытствовала Галатея.
– Если представить электрон заряженным точечным объектом и попробовать вычислить энергию электрического поля, которое его окружает, то мы получим бесконечность – ведь напряжённость электрического поля обратно пропорциональна радиусу и стремится в бесконечность при уменьшении радиуса до нуля. Теоретикам удалось с помощью хитрых способов вычитания бесконечности из бесконечности получить правильные результаты, которые совпадают с экспериментом. Это хитрое вычитание называется перенормировкой, но физический смысл этой процедуры непонятен, как и непонятно, как быть с бесконечной энергией электрона? Видимо, где-то устремление радиуса электрона к нулю нужно останавливать, но где? Ричард Фейнман занимался этой проблемой.
Дух Фейнмана вступил в разговор:
– Швингер, Томонага и я независимо друг от друга придумали уловку, как проводить конкретные расчёты в случаях, когда получаются бесконечности. Мы получили за это Нобелевскую премию. Наконец-то люди смогли вычислять при помощи квантовой электродинамики!
– Что за уловка? – поинтересовался Андрей.
– Эта уловка имеет специальное название – «перенормировка». Но каким бы умным не было это слово, я бы назвал её дурацким приёмом! Необходимость прибегнуть к такому фокусу-покусу не позволила нам доказать математическую согласованность квантовой электродинамики. Я подозреваю, что перенормировка математически незаконна. Будущим физикам ещё предстоит разобраться в этой интригующей проблеме. Природа преподносит нам такие чудесные загадки! Почему она повторяет электрон частицами, массы которых в 206 и 3640 раз больше? Тайны, вроде этих повторяющихся циклов свойств частиц, делают работу физика-теоретика очень интересной. Я считаю совершенно неудовлетворительным, что не существует теории, адекватно объясняющей массы наблюдаемых частиц. Мы пользуемся этими числами во всех наших теориях, но не понимаем их: что они собой представляют или откуда они берутся. Я считаю, что с фундаментальной точки зрения это очень интересная и важная проблема.
Дзинтара сказала:
– Спасибо, мистер Фейнман, нам пора двигаться дальше.
Дух Фейнмана буркнул:
– Я профессор, а это означает, что я не способен вовремя остановиться.
Дзинтара улыбнулась.
– Теория струн, обойдя проблему перенормировки, породила другие теоретические проблемы, например многомерность мира: теоретически приемлемую теорию струн удаётся сформулировать, только если принять, что наше пространство имеет десять или двадцать шесть размерностей, большая часть из которых свернута в компактное, практически незаметное для нас состояние. Здесь возникает такое разнообразие решений, что математик Питер Войт считает, будто теория струн уже не является научной теорией. Её можно назвать математической моделью, которая не отражает физическую реальность и потому не может претендовать на научное описание этой реальности.
Главная проблема теории струн – её оторванность от эксперимента. Фактов, которые бы не могла объяснить Стандартная теория и которые бы требовали объяснения в рамках более общей теории, чрезвычайно мало, или, как полагают многие, их вообще нет. Одна из проблем Стандартной теории – она не предсказывает массу нейтрино, которая у них, видимо, есть. Например, часть теоретиков считает, что Стандартная теория неполна, потому что не включает частицы, образовавшие тёмную материю космоса. Но совсем не обязательно, что тёмная материя состоит из элементарных частиц – другие исследователи полагают, что она состоит из таких макрообъектов, как чёрные дыры.
Отсутствие связи с реальностью породило своеобразные социологические проблемы в теории струн. В условиях слабости экспериментальной базы теоретиков стали судить не по созданию теории, которая бы подтверждалась наблюдениями, а по количеству статей и их цитируемости. А в оценке самих теорий стали участвовать такие факторы, как мода, престиж и вероятность карьерного роста.
В первой трети XX века теоретиков в мире было гораздо меньше, чем сейчас, но они совершили научную революцию, создав атомную теорию и ядерную физику, специальную теорию относительности и современную теорию гравитации, квантовую механику и космологию. Современных теоретиков раз в сто больше, но список их научных достижений, полученных за аналогичный период конца XX и начала XXI века, гораздо скромнее – имеются в виду реальные достижения, а не количество публикуемых статей и индексы цитируемости. Ли Смолин, известный теоретик, пишет в своей книге «Проблемы с физикой», вышедшей в 2006 году: «Почему, несмотря на такие усилия тысяч самых талантливых и хорошо подготовленных учёных, так мало сделано в фундаментальной физике за последние двадцать пять лет?»
Математик Питер Войт, выпускник Гарварда, который получил докторскую степень в Принстонском университете и ныне преподаёт в Колумбийском, написал книгу «Даже не неправильно» с критическим взглядом на господствующую в фундаментальной физике теорию струн.
– Даже не неправильно? – удивилась Галатея замысловатой фразе.
– Физики делят теории на правильные, которые можно подтвердить экспериментом, и неправильные, которые можно опровергнуть. Но Вольфганг Паули ввел новую категорию теорий: «даже не неправильные» – для теорий, которые нельзя ни подтвердить, ни опровергнуть каким-либо способом. Войт предложил свой труд издательству Кембриджского университета. Вскоре ему показали анонимный отзыв на книгу одного из струнных теоретиков. Войт пишет в своей книге, которая была опубликована в 2006 году, но в другом издательстве: «Прежде чем я увидел этот отзыв, я слегка беспокоился о некоторых вещах, которые написал, чувствуя, что слишком близко подошёл к обвинению струнных теоретиков в интеллектуальной нечестности. Увидев этот отзыв, я перестал беспокоиться об этом. Очевидно, что уровень такой нечестности и нежелание многих теоретиков струн признать проблемы своего предмета далеко превзошли мои первоначальные ожидания».
Сабина Хоссенфелдер из Франкфуртского института передовых исследований, работающая в области физики элементарных частиц и квантовой гравитации, в апреле 2017 года опубликовала в журнале «Nature» комментарий, заголовок которого можно перевести так: «Наука должна заслужить доверие». Комментарий начинается так: «Я теоретик в физике элементарных частиц, и я сомневаюсь в теоретической физике элементарных частиц…Я боюсь, что публика имеет веские причины не доверять учёным, и – печально, но правда – мне тоже всё сложнее им доверять». Она называет это кризисом фундаментальной науки, потому что «мы создаём гигантское количество новых теорий, и ни одна из них никогда не была подтверждена экспериментально». Она приводит уже ставший знаменитым пример: в декабре 2015 года группа учёных, работавшая на Большом Адронном Коллайдере, сообщила о признаке существования новой частицы, которая не укладывалась в Стандартную теорию элементарных частиц. Результат имел невысокую статистическую достоверность, и в августе 2016 года эта же группа сделала вывод, что никакой новой частицы нет – приборы просто показали статистическую флуктуацию. Но для объяснения существования этой несуществующей частицы теоретиками за восемь месяцев было опубликовано 600 научных статей, включая публикации в самых престижных физических журналах. Как отметила Сабина Хоссенфелдер, ни одна из этих теоретических публикаций «не описывала реальность».
Сабина подчеркнула, что такая же ситуация складывается в астрофизике, где существуют проблемы космологической постоянной и тёмной материи, а также в теории инфляции. «Теоретики вводят одно или несколько новых полей и потенциалов, которые управляют динамикой Вселенной… Существующие наблюдательные данные не позволяют сделать выбор между моделями. И если даже обнаруживаются новые данные, всё ещё остаётся бесконечно много моделей, о которых можно писать статьи. По моим оценкам, сейчас в литературе описано несколько сот таких моделей. Для каждого выбора инфляционных полей и потенциалов можно вычислять наблюдаемые величины и затем двигаться к следующим полям и потенциалам. Вероятность того, что любая из этих моделей описывает реальность, бесконечно мала – это рулетка на бесконечно большом столе. Но согласно существующим критериям качества, это первоклассная наука. Такой же поведенческий синдром возник в астрофизике, где теоретики придумывают поля для объяснения космологической постоянной… и предлагают всё более сложные „невидимые сорта“ частиц, которые – может да, а может нет – составляют тёмную материю».
Сабина пишет: «Нетрудно понять, как мы попали в такую ситуацию. Нас судят по количеству публикаций… и более строгие критерии качества для новых теорий обрежут нашу продуктивность. Но „давление публикаций“ поощряет к количеству в ущерб качеству, о чём уже неоднократно говорилось раньше…»
Никки, внимательно слушавшая эту совсем не сказочную историю, кивнула головой:
– Научное бесплодие в фундаментальной науке обычно связано с потерей независимости учёных. Молодой выпускник университета, чтобы выжить в гуще конкурентов, примыкает к самой популярной теории и старается дружить со всеми, особенно вышестоящими мэтрами, потому что именно от них зависит его будущая карьера, публикации и гранты. Такой теоретик пороха не выдумает по определению, потому что тот взорвёт все с таким трудом установленные связи и вызовет ненависть к своему изобретателю.
Дзинтара вздохнула:
– В книге Питера Войта в адрес тесного круга учёных вокруг лидирующей теории, которые вытесняют из науки всех несогласных, использован термин «мафия»; в книге Ли Смолина этот же феномен называется деликатно «социологические проблемы в науке».
Никки усмехнулась:
– Как терминами ни жонглируй, очевидно, что фундаментальная наука без фундаментальной свободы обречена на пробуксовку. Кроме того, удивительно субъективной остаётся такая важная вещь, как оценка новой теории. Я думаю, что можно ввести надёжный параметр научности и перспективности новой физической теории. Например, вычислить отношение наблюдаемых феноменов, предсказанных данной теорией, к числу сильных физических предположений теории. Естественно, так можно проверять лишь теории физических явлений.
Правообладателям!
Данное произведение размещено по согласованию с ООО "ЛитРес" (20% исходного текста). Если размещение книги нарушает чьи-либо права, то сообщите об этом.Читателям!
Оплатили, но не знаете что делать дальше?