Электронная библиотека » Т. Рендюк » » онлайн чтение - страница 2


  • Текст добавлен: 27 мая 2022, 02:20


Автор книги: Т. Рендюк


Жанр: Медицина, Наука и Образование


Возрастные ограничения: +12

сообщить о неприемлемом содержимом

Текущая страница: 2 (всего у книги 10 страниц) [доступный отрывок для чтения: 3 страниц]

Шрифт:
- 100% +
Метаболизм и биохимия нервной системы

Важнейшим условием правильной работы структур нервной системы следует считать сохранность механизмов синаптической передачи информации. Контакты между нервными клетками, между нейронами и тканями осуществляются посредством синапсов – специализированных окончаний нервных волокон, способных продуцировать медиаторы (вещества, с помощью которых осуществляется передача информации между нейронами).



Нейромедиаторами (нейротрансмиттерами) могут быть низкомолекулярные белки, аминокислоты, моноамины и даже витамины. Количество, качество и специфичность нейротрансмиттеров определяют сущность биологических ответов различных структур на действие нейрогенных стимулов. Другими словами, нейромедиаторы способны регулировать не только проводимость нервного импульса, но и определять сущность реакции органов и систем на этот стимул. В разных отделах нервной системы работают различные медиаторы. В настоящее время известно около 30 активных веществ, которые принимают участие в синаптической передаче. К ним относятся хорошо изученные соединения: ацетилхолин, дофамин, норадреналин, серотонин, гамма-аминомасляная кислота (ГАМК), менее изученные нейропептиды (энкефалины, эндорфины) и такие аминокислоты как, например, глицин. Образование нейрональных сетей и контактов между структурами нервной и эндокринной системы, кроме механизма синаптической передачи, осуществляется непосредственно клеткой посредством специализированных рецепторов, встроенных в клеточную мембрану. Межнейрональные связи привлекают внимание исследователей, прежде всего, с точки зрения возможности воздействия на них с помощью лекарств. Известно, например, что при паркинсонизме нарушения движений обусловлены недостаточной продукцией дофамина специализированными клетками экстрапирамидной системы головного мозга. Включение в схему лечения препаратов, содержащих этот монамин, явно улучшает состояние больных и возвращает им способность к передвижению. Примером участия нейропептидов в работе нервной системы может служить хорошо изученный обмен серотонина – одного из основных нейромедиаторов.

Серотонин относится к биогенным аминам. Синтез этого активного соединения, как и других подобных нейромедиаторов, осуществляется из аминокислот посредством ферментативных реакций.



Серотонин, в частности, образуется из триптофана путем его преобразования посредством фермента 5-триптофангидроксилазы. Чрезвычайно важно, что подобные биохимические процессы всегда проходят при обязательном участии так называемых коферментов (веществ, в присутствии которых проявляют свою активность ферменты). В качестве коферментов в биохимических реакциях обычно выступают витамины и микроэлементы. Кроме того, коферментами могут быть вещества сложной органической природы, содержащиеся в растениях или образовавшиеся в результате внутреннего синтеза. Если рассматривать пример синтеза серотонина, то это птерин (пиримидиновое соединение). В синтезе других нейромедиаторов принимает участие флавин – соединение, близкое к витаминам. Представляется очень важным, что вспомогательные химические соединения, выполняющие роль коферментов, часто имеют сложную структуру, возникновение которой связано с биоорганическим синтезом растений. Витамины, гликопротеиды, флавоноиды, извлеченные из растений, нередко обнаруживают свойства, которые не удается получить у их синтетических аналогов. Это может быть связано с существованием изомеров молекул или с образованием сложных взаимосвязей молекулярных структур.

Серотонин является важнейшим нейромедиатором, который наряду с норадреналином определяет работу центральных вегетативных структур головного мозга

(гипоталамус-гипофиз). С нарушениями синтеза и метаболизма серотонина могут быть связаны нейроэндокринные расстройства, нарушения двигательных и познавательных функций. Установлено, что некоторые виды вегетативно-эмоциональных расстройств (депрессии) обусловлены особенностями метаболизма этого нейротрансмиттера. Назначение лекарств, пополняющих запасы серотонина, задерживающих его разрушение, как правило, улучшает самочувствие таких пациентов. В настоящее время с возможностью восстановления синаптической передачи связывают надежды на успешное лечение таких тяжелых заболеваний как болезнь Альцгеймера или сосудистая деменция.

Мы рассмотрели только один из многочисленных нейротрансмиттеров. Подобные цепи биохимических реакций характерны для процессов синтеза других нейромедиаторов и регуляторных аминов. Все они образуются из различных аминокислот в присутствии коферментов. В качестве коферментов, как правило, выступают витамины и микроэлементы. Микроэлементы могут быть специфичны для разных ферментных систем. Для одних ферментов это – магний, для других железо, для третьих молибден. Флавоноиды играют не последнюю роль в этих процессах.

Однако, кроме «внешней» работы у структур нервной системы есть и «внутренние» задачи, которые заключаются в необходимости поддержания высокого уровня метаболических процессов, обеспечивающих жизнедеятельность нейронов. Дело в том, что ткани нервной системы потребляют много кислорода, глюкозы и отличаются высокой скоростью обмена веществ. Очевидно, что для синтеза нейромедиаторов, пептидов и гормонов необходимы аминокислоты, фосфолипиды. Для работы ферментных систем нужны витамины и коферменты.

На структуру и биохимию тканей нервной системы оказывают влияние инфекционные, токсические агенты, патологические процессы, связанные с травмами, воздействием ионизирующего излучения, недостаточным снабжением кровью. При действии различных патогенных факторов, прежде всего, нарушается структура и функция мембран нервных клеток. Основной механизм такого повреждение – перекисное окисление липидов клеточных мембран. В норме этот процесс играет защитную роль, окисляя чужеродные вещества, регулируя функции клеточных мембран. Он контролируется антиокислительной системой с ее специфическими ферментами (супероксидисмутаза) и веществами, которые подавляют окисление (а – токоферол, аскорбиновая кислота, убихинон, восстановленный глютатион и др.). Но при недостатке кислорода, токсических и инфекционных повреждениях процессы перекисного окисления липидов выходят из-под контроля, становятся избыточными и влекут за собой цепи биохимических реакций, нарушающих нормальный обмен веществ в тканях и функцию клеточных мембран. Образующиеся перекиси и продукты свободнорадикального окисления сами обладают токсическими свойствами и усугубляют уже существующие нарушения.



Клеточная мембрана состоит из двух слоев липидов, соединенных протеинами. Повреждение тонкого липидного слоя неизбежно приводит к разрушению специфических рецепторов и изменению проницаемости мембраны. Эти процессы усиливаются фосфолипазным гидролизом, в результате которого образуется значительное количество высших жирных кислот из разрушенных мембран нервных клеток. Накопление высших жирных кислот усиливает токсический эффект повреждения, нарушает функции митохондрий (энергетических станций клетки), что приводит к энергетическому дефициту. Энергетический дефицит нейронов возникает в результате недостаточного поступления кислорода и нарушения функции митохондрий, в которых синтезируется основной носитель энергии (аденозинтрифосфорная кислота – АТФ). Изменение проницаемости мембраны сопровождается входом в клетку ионов натрия и кальция. Чрезмерное содержание кальция внутри нейрона приводит к его дегенерации, дистрофии, гибели.

Особенности кровоснабжения головного мозга

Потребность головного мозга в кровоснабжении примерно в 10 раз выше, чем потребность мышц или внутренних органов. Снижение магистрального кровотока по сонным артериям или нарушение микроциркуляции немедленно сказываются на обменных процессах в тканях нервной системы. Факт недостаточности поступления крови к тканям принято характеризовать общим термином «ишемия».



Головной мозг получает кровь через четыре крупные артерии: две внутренние сонные, которые внутри мозга разветвляются, образуя крупные средние мозговые, и две позвоночные. В основании мозга все крупные артерии, посредством соединительных артерий, образуют Виллизиев круг, который обеспечивает бесперебойное кровоснабжение любых участков нервной ткани, несмотря на выключение одной из крупных артерий.

Обеспечивает, но не гарантирует. В некоторых клинических ситуациях (тромбоз, кровопотеря, разрыв стенки артерии) внезапные изменения приводят к повреждениям мозга.

Существуют механизмы, поддерживающие стабильность мозгового кровообращения в широком диапазоне изменений артериального давления, – ауторегуляция. Объем мозгового кровотока остается стабильным при максимальном артериальном давлении в диапазоне 70-160 мм рт. ст. Артериальное давление ниже 50–60 мм рт. ст. является критической величиной, ниже которой головной мозг страдает от ишемии. Однако и повышение систолического кровяного давления за пределы 160 мм рт. ст. приводит к спазму внутримозговых артерий и нарушению мозгового кровообращения. Именно поэтому сосудистый фактор считается наиболее значимым в механизмах повреждения нервной системы. Сосудистые причины, способные вызвать нарушения обменных процессов, могут быть связаны с атеросклерозом, гипертонической болезнью, заболеваниями крови и другими весьма распространенными в клинической практике обстоятельствами.

Итак, в общих чертах, молекулярные и клеточные механизмы повреждения нервных тканей при воздействии агрессивных факторов внешней и внутренней среды, носят универсальный характер. Они заключаются в активации процессов перекисного окисления липидов, повреждении мембран клеток, нарушении энергетического баланса и ионного обмена. Так формируются патологические изменения нервной системы, которые приводят к клиническим проявлениям в виде отдельных симптомов и заболеваний. В случае развития острой ишемии повреждения нейронов и клеток нейроглии заканчиваются некрозом – распадом. В конце прошлого века была установлена роль и другого механизма гибели нейронов. Апоптоз (программированная клеточная смерть) – это постепенное, планомерное разрушение клеток, которое больше похоже на демонтаж сложных конструкций с утилизацией деталей. По мнению большинства современных исследователей, апоптоз является активным процессом, требующим затрат энергии и белкового синтеза. Установлена связь этого процесса с воспалительными реакциями, активацией ферментов. Известно, что активации процессов планомерного разрушения нейронов способствует хроническая ишемия. Апоптоз участвует в процессах обновления тканей, но в некоторых случаях, процессы разрушения преобладают над процессами восстановления и тогда количество активных клеток уменьшается, а сохранившиеся структуры подвергаются медленной дегенерации. Так протекают нейродегенеративные заболевания нервной системы, такие как болезнь Альцгеймера. Сущность биохимических патологических процессов, характерных для болезни Альцгеймера, заключается в нарушениях синтеза белка (амилоида), что приводит к грубым повреждениям нейронов.

В настоящее время установлены некоторые биохимические механизмы, позволяющие замедлить или остановить гибель нейронов. Один из таких механизмов основан на принципах нормализации концентрации кальция внутри клетки. Очевидно, что активация этого механизма возможна только при сохранении функции клеточных мембран.

Таким образом, нервная система представляет весьма тонкую и важную структуру, которая выполняет важнейшие функции управления и регуляции работы всех внутренних органов и систем в течение всей жизни человека. Восприятие окружающего мира, движение, речь, обучение, память, чувства, познание, планирование будущего – это основные функции нервной системы. Нервная ткань, состоящая из уязвимых нейронов и требовательных клеток нейроглии, содержащая большое количество липидов и регуляторных пептидов, чувствительна к качественному составу крови, токсическим веществам, недостатку кислорода. Элементарный дефицит аминокислот, фосфолипидов, витаминов немедленно сказывается на функции центральной и периферической нервной системы. Проблема восполнения дефицита важнейших веществ, принимающих участие в метаболизме нейронов, становится еще более актуальной при заболеваниях нервной системы.

Глава 2
Механизмы повреждения нервной системы

Сосудистые факторы

По распространенности в популяции и влиянию на состояние нервной системы наиболее значимые механизмы повреждения связаны с сосудистыми факторами. Патологические процессы и заболевания, обусловленные сосудистыми механизмами повреждения, не исчерпываются атеросклерозом, артериальной гипертонией и ишемической болезнью сердца. Большую роль в развитии хронической и острой ишемии мозга играют свойства крови. Анемия (малокровие), эритремия (избыточное содержание эритроцитов), тромбофилия (наклонность к образованию тромбов) – наиболее распространенные гематологические синдромы, оказывающие непосредственное влияние на состояние мозгового кровообращения. Можно выделить три уровня участия патологии сердечно-сосудистой системы в проблеме нарушений кровообращения нервной ткани:

1. Нарушения центральной гемодинамики (работа сердца).

2. Нарушения на уровне крупных магистральных артерий.

3. Микроциркуляторные расстройства.

Очевидно, что потребности головного мозга в кровоснабжении могут быть удовлетворены только при условии эффективной работы сердца. Главный признак нормальной работы сердца – это сохранение его насосной функции. Судить о насосной функции можно по объемным показателям (ударный объем крови – УОК, минутный объем крови – МОК, фракция выброса – ФВ). В норме УОК (объем крови, которое выбрасывает сердце за одно сокращение) составляет 60–80 мл. МОК у здорового человека достигает 4,0–5,5 л. Не менее 22 % этого объема потребляет головной мозг. Снижение эффективной работы сердца характеризуется снижением МОК и фракции выброса. Сердечная недостаточность, в большинстве клинических случаев, обусловлена повреждениями миокарда в результате недостаточного коронарного кровообращения (атеросклеротический кардиосклероз). Расширение камер сердца, которые связаны с изменениями внутрисердечной гемодинамики (пороки сердца, нарушения работы клапанного аппарата), нередко приводит к снижению его эффективной работы. Сердечная недостаточность может быть обусловлена диффузными нарушениями обмена веществ в миокарде с ослаблением его сократительной способности (кардиомиопатии). Но чаще, насосная функция сердца нарушается в результате увеличения массы миокарда (гипертрофии).



Увеличение массы сердечной мышцы приводит к увеличению потребности в кровоснабжении, при этом камеры сердца медленнее расслабляются (диастолическая дисфункция) и хуже сокращаются (систолическая дисфункция). Гипертрофия левого желудочка сердца характерна для гипертонической болезни, ведь при высоком артериальном давлении сердце выполняет большую работу, а значит, увеличивается масса миокарда.

Оптимальная работа сердца возможна только при сохранении правильного ритма, который обеспечивает последовательное сокращение предсердий и желудочков с частотой 60–90 в 1 мин. Последовательная работа камер обеспечивается проводящей системой сердца, которая представлена нервными волокнами и узлами (нейронами).



Известно, что проводящая система сердца находится под влиянием вышестоящих отделов центральной нервной системы, в частности, водителя ритма в продолговатом мозге и вегетативных центров гипоталамуса. В патологических случаях проводящая система сердца чаще страдает от нарушений коронарного кровоснабжения. Существует и другая сторона пробелы нарушений ритма сердца: клетки миокарда, страдающие от ишемии, от системных нарушений обмена веществ, изменяют свою возбудимость. В последние годы установлено, что высокая возбудимость миоцитов может быть обусловлена недостатком в их мембранах полиненасыщенных жирных кислот (эйкозапентаеновой, докозагексаеновой). Результатом таких нарушений становится электрическая нестабильность миокарда. В исследовании GISSI-P, одном из крупных независимых испытаний, в которое было включено 11000 пациентов, показано, что приём достаточных доз Омега-3 более чем на 20 % снижает общую смертность, на 30 % – смертность от сердечно-сосудистых причин, на 45 % – число эпизодов фатальных аритмий!



С учетом высокой потребности головного мозга в снабжении кровью патологические изменения со стороны сердца играют важнейшую роль в патогенезе заболеваний нервной системы. Острые нарушения мозгового кровообращения, дисциркуляторная энцефалопатия – широко распространенные в популяции заболевания, связь которых с патологическими изменениями сердца не вызывает сомнений.

Необходимо отметить, что сердце – второй по объему потребитель крови после головного мозга. Чрезвычайно велики энергетические потребности миокарда, которые осуществляются при значительном потреблении убихинона (кофермент Q-10).

Нарушения кровообращения на уровне крупных магистральных артерий играют наиболее существенную роль в механизмах ишемического повреждения сердца и мозга. В подавляющем большинстве клинических случаев эти нарушения обусловлены атеросклерозом.



Наиболее демонстративные проявления атеросклероза обусловлены формированием атером – атеросклеротических бляшек, суживающих просвет артерии. Иногда такие бляшки существенно уменьшают просвет артерии (стеноз) или вовсе перекрывают его (окклюзия). Очевидно, что подобное механическое препятствие снижает объемный кровоток и сказывается на кровоснабжении тканей. Кроме того, атеросклеротические бляшки могут разрушаться, увеличиваться в размерах за счет воспаления или кровоизлияния (активация атером). Наконец, неровная структура бляшки способствует образованию тромба, что нередко приводит к закупорке артерии (ате-ротромботический инсульт).

По современным представлениям атеросклероз является системным патологическим процессом, который характеризуется уплотнением артериальных стенок за счет нарушения функции эндотелия (внутренняя оболочка артерии) и уплотнением средней оболочки (медиа) и образованием атером. Атеросклероз – это типичный гетерогенный патологический процесс, не имеющий одной причины. Развитие атеросклероза обусловлено генетическими особенностями, экологическими факторами, вредностями (курение, злоупотребление алкоголем), заболеваниями (артериальная гипертония, сахарный диабет). Считается, что атерогенез тесно связан с нарушениями липидного обмена – с повышением концентрации сывороточного холестерина увеличивается вероятность изменений сосудистой стенки. Установлено, что значительную роль в развитии этого процесса играет дислипидемия (увеличение в крови липопротеидов низкой плотности и триглицеридов). Хотя линейной зависимости изменений сосудистой стенки от уровня холестерина не существует, многочисленные специальные исследования убедительно демонстрируют пользу от снижения уровня холестерина и липопротеидов низкой плотности в крови. Эта польза выражается в достоверном уменьшении случаев инсульта и инфаркта миокарда.

Итак, атеросклероз приводит к уплотнению и утолщению сосудистой стенки. Это патологическое состояние является результатом сложных обменных и иммунных процессов, которые завершаются фиброзом. Фиброз – это и есть склероз, морфологическая сущность которого состоит в замене активной мышечной ткани артериальной стенки на соединительнотканную, рубцовую. Результатом такой перестройки становится потеря способности артерии к расширению. Узкие артерии, не способные обеспечить адекватное кровоснабжение, особенно в периоды возрастающих потребностей (физическая или эмоциональная нагрузка), становятся причиной хронической ишемии. Последние годы исследователи уделяют большое внимание фактору жесткости артерий (ригидность). Артериальная ригидность, связанная с уплотнением сосудистой стенки, не позволяет смягчать пульсовую волну, выравнивать артериальное давление, что способствует развитию гипертонии.

Таким образом, исходом патологического процесса, который включает обменные, иммунные, механические и другие факторы, становится уплотнение соединительной ткани. Соединительная ткань и в норме присутствует во всех органах, включая крупные артерии, поскольку она образует каркас любой структуры. Она выполняет опорную и трофическую функцию. Соединительная ткань состоит из нескольких видов клеток, наиболее значимыми из которых являются фибробласты – клетки, продуцирующие коллаген. Эластичная структура соединительной ткани обеспечивается гликопротеинами – сложными белками, в синтезе которых принимают участие поли– и моносахариды (глюкоза, фруктоза, глюкозамин и др.). Основу межклеточного вещества соединительной ткани составляет гиалуроновая кислота – по химической структуре глюкоаминогликан. При атеросклерозе соединительная ткань замещает специализированные клетки органа. Кроме того, изменяются ее свойства – она становится более плотной в связи с нарушениями синтеза коллагена и потери эластичности матрикса. Восстановление эластичности крупных артерий является одним из наиболее перспективных направлений лечения пациентов, страдающих от осложнений атеросклероза. В настоящее время с этой целью применяются антиоксиданты, сосудорасширяющие вещества и средства, улучшающие микроциркуляцию. Кроме того, определенную эффективность демонстрируют различные методы оптимизации липидного и углеводного обмена. Перспективным считается направление, предполагающее использование растительных ферментов близких к папаину, для улучшения свойств соединительной ткани.

Микроциркуляторные расстройства, оказывающие существенное влияние на состояние нервной системы, обусловлены преимущественно изменениями свойств крови.

Как известно, кровь состоит из жидкой части (плазма) и клеток крови (эритроцитов, лейкоцитов, тромбоцитов). Эффективность микроциркуляции определяется проходимостью капилляров – сети тончайших периферических сосудов, в которых и происходит обмен газами и веществами меду тканями и кровью. Общая площадь капилляров у человека достигает 50 квадратных метров. Поэтому состояние микроциркуляции оказывает существенное влияние на состояние здоровья.

Тонкие капилляры по диаметру меньше таких крупных клеток крови как эритроциты.



Поэтому проходимость капилляров определяется способностью эритроцитов к деформации – их пластичностью. На состояние микроциркуляции оказывают влияние и другие свойства крови, например, вязкость плазмы, которая зависит от концентрации глюкозы, белков и жиров. Однако эритроциты – это главное, что влияет на реологические свойства крови. Если их слишком много (эритремия) или изменены свойства их мембран, то микроциркуляторный блок может существенно сказываться на кровоснабжении сердца и головного мозга. Повреждение мембран эритроцитов может быть связано с токсическими факторами (курение, загрязнение воздуха и воды) и нарушениями обмена веществ. Среди метаболических расстройств наиболее значимы дислипидемии и нарушения углеводного обмена. Микроциркуляция может страдать и вследствие наклонности крови к внутрисосудистому образованию тромбов. Нарушение равновесия системы гемостаза в сторону гиперкоагуляции обычно связано с системным повреждением сосудов (атеросклероз), сгущением крови, действием токсических и инфекционных факторов. Образование тромбов является чрезвычайно значимым механизмом сосудистых повреждений сердца и мозга, поскольку в большинстве клинических случаев инсульт или инфаркт миокарда становятся следствием закупорки сосуда тромбом (атеротромбоз). В этой связи применение антитромботических средств остается одним из наиболее эффективных направлений профилактики сосудистых повреждений нервной системы.


Страницы книги >> Предыдущая | 1 2 3 | Следующая
  • 0 Оценок: 0

Правообладателям!

Данное произведение размещено по согласованию с ООО "ЛитРес" (20% исходного текста). Если размещение книги нарушает чьи-либо права, то сообщите об этом.

Читателям!

Оплатили, но не знаете что делать дальше?


Популярные книги за неделю


Рекомендации