Электронная библиотека » Стивен Вайнберг » » онлайн чтение - страница 7


  • Текст добавлен: 30 декабря 2015, 04:40


Автор книги: Стивен Вайнберг


Жанр: Физика, Наука и Образование


Возрастные ограничения: +12

сообщить о неприемлемом содержимом

Текущая страница: 7 (всего у книги 26 страниц) [доступный отрывок для чтения: 9 страниц]

Шрифт:
- 100% +

По крайней мере один из древних астрономов серьезно подошел к проблеме подгонки теории к фактам. Это был Гераклид Понтийский. Гераклид учился в Академии Платона в V в. до н. э. и, возможно, руководил ею, когда Платон уезжал на Сицилию. И Симпликий{113}113
  Mueller, Simplicius, On Aristotle's «On the Heavens 2.10–2.14», 519.9–519.11, р. 59.


[Закрыть]
, и Аэций утверждали, что Гераклид учил, что Земля вращается вокруг своей оси{114}114
  За год, состоящий из 365,25 дней, Земля на самом деле совершает 366,25 оборота вокруг своей оси. Кажется, что Солнце поворачивается вокруг Земли только 365,25 раза, потому что в то же самое время, когда Земля поворачивается 366,4 раза вокруг своей оси, она совершает один оборот вокруг Солнца в том же самом направлении, что и дает 365,4 видимых оборота Солнца вокруг Земли. Поскольку Земле требуется 365,25 дней, состоящих из 24 часов, чтобы совершить 366,25 оборотов относительно звезд, для одного оборота Земли вокруг своей оси необходимо (365,25 x 24 часа)/366,25 или 23 часа 56 минут и 4 секунды. Это число называется звездными сутками.


[Закрыть]
, что вполне объясняет наблюдаемое суточное вращение звезд, планет, Солнца и Луны вокруг Земли. Эта идея Гераклида иногда упоминалась разными авторами в поздней античности и в Средние века, но она не стала популярной до времен Коперника, предположительно потому, что мы не ощущаем вращения Земли. Нет никаких данных в пользу того, что Аристарх, живший через сто лет после Гераклида, действительно подозревал, что Земля не только обращается вокруг Солнца, но и вращается вокруг своей оси.

Согласно Халкидию, христианину, который перевел диалог «Тимей» с греческого на латинский в IV в., Гераклид также предположил, что, поскольку Меркурий и Венера всегда видны на небе неподалеку от Солнца, они скорее обращаются вокруг Солнца, чем вокруг Земли. Это убирало еще один подогнанный элемент из схем Евдокса, Каллиппа и Аристотеля: искусственное согласование вращения вторых сфер Солнца и внутренних планет. Но Солнце, Луна и три внешние планеты по-прежнему считались обращающимися вокруг неподвижной, хотя и вращающейся вокруг своей оси, Земли. Эта теория очень хорошо работает для внутренних планет, поскольку она описывает то самое видимое движение, что и в самой простой версии теории Коперника, по которой Меркурий, Венера и Земля с постоянной скоростью вращаются вокруг Солнца по круговым орбитам. Там, где речь идет о внутренних планетах, единственным отличием Гераклида от Коперника является точка наблюдения: один из них смотрит с Земли, другой – с Солнца.

Но кроме подгонки, присущей схемам Евдокса, Каллиппа и Аристотеля, была еще одна проблема: все эти гомоцентрические теории не слишком хорошо согласовывались с наблюдениями. В те времена считалось, что планеты светят своим собственным светом, и, поскольку в этих схемах сферы, на которых находятся планеты, всегда остаются на одинаковом расстоянии от Земли, их яркость никогда не должна меняться. Тем не менее очевидно, что их яркость меняется очень сильно. Согласно Симпликию, около 200 г. философ-перипатетик Сосиген писал:

«Явления отнюдь не спасаются (сферами), которые придумали сторонники Евдокса, – не только те явления, что были обнаружены позднее, но и те, что были известны еще прежде них и в существовании которых были уверены они сами. Стоит ли тут говорить о других (явлениях), иные из которых после того, как не сумел этого сделать Евдокс, попытался спасти кизикенец Каллипп, пусть отчасти и успешно? Я говорю вот о чем: бывает так, что планеты представляются нам то близкими, то удаленными от нас. И действительно, для некоторых из них это легко различимо простым глазом: Венера и Марс в периоды своего попятного движения кажутся более крупными, и доходит до того, что в безлунные ночи Венера заставляет тела отбрасывать тень…»{115}115
  Mueller, 504.19-504.30, р 43.


[Закрыть]

Мы должны понимать, что, говоря о размерах планет, Симпликий и Сосиген, скорее, имеют в виду их видимую яркость: ведь мы не можем увидеть диск планеты невооруженным глазом, но чем ярче блеск, тем больше он кажется.

На самом деле это положение не столь однозначно, как считал Симпликий. Планеты и их спутники (например, Луна) отражают свет Солнца, поэтому, даже если принять на веру схемы Евдокса и других, их яркость менялась бы в то время, когда они проходят разные фазы, как Луна. Этого ученые древности не понимали, пока не появились работы Галилея. Но даже если принимать во внимание фазы планет, изменение их яркости в соответствии с концентрической моделью не совпадает с результатами наблюдений.

В эллинистический и романский периоды в среде профессиональных астрономов (но не философов) концентрические системы Евдокса, Каллиппа и Аристотеля были вытеснены теорией, которая гораздо лучше объясняет видимое движение Солнца и планет. Эта теория основана на трех математических понятиях – эпицикл, эксцентр и эквант, которые будут описаны ниже. Мы не знаем, кто придумал эпицикл и эксцентр, но они совершенно точно были известны эллинскому математику Аполлонию из Перги и астроному Гиппарху из Никеи, с которыми мы встречались в главах 6 и 7{116}116
  См.: Book I of Otto Neugebauer, A History of Ancient Mathematical Astronomy (Springer-Verlag, New York, 1975).


[Закрыть]
. Мы узнали о теории эпицикла и эксцентра из работ Клавдия Птолемея, который изобрел эквант и с чьим именем обычно связывают эту теорию.

Птолемей жил примерно в 150 г., во время расцвета Римской империи при правлении императоров династии Антонинов. Он работал в музее в Александрии и умер после 161 г. В главе 4 мы уже говорили о изучении Птолемеем отражения и преломления света. Его работы по астрономии содержатся в труде под названием «Великое построение», который у арабов превратился в «Альмагест». Под этим названием труд Птолемея стал широко известен в Европе. «Альмагест» был так популярен, что переписчики перестали переписывать творения более ранних астрономов, таких как Гиппарх, поэтому теперь трудно вычленить то, что Птолемей написал сам.

В «Альмагесте» был на две сотни записей увеличен звездный каталог Гиппарха, в котором теперь насчитывалось 1028 звезд. Звездный каталог был снабжен отметками о яркости звезд и их положении на небе{117}117
  Начиная с Птолемея и до наших дней видимая яркость звезд в каталогах описывается термином «звездная величина». Значение звездной величины возрастает, когда яркость уменьшается. Одна из самых ярких звезд – Сириус – имеет звездную величину –1,4, яркая Вега имеет звездную величину 0, а звезды, еле заметные невооруженным глазом, относятся к шестой звездной величине. В 1856 г. астроном Норман Погсон сравнил измеренную видимую светимость определенного количества звезд со звездными величинами, которые исторически приписывались им, и на основании этого сделал вывод, что, если звездная величина одной звезды больше, чем у другой, на пять единиц, то эта звезда в 100 раз тусклее.


[Закрыть]
. Но птолемеева теория планет, Солнца и Луны была гораздо важнее для будущего науки. Его работа над этой теорией, описанная в «Альмагесте», является поразительно современной по своим методам. Предложенные математические модели планетного движения содержали различные свободные числовые параметры. Затем, в процессе наблюдений, эти параметры определялись. Ниже мы увидим это на примере, связанном с эксцентром и эквантом.

В самом упрощенном виде по теории Птолемея каждая планета движется по кругу, называемому эпициклом, не вокруг Земли, а вокруг движущейся точки, которая обращается вокруг Земли по другому кругу, который называется деферентом. Внутренние планеты Меркурий и Венера проходят свой путь по эпициклу соответственно за 88 и 225 дней. Модель аккуратно подогнана таким образом, что центр эпицикла обращается вокруг Земли по деференту точно за один год, всегда оставаясь на прямой между Землей и Солнцем.

Можно понять, почему эта теория работает. По наблюдениям за движением планет невозможно определить, как далеко от нас они находятся. По этой причине в теории Птолемея видимое движение планет по небу никак не зависит от абсолютных значений линейных размеров эпицикла и деферента, а зависит только от отношения этих значений. Если бы Птолемей только захотел, он мог бы подогнать значения эпицикла и деферента для Венеры так, чтобы их отношение не менялось, и сделать то же самое для Меркурия. Таким образом, у обеих планет оказался бы одинаковый деферент, а именно – орбита Солнца. Тогда Солнце стало бы точкой деферента, вокруг которой по эпициклу путешествуют внутренние планеты. Этого не было в теориях Гиппарха и Птолемея, но при таком раскладе движение внутренних планет выглядит так же, как в их теориях, поскольку разница заключается только в размере орбит. Оба варианта дают одинаковую картину видимого движения планет. В теории эпициклов второй вариант просто является особым случаем, совпадающим с теорией Гераклида, которую мы обсуждали выше: Меркурий и Венера обращаются вокруг Солнца, тогда как Солнце обращается вокруг Земли. Как уже упоминалось раньше, теория Гераклида оправдывается, поскольку результат ее применения эквивалентен предсказанию другой теории[7]7
  Теории Коперника. – Прим. пер.


[Закрыть]
, где Земля и внутренние планеты обращаются вокруг Солнца, и отличие заключается только в точке наблюдения астронома. Поэтому не случайно теория эпициклов Птолемея, которая описывает движение Меркурия и Венеры так же, как теория Гераклида, тоже подтверждается наблюдениями.

Птолемей мог бы применить ту же самую теорию эпициклов и деферентов и к внешним планетам – Марсу, Юпитеру и Сатурну, – но чтобы эта теория работала, движение планет по эпициклам должно было быть намного медленнее, чем движение центров эпициклов по деферентам. Не знаю, что с этим положением было не так, но по той или иной причине Птолемей пошел другим путем. В самом упрощенном виде по его схеме каждая внешняя планета проходит путь по своему эпициклу вокруг точки, расположенной на деференте, за год, а точка на деференте совершает один оборот вокруг Земли за более длительное время: 1,88 года для Марса, 11,9 лет для Юпитера и 29,5 лет для Сатурна. Здесь использован совершенно другой вид подгонки: линия, проведенная из центра эпицикла до планеты, всегда параллельна линии от центра Земли до Солнца. Эта схема достаточно хорошо согласуется с наблюдаемыми движениями внешних планет, поскольку, как и в случае с внутренними планетами, различные особые случаи этой теории, отличающиеся лишь линейными размерами эпицикла и деферента (при фиксированном их соотношении), дают одни и те же предсказания для наблюдаемых движений. Существует одно особое значение этих величин, которое делает модель Птолемея идентичной простейшей модели из теории Коперника, с единственным отличием – в местоположении наблюдателя: на Земле или на Солнце. Для внешних планет в этом особом случае выбирается величина радиуса эпицикла, равная расстоянию от Земли до Солнца (см. техническое замечание 13).

Теория Птолемея хорошо объясняет видимое обратное движение планет по небу. Например, кажется, что Марс меняет направление своего движения по зодиаку, когда он находится в самой близкой к Земле точке своего эпицикла, поскольку предполагается, что тогда его движение по эпициклу идет в обратном направлении к предполагаемому обращению эпицикла вокруг деферента, и скорость его выше. Это всего лишь перевод в систему отсчета, связанную с Землей, современного представления о том, что кажется, что Марс движется по зодиаку в обратном направлении, когда Земля обгоняет его во время их совместного обращения вокруг Солнца. В это время Марс очень ярок (как отмечено в вышеприведенной цитате из Симпликия), потому что он наиболее близок к Земле, и та сторона, которую мы видим, обращена к Солнцу.

Теории Гиппарха, Аполлония и Птолемея не были просто какими-то фантазиями, которые случайно оказались подтвержденными наблюдениями, и в то же время не имели никакой связи с реальностью. Когда речь идет о видимом движении Солнца и планет в своей самой простой версии, с одним эпициклом для каждой планеты и без всяких дополнительных усложнений, эта теория точно так же предсказывает движение планет, как и самая простая версия теории Коперника – то есть теория, по которой Земля и остальные планеты вращаются по круговым орбитам с постоянной скоростью вокруг Солнца. Как я уже объяснял на примере Меркурия и Венеры, а также в техническом замечании 13, это происходит потому, что теория Птолемея относится к классу теорий, которые одинаковым образом описывают видимое движение планет и Солнца по небу, а одна из этих теорий (хотя и не та, которую выбрал Птолемей) точно совпадает с предсказанием простейшей версии теории Коперника о движении Солнца и планет относительно друг друга.

На этом лучше всего закончить историю греческой астрономии. Но, к сожалению, как Коперник сам хорошо понимал, предсказания видимого движения планет по простейшей версии его теории не совсем совпадают с наблюдениями, так же как и предсказания по простейшей версии теории Птолемея. Со времен Кеплера и Ньютона мы знаем, что орбиты планет не являются правильными окружностями, Солнце находится не совсем в центре их орбит, а Земля и другие планеты обращаются вокруг него не с постоянной скоростью. Конечно, ни о чем этом греческие астрономы не догадывались. Почти все астрономы до Кеплера занимались тем, что старались устранить небольшие неточности в простейших версиях теорий Птолемея и Коперника.

Платон потребовал рассчитать движение по окружностям с постоянной скоростью, и, насколько нам известно, никто в античности не заподозрил, что астрономические тела могут совершать движение по более сложной траектории, чем комплекс круговых движений, хотя Птолемей пытался поставить под сомнение постоянную скорость движения. Создавая теории, основанные на круговых орбитах, Птолемей и его последователи разработали различные усложнения, которые были нужны для того, чтобы их модели более точно соответствовали наблюдениям как за Солнцем и Луной, так и за планетами{118}118
  В одном из немногих намеков на происхождение эпицикла Птолемей в начале Книги XII «Альмагеста» благодарит Аполлония из Перга за доказательство теоремы, связанной с использованием эпицикла и эксцентра в расчетах видимого движения Солнца.


[Закрыть]
.

Одним из усложнений стало увеличение количества эпициклов. Единственной планетой, для которой Птолемей счел необходимым это сделать, был Меркурий, орбита которого в действительности отличается от круга больше, чем орбиты всех других планет. Другим усложнением стал эксцентр. Земля размещалась не в самом центре деферента для каждой планеты, а на некотором расстоянии от него. Например, по теории Птолемея центр деферента для Венеры смещен от Земли на 2 % от значения своего радиуса{119}119
  Использование эксцентра в теории движения Солнца может рассматриваться как подвид эпицикла, в котором прямая линия из центра эпицикла до Солнца всегда параллельна прямой линии между Землей и центром солнечного деферента, таким образом, центр солнечной орбиты смещен от Земли. То же самое применимо и к Луне, и к другим планетам.


[Закрыть]
.

Эксцентр мог комбинироваться с другим математическим понятием, впервые использованным Птолемеем, – эквантом. Это попытка показать, как планета может двигаться по своей орбите с переменной скоростью, независимо от изменения скорости в результате движения по эпициклу. Можно себе представить, что мы, сидя на Земле, видим каждую планету, точнее, центр эпицикла каждой планеты, двигающийся вокруг нас с постоянной скоростью (например, столько-то градусов в день). Но Птолемей знал, что это положение не совсем подтверждается реальными наблюдениями. Вводя эксцентр, мы можем себе представить, что должны увидеть центры эпициклов планет, обращающиеся с постоянной скоростью не вокруг Земли, а вокруг центров деферентов планет. Увы, это тоже не работает. Вместо этого для каждой планеты Птолемей предложил то, что позже стало называться эквантом{120}120
  Птолемей не использовал термин «эквант». Вместо него он прибегал к термину «бисекция эксцентра», ссылаясь на тот факт, что центр деферента должен помещаться в середине линии, связывающей эквант и Землю.


[Закрыть]
, – точку, расположенную с противоположной стороны от деферента напротив Земли, но на таком же расстоянии от деферента, как и Земля. Он предположил, что центры эпициклов планет будут обращаться с постоянной угловой скоростью вокруг экванта. Тот факт, что Земля и эквант должны находиться на равном расстоянии от центра деферента, не выводился из основных философских постулатов. Расстояния были заданы как свободные параметры, а потом были подобраны те значения, при которых теоретические предсказания совпадают с результатами наблюдений.

Но между моделью Птолемея и наблюдениями все еще оставались значительные расхождения. Как мы увидим, когда будем говорить о Кеплере в главе 11, последовательное использование только одного эпицикла для каждой планеты в комбинации с эксцентром и эквантом как для Солнца, так и для каждой планеты, может позволить сымитировать реальное движение планет (в том числе и Земли) по эллиптическим орбитам. Эта имитация будет достаточно хороша, чтобы не противоречить наблюдениям, сделанным без телескопа. Но Птолемей не был последователен. Он не использовал эквант в описании предполагаемого движения Солнца вокруг Земли, и из-за этого упущения все предсказания движения планет путались, так как положение планет было связано с расположением Солнца. Как подчеркивал Джордж Смит{121}121
  В личной переписке Дж. Смита.


[Закрыть]
, это как раз и указывает на разницу между античной и средневековой астрономией и современной наукой: никто после Птолемея не ухватился за эти расхождения, чтобы попытаться создать теорию получше.

Луна представляла собой особую проблему: модель, которая хорошо подходит для движения планет и Солнца, не работает для Луны. Этого не понимали, пока не появились работы Исаака Ньютона, где объясняется, что движение Луны зависит от двух тел одновременно: Земли и Солнца, тогда как движение планет происходит под действием гравитации, в основном, одного тела – Солнца. Гиппарх предложил теорию, по которой Луна обращается только по одному эпициклу и которая неплохо описывала ее движение между затмениями, но, как выяснил Птолемей, эта модель не могла предсказать положение Луны на зодиакальном круге между затмениями. Птолемей смог исправить это упущение, создав более сложную модель, но в его теории появились другие проблемы: расстояние между Землей и Луной значительно варьировалось, но, по данным наблюдений за видимым размером Луны, этого не происходило.

Как уже упоминалось, в системе Птолемея и его предшественников наблюдение планет никоим образом не позволяло выявить размеры деферентов и эпициклов, можно было только исправить соотношение между их значениями для каждой планеты{122}122
  То же самое положение остается верным и когда добавляются эксцентры и экванты. Наблюдения влияют только на соотношение между расстоянием до Земли и экванта из центра деферента и радиусами деферента и эпицикла отдельно для каждой планеты.


[Закрыть]
. Птолемей заполнил этот пробел в «Планетных гипотезах» – работе, продолжившей «Альмагест». В ней он опирается на априорный принцип, возможно, заимствованный у Аристотеля, о том, что в системе мира не должно быть пустот. Каждая планета, точно так же как Солнце и Луна, должна занимать свою оболочку, которая простирается от минимального до максимального удаления этой планеты (или же Солнца или Луны) от Земли. Все эти оболочки должны быть заполнены. В этой схеме относительные размеры орбит планет, Солнца и Луны оказывались фиксированными в порядке их удаления от Земли. Кроме того, Луна находится достаточно близко к Земле, так что абсолютное расстояние до нее (в радиусах Земли) может быть оценено несколькими способами, в том числе методом Гиппарха, который мы обсуждали в главе 7. Сам Птолемей разработал метод параллакса: отношение расстояния до Луны к радиусу Земли может быть получено из значения наблюдаемого угла, между направлением в зенит и направлением на Луну, и рассчитанного значения угла, который мог бы получиться, если бы можно было наблюдать Луну из центра Земли{123}123
  См. «Альмагест» Птолемея G. J. Toomer (Duckworth, London, 1984), Book V, Chapter 13, рр. 247–251. Также см.: O. Neugebauer, A History of Ancient Mathematical Astronomy, P. 1 (Springer Verlag, Berlin, 1975), рр. 100–103.


[Закрыть]
(см. техническое замечание 14). По мысли Птолемея, чтобы определить расстояние до Солнца и других планет, достаточно знать порядок расположения их орбит по отношению к Земле.

Таким образом, самую близкую к Земле внутреннюю орбиту занимает Луна, поскольку время от времени она закрывает Солнце и другие планеты во время затмений. Также естественно было бы предположить, что дальше всего от Земли находятся те планеты, которые имеют самый длинный период обращения вокруг Земли, – Марс, Юпитер и Сатурн находились именно в таком порядке от Земли. Но Солнце, Венера и Меркурий, как казалось, совершают в среднем один оборот вокруг Земли за год, поэтому порядок их расположения стал спорным вопросом. Птолемей предполагал, что порядок должен быть следующим: Земля, Луна, Меркурий, Венера, Солнце, затем – Марс, Юпитер и Сатурн. По расчетам Птолемея, расстояния до Солнца, Луны и планет, выраженные в диаметрах Земли, оказываются намного меньше, чем на самом деле, при этом для Солнца и Луны они практически совпадают (возможно, не случайно) с результатами, полученными Аристархом, о которых мы говорили в главе 7.

Различные усложнения – эпицикл, эквант и эксцентр – принесли астрономии Птолемея дурную славу. Однако не надо думать, что Птолемей просто упрямо усложнял свою систему, чтобы ошибочно представить Землю как неподвижный центр Солнечной системы. Эти усложнения, вдобавок к единственному эпициклу для каждой планеты и Солнца, движущегося без эпициклов, не имеют отношения к тому, вращается ли Земля вокруг Солнца или Солнце вокруг Земли. Они были необходимы из-за фактов, которые не были поняты до Кеплера: орбиты не являются правильными окружностями, Солнце не находится в центре этих орбит, а скорости планет не являются постоянными. Те же самые усложнения коснулись и первоначальной теории Коперника, который предполагал, что орбиты Земли и планет являются окружностями, а скорости – постоянными. К счастью, получилось очень хорошее приближенное решение, и даже самая простая версия теории эпицикла с одним эпициклом для каждой планеты и отсутствием эпицикла для Солнца работает гораздо лучше, чем гомоцентрические сферы Евдокса, Каллиппа и Аристотеля. Если бы Птолемей добавил только эквант и эксцентр для Солнца и каждой планеты, то расхождения между теорией и наблюдениями стали бы столь малы, что их невозможно было бы заметить доступными для того времени средствами.

Но это не разрешало противоречий между теориями планетного движения Птолемея и Аристотеля. Теория Птолемея лучше согласовывалась с наблюдениями, но она нарушала принцип физики Аристотеля, гласивший, что все небесные движения должны совершаться по круговым орбитам, центр которых совпадает с центром Земли. В самом деле, подозрительное движение планет по петлям эпициклов трудно принять на веру даже тому, кто не знаком ни с какой другой теорией.

Полторы тысячи лет продолжались споры между защитниками Аристотеля, которых часто называли «физиками» или «философами» и сторонниками Птолемея, которых обычно считали «астрономами» или «математиками». Те, кто был на стороне Аристотеля, часто признавали, что модель Птолемея лучше соответствует наблюдаемым данным, но ссылались на то, что такие вещи могут интересовать только математиков, а не тех, кто на самом деле хочет познать природу. Эту точку зрения выражает высказывание Гемина Родосского, который жил примерно в 70 г. до н. э. Его слова три века спустя процитировал Александр Афродисийский, а до нас они дошли в изложении Симпликия в комментариях к «Физике» Аристотеля. В этом высказывании сосредоточена сущность спора между натурфилософами (это наименование часто переводят как «физики») и астрономами:

«Заботой физики является проникнуть в сущность вещества небес и небесных тел, их силу и природу их появления и исчезновения; с помощью Зевса можно обнаружить правду об их размерах, формах и местоположении. Астрономы не пытаются задаваться этими вопросами, они проникают в предопределенную природу явлений, происходящих в небесах, показывая, что небеса в самом деле являются упорядоченным космосом, а также обсуждают формы, размеры и относительные расстояния Земли, Солнца, Луны, а также затмения, соединения небесных тел, измеряют качество и количество их путей. Поскольку астрономия касается изучения количества, размеров и качества их форм, она, по вполне понятным причинам, питает уважение к арифметике и геометрии. А что касается этих вопросов, только часть которых мы изложили, ученые в силах найти на них ответы, используя арифметику и геометрию. Астроном и натурфилософ, таким образом, во многих случаях пытаются достичь одной и той же цели, например, доказать, что Солнце – это тело порядочного размера, что Земля имеет форму шара, но они пользуются разными методами. Для натурфилософа доказательство любой его мысли идет из сущности небесных тел, или из их сил, или из того факта, что одни из них лучше других в силу своей природы, или из их происхождения и изменения, в то время как астроном спорит о свойствах их форм и размеров, или об особенностях движения, или времени, за которое они его совершают… В общем, астронома не заботит узнать, что по своей природе находится в покое, а что движется; он, скорее, должен предполагать, что остается на месте, а что движется, и размышлять, какие его предположения подтверждаются наблюдениями за небесами. Он должен взять свои первые изначальные принципы у натурфилософа, а именно – принципы о том, что танец небесных тел прост, регулярен и упорядочен; из этих принципов он сможет понять, что движение всех небесных тел осуществляется по кругу – и у тех, которых двигаются параллельными курсами, и у тех, орбиты которых наклонены»{124}124
  Barrie Fleet, Simplicius on Aristotle «Physics 2» (Duckworth, London, 1997), 291.23–292.29, рр. 47–48.


[Закрыть]
.

«Натурфилософы» Гемина имеют некоторые черты современных физиков-теоретиков, но с очень большими отличиями. Следуя за Аристотелем, Гемин видит их как ученых, опирающихся на базовые принципы, в том числе на телеологические: натурфилософ предполагает, что одни небесные тела «лучше в силу своей природы», чем другие. По Гемину, только астроном пользуется математикой в приложение к своим наблюдениям. Гемин даже представить себе не мог постоянный взаимообмен, который возникает между теорией и наблюдением. Современный физик-теоретик тоже делает выводы из базовых принципов, но в своей работе использует математику, сами принципы выражены математически и получены из наблюдений, и, конечно, никто не размышляет, какие из наблюдаемых явлений «лучше».

В отсылке Гемина к движению планет, которые «двигаются параллельными курсами, и тех, орбиты которых наклонены», легко узнать гомоцентрические сферы, вращающиеся по наклонным осям в схемах Евдокса, Каллиппа и Аристотеля, к которым Гемин, как верный последователь Аристотеля, естественно, должен быть лоялен. С другой стороны, Адраст Афродисийский, который примерно в 100 г. написал комментарий к «Тимею», и – поколение спустя – математик Теон из Смирны явно были сторонниками теории Аполлония и Гиппарха, пытаясь придать ей больший вес через истолкование эпициклов и деферентов как твердых прозрачных сфер на манер концентрических сфер Аристотеля. Правда, теперь эти сферы не являлись гомоцентрическими.

Некоторые авторы, столкнувшись с противостоянием различных теорий планет, опускали руки и заявляли, что люди и не предназначены для того, чтобы понимать небесные явления. Так, в середине V в. неоплатоник Прокл в комментариях к «Тимею» заявлял:

«Когда мы имеем дело с подлунным миром, мы довольны, поскольку нестабильность субстанции, которая его составляет, позволяет, в большинстве случаев, охватить умом то, что происходит. Но когда мы хотим узнать о небесных вещах, мы используем нашу способность к чувственному восприятию и призываем всю нашу изобретательность, достаточно далекую от правдоподобия… То, как обстоят дела, полностью показывается открытиями, сделанными по поводу этих небесных вещей – от разных гипотез мы приходим к одним и тем же заключениям по поводу одних и тех же объектов. Среди этих гипотез есть те, которые спасают явления с помощью эпицикла, другие – с помощью эксцентров, а третьи спасают явления с помощью вращающихся в противоположных направлениях сфер, лишенных планет. Разумеется, Бог знает об этом более определенно. Но что же до нас, мы должны удовлетвориться тем, что “близко подошли” к таким вещам, поскольку мы люди, которые могут говорить, только предполагая истину, и чьи речи похожи на сказки»{125}125
  Цит. по: Duhem, To Save the Phenomena, pp. 20–21.


[Закрыть]
.

Прокл не прав в трех своих утверждениях. Он упустил из виду, что теория Птолемея, которая использовала эпициклы и эксцентры, гораздо лучше «спасала явления», чем теория Аристотеля, основанная на гипотезе о вращающихся в противоположных направлениях гомоцентрических сферах. Есть еще один небольшой технический момент: ссылаясь на то, что есть гипотезы, которые «спасают явления с помощью эпициклов, другие – с помощью эксцентров», Прокл, кажется, не понимает, что в случае, когда эпицикл может сыграть роль эксцентра (см. примечание 27), речь идет не о разных гипотезах, а о разных способах описания того, что математически является одной и той же гипотезой. Более всего Прокл не прав в том, что труднее понять небесное движение, чем то, что происходит на Земле, под орбитой Луны. На самом деле все как раз наоборот. Мы знаем, как с превосходной точностью рассчитать движение тел в Солнечной системе, но мы все еще не умеем предсказывать землетрясения и ураганы. Но Прокл был не одинок. Мы еще увидим, как его ничем не оправданный пессимизм по поводу понимания движения планет повторится столетия спустя в работах Моисея Маймонида.

В первом десятилетии ХX в. обратившийся к философии физик Пьер Дюэм{126}126
  Там же.


[Закрыть]
встал на сторону Птолемея и его последователей, поскольку их модель лучше соответствовала наблюдениям. В то же время Дюэм не одобрял Теона и Адраста за попытки придать модели реалистичность. Возможно, из-за своей глубокой религиозности Дюэм старался свести роль науки к простому созданию математических теорий, которые согласуются с наблюдениями, и отвергал попытки что-либо объяснить. Мне такая точка зрения чужда, поскольку вся работа физиков моего поколения состоит, как мы обычно говорим, именно в объяснении, а не в описании{127}127
  См.: S. Weinberg, Can Science Explain Everything? Anything? in New York Review of Books 48, 9 (31 мая, 2001): 47–50. Reprint: Australian Review (2001); in Portuguese, Folha da S. Paolo (2001); in French, La Recherche (2001); The Best American Science Writing, ed. M. Ridley and A. Lightman (HarperCollins, New York, 2002); The Norton Reader (W. W. Norton, New York, December 2003); Explanations – Styles of Explanation in Science, ed. John Cornwell (Oxford University Press, London, 2004), 23–38; in Hungarian, Akadeemia 176, No. 8: 1734–1749 (2005); S. Weinberg, Lake Views – This World and the Universe (Harvard University Press, Cambridge, Mass., 2009).


[Закрыть]
. Огромный успех Ньютона был именно в том, что он объяснил движение планет, а не просто описал его. Ньютон не объяснял притяжение и считал, что не должен этого делать, но с объяснениями всегда так бывает – что-то остается на будущее.


Из-за своих нерегулярных перемещений планеты были бесполезны в качестве часов, календаря или компаса. Однако им нашли другое применение – в астрологии, лженауке, перенятой у вавилонян{128}128
  Связь астрологии с вавилонской традицией хорошо иллюстрируется словами из Оды XI первой книги «Од» Горация: «Ты гадать перестань: нам наперед знать не дозволено, // Левконоя, какой ждет нас конец. Брось исчисления // Вавилонских таблиц! Лучше терпеть, что бы ни ждало нас…» (пер. по кн.: Гораций. Оды. Эподы. Сатиры. Послания. – М.: Художественная литература, 1970. С. 57). На латыни это место звучит еще лучше: «Tu ne quaesieris – scire nefas – quem mihi, quem tibi, finem di dederint, Leuconoë, nec Babylonios temptaris numeros, ut melius, quidquid erit, pati…»


[Закрыть]
. Современное отчетливое разграничение астрономии и астрологии было далеко не таким отчетливым в античности и в Средневековье, поскольку мысль о том, что законы, которыми управляется движение звезд и планет, не имеют никакого отношения к делам людей, еще не была усвоена. Властители, начиная с династии Птолемеев, широко поддерживали изучение астрономии, надеясь, что астрология позволит им узнать будущее. Поэтому естественно, что астрономы посвящали много времени астрологии. В самом деле, Клавдий Птолемей является автором не только величайшего астрономического труда «Альмагест», но и трактата по астрологии «Четверокнижие» (др. – гр. Τετράβιβλος).

Но я не могу закончить рассказ о греческой астрономии на такой печальной ноте. Чтобы конец второй части этой книги был более счастливым, я процитирую слова Птолемея, передающие его восхищение астрономией:

«Знаю, что я смертен, знаю, что дни мои сочтены, но, когда я в мыслях неустанно и жадно прослеживаю пути светил, тогда я не касаюсь ногами земли: на пиру Зевса наслаждаюсь амброзией – пищей богов»{129}129
  Русский пер. цит. по: Нейфах Г. Гармония Божественного творения. Взаимоотношения науки и религии. www.polemics.ru


[Закрыть]
.


Страницы книги >> Предыдущая | 1 2 3 4 5 6 7 8 9 | Следующая
  • 0 Оценок: 0

Правообладателям!

Данное произведение размещено по согласованию с ООО "ЛитРес" (20% исходного текста). Если размещение книги нарушает чьи-либо права, то сообщите об этом.

Читателям!

Оплатили, но не знаете что делать дальше?


Популярные книги за неделю


Рекомендации