Электронная библиотека » Рэй Джаявардхана » » онлайн чтение - страница 3


  • Текст добавлен: 25 декабря 2015, 13:20


Автор книги: Рэй Джаявардхана


Жанр: Физика, Наука и Образование


Возрастные ограничения: +12

сообщить о неприемлемом содержимом

Текущая страница: 3 (всего у книги 15 страниц) [доступный отрывок для чтения: 4 страниц]

Шрифт:
- 100% +

На рубеже 30 лет в жизни Паули наступил неспокойный период. Его отец, давно прослывший бабником, бросил мать Паули ради молодой женщины, которая была просто отвратительна самому Вольфгангу. Вскоре после разрыва с мужем мать Паули свела счеты с жизнью, приняв яд. Отцовская измена и трагическая смерть матери надломили Паули. Однако в тот же месяц, когда молодой человек потерял мать, он получил и хорошую новость: ему предложили должность профессора в Швейцарской высшей технической школе Цюриха, несмотря на то что Паули был известен как посредственный лектор. Он прибыл в Цюрих в апреле 1928 г., чтобы занять этот престижный пост. По словам самого Паули, он был «одет как турист, с рюкзаком за спиной».

Правда, на новом месте Паули так и не воспрял духом. Исследования не ладились, он даже подумывал завязать с физикой и взяться за написание утопического романа. Разочарованный Паули жаловался в одном из писем Бору, что проблема заключалась совсем не в нехватке времени на научные исследования: «Я просто туп и ленив. Эх, если бы кто-нибудь ежедневно давал мне встряску! Но с тех пор, как делать это стало некому, приходится изыскивать другие средства, чтобы оживить интерес к физике». Возможно, Паули не мог сосредоточиться на работе, так как его расхолаживала вольготная жизнь в Цюрихе: он плавал в озере, обедал в дорогих ресторанах, посиживал с коллегами в пивных, общался с известными адвокатами, писателями и деятелями искусств. После такой передышки, продлившейся несколько месяцев, Паули удалось завершить в соавторстве с Гейзенбергом две важные научные работы по теории квантовой электродинамики, описывающие взаимодействие света и материи.

Именно тогда Паули влюбился в Кэти Деппнер, с которой познакомился на вечеринке у одного из друзей. Вольфганг впервые повстречал Кэти несколькими годами ранее, будучи в Берлине. В Швейцарии между ними вспыхнула бурная страсть, уже в декабре 1929 г. они поженились. Однако этот роман с самого начала был обречен. Еще до брака с Паули Кэти увлеклась другим мужчиной, а после свадьбы отказалась порвать с любовником. Паули знал об интрижке и пытался как-то с этим ужиться. Он шутил, что женился «кое-как», и обещал друзьям, что всем разошлет письменные уведомления, если его супруга все-таки сбежит с любовником. Этот мезальянс просуществовал около года, после чего ожидаемо последовал развод. Паули, сокрушенный и опечаленный, жаловался, что любовь всей его жизни предпочла ему посредственного химика. «Да был бы это хотя бы тореадор – кто-нибудь настолько привлекательнее меня! А тут – какой-то химик…» – сетовал он.

Правда, несмотря на неурядицы в личной жизни, Паули сумел вновь сосредоточиться на науке и восстановить творческий подход к работе. Из всех животрепещущих научных проблем в тот период его наиболее волновал хаос, который царил в ядерной физике. К 1930 г. теория квантовой механики уже пользовалась безоговорочным авторитетом, причем благодаря этой теории удалось достичь ошеломляющих успехов. Но сохранялась одна заковыристая проблема: физики заметили, что всякий раз, когда радиоактивный атом теряет электрон, часть высвобождаемой при этом энергии куда-то девается. Это противоречило фундаментальному физическому закону сохранения энергии: количество исходящей энергии должно быть равно количеству затраченной. Такое несоответствие озадачивало многих ведущих ученых, в том числе Паули, так как указывало на принципиальный изъян в понимании квантовой физики.

Вся эта история началась еще в 1896 г., когда французский физик Анри Беккерель совершенно случайно открыл явление радиоактивности. Беккерель оставил в выдвижном ящике несколько фотопластинок, нечаянно положив рядом с ними образцы солей урана. Через несколько дней он с удивлением обнаружил на фотопластинках пятна, как будто они были засвечены. Беккерель догадался, что соли урана испускают какое-то неизвестное излучение. Ученый поставил несколько уточняющих опытов и выяснил, что такое излучение действительно существует, причем является неотъемлемым свойством урана. Любопытная находка Беккереля заинтересовала многих ученых. В те годы в Кембридже работал Джозеф Томсон – первооткрыватель электрона. Он рассказал об открытии Беккереля своему аспиранту Эрнесту Резерфорду и посоветовал обратить внимание на это явление. Резерфорд приехал в Англию из пасторальной Новой Зеландии. Он был четвертым из 12 детей в простой крестьянской семье, что не помешало ему блестяще учиться в университете. Кстати, Резерфорд экспериментировал с радиоприемником примерно в тот же период, что и Маркони[9]9
  Гульельмо Маркони (1874–1937) – итальянский инженер, один из пионеров радиотехники, лауреат Нобелевской премии по физике за 1909 г. – Прим. пер.


[Закрыть]
. Получив именной грант, Резерфорд перебрался в Англию, где намеревался подготовить докторскую диссертацию на тему радиоволн под руководством Томсона. Действительно, живо заинтересовавшись открытием Беккереля – а также, вероятно, зная о скептическом мнении известного физика лорда Кельвина, считавшего, что «у радио нет будущего», – Томсон порекомендовал Резерфорду исследовать этот новый вид излучения.

Резерфорд приступил к систематическому изучению беккерелевских «урановых лучей». Для этого он поставил ряд хорошо продуманных экспериментов. Он оборачивал уран в алюминиевую фольгу, постепенно увеличивая количество таких оберток. Резерфорд пришел к выводу, что уран испускает как минимум два типа лучей. Первый тип лучей, которые он назвал «альфа-излучением», не мог проникнуть даже через лист тонкой алюминиевой фольги. Лучи второго типа, «бета-излучение», пробивали защитный слой в 100 раз толще. Французский физик Поль Виллар, экспериментируя с солями радия, в 1900 г. открыл и третий тип излучения. Естественно, это явление было названо «гамма-излучением» – по третьей букве греческого алфавита.

Тем временем в Париже Пьер и Мария Кюри также заинтересовались лучами, которые открыл Беккерель. Пьер Кюри, выросший во французской столице, получил домашнее образование – в основном от отца, который был врачом. Окончив физический факультет в Сорбонне, Кюри стал преподавателем физики в этом университете. Вместе с братом он ставил эксперименты, связанные со сжатием кристаллов, – Кюри обнаружил, что таким образом можно генерировать электричество. Позже Кюри исследовал явление магнетизма, посвятив этой проблеме свою докторскую диссертацию; в частности, он открыл, что магнитные свойства веществ изменяются в зависимости от температуры. Мария (в девичестве Склодовская) родилась в польской преподавательской семье и стремилась во что бы то ни стало получить высшее образование. Еще подростком она посещала тайную школу для девушек, организованную польскими патриотами, несмотря на то что власти царской России запрещали подобную деятельность[10]10
  Мария Склодовская родилась в Варшаве в 1867 г.; Варшава как центр Царства Польского входила в состав Российской империи с 1815 по 1917 г. – Прим. пер.


[Закрыть]
. Позже она работала гувернанткой в богатых варшавских семьях, помогая таким образом сестре оплачивать обучение в парижском медицинском институте.

В возрасте 24 лет Мария сама смогла перебраться в Париж и поступить в Сорбонну. Один из преподавателей Марии познакомил ее с Пьером Кюри; вскоре Мария и Пьер не только отлично сработались, но и полюбили друг друга. В одном из писем к Марии Пьер признавался: «Как было бы прекрасно (об этом я не смею даже думать) вместе пройти по жизни, мечтая: Ваша патриотическая мечта, наша гуманитарная мечта и наша научная мечта. Из всего этого единственная мечта, которая, я верю, может осуществиться, связана с наукой». Сначала Мария отказывалась выйти замуж за Пьера, но наконец согласилась, и они поженились в 1895 г. Это был крепкий союз. Мария писала: «Нас с мужем так тесно связывала наша взаимная страсть и общая работа, что мы практически все время проводили вместе».

Супруги Кюри предложили термин «радиоактивность» в качестве наименования феномена, открытого Беккерелем, и стали искать другие вещества, также обладающие подобными свойствами. Занимаясь лабораторными исследованиями, Кюри установили, что минерал настуран содержит еще два ранее неизвестных элемента, которые еще более радиоактивны, чем уран. Один из этих элементов они назвали «полоний» в честь Польши – родины Марии Кюри, а второй – «радий». Радий давал такое сильное излучение, что даже был теплым на ощупь. Кюри выяснили, что радиоактивность присуща отнюдь не только урану, а также доказали, что некоторые химические элементы выделяют энергию спонтанно, без какого-либо внешнего воздействия.

К сожалению, Пьер и Мария даже не подозревали, каким пагубным является длительное воздействие радиации на организм. Мария Кюри часами работала с радиоактивными веществами в тесном сарае, носила в карманах пробирки с радиоактивными образцами. Она вспоминала: «Мы любили поздним вечером еще раз заглянуть в лабораторию, чтобы побаловать себя фантастическим зрелищем. Повсюду виднелись слабо светящиеся очертания пробирок и мешочков, в которых находились наши препараты. Вид и впрямь был великолепный, всякий раз он казался нам новым. Тлеющие трубки походили на волшебные огоньки». Мария совершенно не подозревала, насколько губительна подобная забава. Вероятно, именно из-за поражения радиацией Мария Кюри умерла, не дожив до 67 лет.

Опираясь на исследования Пьера и Марии Кюри, Резерфорд и его коллеги пришли к выводу, что альфа-лучи состоят из сравнительно тяжелых положительно заряженных частиц. Позже выяснилось, что альфа-частицы действительно являются осколками крупных атомных ядер и каждая такая частица состоит из двух протонов и двух нейтронов, тесно связанных между собой. Иными словами, альфа-частица – это фактически ядро гелия, очень легкого газа, стоящего в таблице Менделеева под номером 2 – сразу после водорода. Таким образом, физики установили, что, когда нестабильное ядро тяжелого элемента, например урана, испускает альфа-частицу, оно в результате превращается в ядро уже другого, чуть более легкого элемента. Опыты супругов Кюри показали, что бета-лучи, в свою очередь, заряжены отрицательно. Анри Беккерель и немецкий физик Вальтер Кауфман выяснили, что бета-лучи состоят из электронов. Спустя еще несколько лет физики открыли, что гамма-лучи – самый проникающий вид радиоактивного излучения – это особые электромагнитные лучи, напоминающие рентгеновские и несравнимо более высокоэнергетические, чем видимый свет.

Сегодня физики уже знают, что радиоактивность как таковая отлично иллюстрирует справедливость самого знаменитого уравнения, красующегося даже на футболках и кофейных кружках: E = mc2. Это уравнение, выведенное Эйнштейном, означает: масса (m) может превращаться в энергию (E) и наоборот, причем активность такого преобразования зависит от скорости света (c). Когда при радиоактивном распаде ядро элемента претерпевает изменения, часть заключенной в нем энергии выделяется в виде гамма-лучей, альфа– или бета-частиц. Согласно закону сохранения энергии сумма масс и энергий у конечных продуктов должна быть такой же, как и у исходного ядра.

При исследовании альфа-распада и гамма-излучения у физиков без проблем сходился баланс энергий. Однако с бета-распадом такого не получалось. Претерпевая бета-распад, ядро, очевидно, теряло всего одну частицу – электрон. Сложность заключалась в том, что энергия электрона при этом всякий раз получалась разной – это несоответствие в 1914 г. обнаружил британский физик Джеймс Чедвик. Иногда электрон обладал очень малой энергией, в других случаях – значительной. Более того, лабораторные измерения Чедвика, позже подтвержденные другими физиками, свидетельствовали, что показатели энергии электрона, покидающего атом, образуют непрерывный спектр с четко прослеживаемым максимальным значением. Что бы это значило? Согласно закону сохранения энергии при каждом акте бета-распада свободный электрон должен был обладать строго определенной энергией. Некоторые ученые задумывались, соответствует ли максимальный показатель из вышеупомянутого спектра истинному значению энергии, высвобождаемой при бета-распаде, поскольку ничтожная доля этой энергии куда-то исчезала. Очевидно, наука столкнулась с каким-то неизвестным явлением.

Проблема, касающаяся бета-распада, оказалась такой неподатливой и трудноразрешимой, что сам Нильс Бор, патриарх квантовой физики, предлагал вообще отбросить священный для науки закон сохранения энергии. В качестве довольно неуклюжего выхода из сложившегося кризиса Бор в 1930 г. предположил, что закон сохранения энергии может давать сбои в субатомном мире, но лишь в некотором усредненном, статистическом смысле. На одной из лекций, прочитанных в Лондоне, Бор сказал: «Можно утверждать, что мы не обладаем никакими аргументами, как теоретическими, так и эмпирическими, в пользу соблюдения закона сохранения энергии и в случае бета-распада; более того, попытки трактовать бета-распад в контексте этого закона вызывают многочисленные осложнения». Бор, разумеется, признавал, что «решительный отказ от принципа сохранения энергии может повлечь самые невероятные последствия», но настаивал, что «несмотря на значительный прогресс, достигнутый в последнее время в теории атомного ядра, мы по-прежнему должны быть готовы к новым неожиданностям».

Паули и многие другие физики скептически воспринимали предложение Бора, не желая «браковать» закон сохранения энергии. «Вы и дальше собираетесь третировать несчастный закон сохранения энергии?» – подначивал Паули Бора в одном из писем. Конечно, Паули не был бы собой, если бы ограничился только лишь этим, так что не преминул поддеть Бора и в другой раз: «Допустим, кто-то одолжил у вас большую сумму денег и обещал отдать долг частями. Если бы после этого вы неоднократно договаривались об уплате очередной суммы в счет долга, а должник не являлся бы на встречу – вы бы решили, что это статистическая ошибка или что тут что-то нечисто?»

Действительно, даже под грузом личных неурядиц Паули долго и напряженно размышлял о том, как выйти из затруднительного положения, в которое попали физики, изучая бета-распад. Наконец, он нашел оригинальное решение. Паули предположил, что ученые в самом деле что-то упускают. Возможно, речь шла о какой-то неуловимой частице, убегающей с места бета-распада и уносящей с собой «недостающую» долю энергии. Паули вычислил, что гипотетическая частица, которая позволяла бы сбалансировать исходный и конечный электрические заряды, наблюдаемые при бета-распаде, должна быть нейтральной и весить меньше электрона. Воодушевившись этой идеей, Паули задумал поделиться ею с ведущими европейскими физиками и решил, что это будет удобно сделать на конференции, которая должна была состояться в немецком городе Тюбинген в начале декабря 1930 г. Правда, сам Паули не хотел пропускать цюрихский зимний бал, поэтому предпочел написать письмо коллегам в Тюбинген.

Паули написал это письмо, которое впоследствии стало знаменитым, всего через восемь дней после оформления развода. Он обратился к читателям так: «Уважаемые радиоактивные дамы и господа!»[11]11
  Печатная копия этого письма сохранилась благодаря Лизе Мейтнер – одной из важнейших участниц изучения бета-распада, которая присутствовала на той конференции в Тюбингене. – Прим. авт.


[Закрыть]
В этом письме Паули объявил, что «предпринял отчаянную попытку спасти… закон сохранения энергии». Он писал: «Имеется возможность того, что в ядрах существуют электрически нейтральные частицы, которые я буду называть нейтронами», на основании чего сделал следующий вывод: «Непрерывный бета-спектр тогда стал бы понятным, если предположить, что при распаде вместе с электроном испускается еще и нейтрон таким образом, что сумма энергий нейтрона и электрона остается постоянной».

Гипотеза Паули без всякого преувеличения была исключительно дерзкой, и он сознавал, насколько отчаянный поступок совершает. В те годы физикам было известно всего о трех элементарных частицах: протоне, электроне и фотоне. Попытка выдумать совершенно новую частицу, якобы «пока еще не обнаруженную», для решения нетривиальной научной проблемы могла показаться коллегам глупой отговоркой. Далее в письме говорилось следующее: «Пока я не решаюсь публиковать что-нибудь по поводу этой идеи. Полагаю, мое объяснение на первый взгляд может показаться маловероятным, поскольку если бы нейтроны действительно существовали, то кто-нибудь их бы, наверное, заметил. Но кто не рискует – тот не побеждает. Тяжесть положения при рассмотрении непрерывного бета-спектра становится особенно яркой после слов профессора Дебая, сказанных мне с сожалением во время нашей беседы в Брюсселе: “Ох, лучше не думать обо всем этом… как о новых налогах”. Следовательно, необходимо серьезно обсудить любой путь к спасению. Итак, уважаемый радиоактивный народ, рассматривайте и судите сами».

Завершая письмо, Паули объяснил свое отсутствие на конференции так: «К сожалению, я сам не могу появиться в Тюбингене, так как предстоящий в Цюрихе бал в ночь с 6 на 7 декабря лишает меня этой возможности». Действительно, бал давали в роскошном отеле Baur au Lac, откуда открывался вид на озеро и Альпы, и это событие было настоящей жемчужиной светского цюрихского календаря, распланированного на всю зиму. Вероятно, Паули желал во что бы то ни стало побывать на этом вечере, чтобы поскорее забыть о разводе. Удивительно, что при всей своей самоуверенности Паули серьезно сомневался, имел ли он право высказать такую идею в области субатомной физики. «Я совершил ужасный поступок. Заявил о существовании частицы, которую невозможно обнаружить. Физик-теоретик не имеет права делать что-либо подобное», – признавался он в письме немецкому астроному Вальтеру Бааде.

Следующим летом Паули побывал в США, где выступил с лекциями в нескольких городах. На конференции, состоявшейся в Пасадене, штат Калифорния, он впервые публично выступил с рассказом о своей гипотетической частице. «Правда, на тот момент тема по-прежнему казалась мне довольно сомнительной, я не хотел, чтобы мой доклад печатали», – вспоминал он впоследствии. Однако новость о его выступлении распространилась быстро, не в последнюю очередь благодаря статье, опубликованной в номере The New York Times от 17 июня 1931 г. В ней, в частности, говорилось: «Сегодня мир теоретической физики познакомился с новым обитателем субатомного мира: доктор В. Паули-младший из Швейцарской высшей технической школы, город Цюрих, сделал доклад о существовании элементарных частиц, которые он окрестил нейтронами».

В ходе лекционного турне Паули продолжал размышлять об этой гипотетической частице и обсуждать ее с коллегами, но в то же время не мог отвлечься от тяготивших его проблем. Несмотря на сухой закон, который действовал в то время в США, Паули умудрялся разжиться в дороге нелегальным алкоголем. Особенно основательно он запасся спиртным в городе Анн-Арбор, штат Мичиган, расположенном неподалеку от канадской границы. Регулярно злоупотребляя горячительными напитками в тот период, на одной домашней вечеринке он даже упал с лестницы, прокатившись через целый пролет. Он жаловался: «Недавно (признаться, будучи немного навеселе) я так неудачно свалился с лестницы, что даже сломал плечо. Теперь вот лежу в постели, жду, пока кости срастутся. Скука смертная». Сохранилась фотография с одной из лекций, где Паули выступал с недолеченной рукой – на снимке хорошо заметен механический стержень, фиксирующий сустав ученого. В целом путешествие очень понравилось Паули, хотя он и сетовал о пуританских нравах американцев и о «никудышной» пище, которой его потчевали в Калифорнийском технологическом институте. Кроме того, он с горечью отзывался о пустоте в своей личной жизни: «Ничего у меня с барышнями не клеится. Думаю, ловить мне с ними нечего, – писал он другу, сидя в номере нью-йоркского отеля, – так что, боюсь, придется с этим жить, как бы тяжело порой ни было. Мне кажется, что дальше я буду только стареть и погрязать в одиночестве. Вечное одиночество – как же это скучно».

Из Америки Паули отправился в Италию на еще одну конференцию по ядерной физике. Именно там он познакомился с Энрико Ферми – харизматичным молодым профессором из Римского университета. Ферми родился в 1901 г. в семье железнодорожного служащего и учительницы, был младшим их трех детей. Уже в детстве Энрико проявлял математические способности. У него сложились особенно близкие отношения с братом Джулио; мальчишки любили вместе мастерить самодельные электромоторы и другие игрушки. Поэтому неожиданная смерть Джулио (он умер, казалось бы, при пустяковой операции на горле) стала для Энрико тяжелым ударом. Его безутешная мать впала в глубокую меланхолию, а Энрико, которому едва исполнилось 14 лет, стал еще более замкнутым, чем ранее. Он погрузился в чтение учебников по физике, которые покупал на книжном развале. Один из коллег отца заметил склонность парня к науке и посоветовал ему поступать в Высшую нормальную школу[12]12
  Входит в Пизанскую университетскую систему. – Прим. ред.


[Закрыть]
. Всего через четыре года после поступления Ферми не только окончил полный курс университета, но и написал докторскую диссертацию. Лаура Ферми в своей книге «Атомы у нас дома»[13]13
  Ферми Л. Атомы у нас дома. – М.: Иностранная литература, 1959.


[Закрыть]
(Atoms in the Family) рассказывает, что защита диссертации Энрико проходила довольно напряженно: «Одиннадцать экзаменаторов в черных тогах и четырехугольных шапочках торжественно и важно заседали за длинным столом. Ферми, сам в черной тоге, стоял перед ними, спокойно и уверенно рассказывая о своей работе. Сначала экзаменаторы слушали, потом одни начали зевать, прикрывая рот рукой, другие в недоумении поднимали брови, кое-кто откинулся в кресле и вовсе перестал слушать. По-видимому, эрудиция Ферми оказалась выше их понимания. Ферми получил свою степень Magna cum laude, но ни один из экзаменаторов не пожал ему руки, не поздравил его»[14]14
  Процитирован отрывок из русского перевода книги «Атомы у нас дома». – Прим. пер.


[Закрыть]
.

Получив государственную стипендию, Ферми смог отправиться в Германию и Нидерланды, чтобы поработать с великими физиками того времени. В 26 лет Ферми был приглашен в Римский университет на должность профессора, после чего быстро сплотил вокруг себя группу талантливых студентов. Многие из них впоследствии сами оставили заметный след в физике – в частности, Бруно Понтекорво и Этторе Майорана, о которых мы подробнее поговорим позже. Коллеги прозвали Ферми «Папа», поскольку он был прирожденным лидером и казался непогрешимым.

Ферми был очень заинтригован оригинальной разгадкой бета-распада, предложенной Паули. Как вспоминал сам Паули, итальянец «сразу же неподдельно заинтересовался моей идеей и очень положительно воспринял гипотезу о существовании новой элементарной частицы». Ферми, как и Паули, считал неприемлемым предложение Бора отказаться от закона сохранения энергии, поскольку это подорвало бы самые основы физики. В следующем году Джеймс Чедвик открыл в атомном ядре ранее неизвестную нейтральную элементарную частицу. Однако она имела практически такую же массу, как и протон, – то есть была слишком тяжелой по сравнению с гипотетической частицей Паули. Поскольку Чедвик назвал открытую им частицу словом «нейтрон» (именно этим термином Паули ранее именовал «свои» крошечные частицы), Ферми предложил называть частицы Паули новым словом – «нейтрино». Этот термин можно перевести с итальянского как «нейтрончик». Новое слово прижилось.

Тем временем в Цюрихе Паули продолжал безудержно пить, курить и увиваться за женщинами. Он то и дело засиживался в барах, дрался, ссорился с коллегами. У Паули случались резкие перепады настроения, к концу 1931 г. он оказался на грани нервного срыва. По совету отца Паули обратился за консультацией к прославленному психоаналитику Карлу Юнгу. Он читал работы Юнга, посещал его лекции и, наконец, договорился о встрече с этим знаменитым врачом. Вот как Юнг описывал свою первую встречу с Паули: «Когда этот убежденный рационалист [Паули] … впервые пришел ко мне на прием, он был в такой панике, что не только он, но даже я сам чувствовал, как будто в комнате витает дух сумасшедшего дома». Отношения с женщинами у Паули не складывались, поэтому он очень удивился предложению Юнга, который посоветовал гостю пройти курс психотерапии у Эрны Розенбаум – одной из молодых учениц великого психолога. Паули согласился, полагая, что «попытка не пытка». На протяжении нескольких следующих месяцев он рассказал Розенбаум сотни своих снов – на психотерапевтических сеансах и в письмах. Их общение продолжалось, даже когда Эрна переехала из Цюриха в Берлин. Позже Юнг сам занялся лечением Паули. Паули посещал сеансы Юнга на протяжении двух лет; в эти годы психолог и физик напряженно работали – Паули описывал Юнгу свои сны, порой в мельчайших подробностях, а Юнг, в свою очередь, давал развернутый анализ содержащихся в них мотивов и символов.

В 1933 г. Паули познакомился с Франциской Бертрам – образованной молодой немкой, которая уже успела объездить весь мир, а на тот момент работала антрепренером русского оркестра в Цюрихе. В следующем году Вольфганг и Франциска поженились и прожили в этом браке всю жизнь. Франциска скептически относилась к психоанализу, поэтому вскоре после свадьбы Паули прекратил консультации с Юнгом. Но переписка между двумя учеными продолжалась еще не одно десятилетие; и тот и другой интересовались не только психологией, но также и мистицизмом, и нумерологией. Юнг использовал калейдоскоп сновидений Паули в качестве материала для своих работ и лекций, тщательно скрывая личность пациента, ставшего ему другом. Вероятно, при жизни Паули многие его коллеги-физики даже не подозревали об этой примечательной дружбе. Учитывая, какие серьезные личные неурядицы Паули пережил в этот период, стоит ли удивляться, что много лет спустя он называл нейтрино «глупое дитя моего жизненного кризиса».

Ферми, вернувшись в Рим после встречи с Паули, продолжал размышлять над тайной бета-распада. Осенью 1933 г. он побывал в Брюсселе на крупной научной конференции, посвященной природе атомного ядра, и на этом мероприятии бета-распад вновь стал ключевым вопросом обсуждения. Через несколько месяцев после конференции Ферми сумел сформулировать четкое математическое описание бета-распада в контексте квантовой механики. Выстраивая свою теорию, Ферми исходил из того, что ядро атома состоит из тяжелых элементарных частиц – протонов и нейтронов, о чем ранее писал Вернер Гейзенберг, один из пионеров квантовой механики. По мысли Ферми, при бета-распаде нейтрон превращается в протон, но остается в ядре, тогда как из атома вылетает один электрон и один нейтрино – об этом догадывался Паули. Ферми четко указал, что нейтрино не присутствует в ядре изначально, а возникает в момент бета-распада. Он сравнил результаты своих теоретических вычислений с экспериментальными данными и пришел к выводу, что «масса нейтрино либо равна нулю, либо исключительно мала по сравнению с массой электрона».

Более того, теория Ферми предвосхитила открытие новой фундаментальной силы природы, которую мы сегодня называем «слабое взаимодействие»; эта сила действует только в субатомном мире. Два из четырех известных фундаментальных взаимодействий – гравитация и электромагнетизм – действуют на сравнительно больших расстояниях, поэтому знакомы нам из повседневного опыта. Например, мы ощущаем гравитацию (притяжение Земли), когда поднимаем что-нибудь тяжелое, а магнетизм – когда чувствуем притяжение магнита на дверце холодильника. Два других взаимодействия – сильное и слабое – действуют лишь на крохотных расстояниях внутри атома. Сильное взаимодействие связывает протоны и нейтроны, удерживая их в атомном ядре. Слабое взаимодействие влияет на различные процессы, связанные с радиоактивностью, – в частности, бета-распад.

Ферми отправил свою статью о теории бета-распада в журнал Nature в 1934 г. Правда, редколлегию журнала работа не впечатлила; это незаурядное сочинение было отклонено с формулировкой «содержит слишком отвлеченные нереалистичные рассуждения, которые вряд ли заинтересуют читателя». Но Ферми не сдавался и послал статью в еще два научных журнала. Один из этих журналов был итальянским; дело в том, что фашистское правительство Муссолини требовало активнее публиковать научные работы на итальянском языке. Второй журнал был немецким; Ферми рассчитывал, что на его страницах со статьей смогут ознакомиться ученые из других стран. Оба журнала опубликовали работу Ферми. Статья подтвердила репутацию Ферми как великого теоретика, способного масштабно мыслить, и по сей день считается классикой физической науки. Кристина Саттон в своей книге «Космический корабль нейтрино» (Spaceship Neutrino) красноречиво выразилась об этой статье следующим образом: «Если письмо Паули, адресованное “радиоактивным дамам и господам”, можно сравнить с зачатием нейтрино, то статья Ферми возвестила о рождении новой частицы». Однако сохранялась ключевая проблема: никто понятия не имел, как обнаружить эту неуловимую малышку.

Позже Ферми переключился на эксперименты, связанные с искусственной радиоактивностью[15]15
  Искусственная радиоактивность – самопроизвольный распад атомных ядер, полученных искусственным путем. – Прим. ред.


[Закрыть]
, стремясь лучше понять феномен трансформации ядер. К тому времени Ирен Жолио-Кюри, дочь Марии Кюри, вместе со своим мужем Фредериком Жолио продемонстрировала, что при бомбардировке некоторых ядер альфа-частицами возникают новые радиоактивные изотопы, которые впоследствии распадаются. Хотя Ирен и Фредерик не представляли, как превратить свинец в золото (да и не ставили перед собой такой цели), можно сказать, что в какой-то степени эти ученые воплотили мечты древних алхимиков, желавших превращать обычные металлы в редкие и ценные.

В то время как супруги Жолио-Кюри использовали в качестве «снарядов» альфа-частицы, Ферми попробовал в этом качестве нейтроны. Он установил, что сравнительно медленные нейтроны особенно эффективны при синтезе радиоактивных продуктов. По легенде Ферми догадался использовать нейтроны, так как заметил, что в экспериментах достигается гораздо более высокая радиоактивность, если лабораторные препараты стоят на деревянной столешнице, а не на мраморной. Коллеги Ферми были озадачены подобной разницей, однако сам Энрико понял, что атомы дерева просто замедляют нейтроны. Другие ученые, основываясь на этой находке Ферми, пробовали бомбардировать уран медленными нейтронами. В 1938 г. немецким физикам удалось расщепить ядро урана примерно пополам, сделав первый шаг к высвобождению колоссальной энергии, заключенной в атомном ядре.

В том же году Ферми получил Нобелевскую премию по физике за свои исследования медленных нейтронов. Отправляясь в Стокгольм на церемонию вручения награды, Ферми смог вывезти из Италии жену-еврейку и двоих детей, поскольку там уже разгорался антисемитизм. Позже вся семья перебралась в США. Проработав несколько лет в Колумбийском университете в Нью-Йорке, Ферми перешел на работу в университет Чикаго. В 1942 г. именно там, в реакторе под университетским стадионом, произошло историческое событие: группа физиков под руководством Ферми впервые осуществила управляемую цепную реакцию, совершив важный шаг к приручению атомной энергии. Один из коллег Ферми позвонил в Вашингтон и сообщил об этом успехе Джеймсу Конанту, руководителю Национального комитета оборонных исследований. Он выразился завуалированно: «Вам будет наверняка интересно узнать, что наш итальянский штурман только что привел нас в новый мир». Конант ответил: «Как нас встретили аборигены?» Ответ был: «Очень тепло». Работа Ферми в Чикаго заложила основы для создания атомных бомб, ядерных реакторов и, наконец, для экспериментального открытия нейтрино.


Страницы книги >> Предыдущая | 1 2 3 4 | Следующая
  • 0 Оценок: 0

Правообладателям!

Данное произведение размещено по согласованию с ООО "ЛитРес" (20% исходного текста). Если размещение книги нарушает чьи-либо права, то сообщите об этом.

Читателям!

Оплатили, но не знаете что делать дальше?


Популярные книги за неделю


Рекомендации