Автор книги: Владимир Жабцев
Жанр: Сделай Сам, Дом и Семья
Возрастные ограничения: +12
сообщить о неприемлемом содержимом
Текущая страница: 3 (всего у книги 13 страниц) [доступный отрывок для чтения: 4 страниц]
Трехфазный переменный ток
В данное время в мировой промышленной практике широко распространен трехфазный переменный ток, который имеет множество преимуществ перед однофазным током. Трехфазной называют такую систему, которая имеет три электрические цепи со своими переменными эдс с одинаковыми амплитудами и частотой, но сдвинутые по фазе относительно друг друга на 120° или на 1/3 периода. Каждая такая цепь называется фазой.
Способ получения переменного тока при вращении обмотки в постоянном магнитном поле.
Вверху на рисунке показан принцип получения однофазного тока и его форма. Здесь рамка вращается в поле постоянного магнита и в ней индуцируется синусоидальная эдс. Если мы возьмем 3 рамки, расположенные под углом 120° друг к другу (рис. внизу), то в результате получим три эдс, которые сдвинуты относительно друг друга по фазе на 120°. При этом предполагаем, что вращение происходит с постоянной скоростью. Если считать, что эдс первой фазной обмотки el начинается в начале периода, т. е. t = 0, то:
e1 = Em1·sinωt, e2 = Em2·sin (ωt – 120°),
e3 = Em3·sin (ωt + 120°).
Способ получения трехфазного тока на современных генераторах.
В современных генераторах фазные обмотки размещены в неподвижной части генератора – статоре, а магнитное поле создается вращающимся с одной скоростью ротором, который представляет собой электромагнит. Ниже представлены векторная диаграмма и график трехфазного тока.
В общем случае для соединения трехфазного генератора переменного тока к потребляющему устройству нужно иметь шесть проводов. Однако существуют и более экономичные способы соединения: звезда и треугольник. Обычно генератор трехфазного тока изображают в виде 3 статорных обмоток, которые располагаются друг к другу под углом 120°. Начала обмоток принято обозначать буквами А, В, С, а концы – X, Y, Z.
Соединение трехфазных генераторов способом «звезда».
В случае, когда концы статорных обмоток соединены в одну общую точку (нулевая точка генератора), способ соединения называется «звезда». В этом случае к началам обмоток присоединяются провода, называемые линейными. Точно так же можно соединять и приемники. В этом случае провод, который соединяет нулевую точку генератора и приемников, называется нулевой. Данная система трехфазного тока имеет два разных напряжения: между линейным и нулевым проводами (фазное напряжение) и между двумя линейными (линейное напряжение). Линейное напряжение будет в √3 раз больше фазного, т. е.
Uл = √3Uф.
Пример соединения треугольником.
При использовании данного способа соединения конец X первой обмотки генератора подключают к началу В второй его обмотки, конец У второй обмотки – к началу С третьей обмотки, конец Z третьей обмотки – к началу А первой обмотки. При данном способе соединения фазных обмоток и подключении трехфазного генератора к трехпроводной линии линейное напряжение по своему значению сравнивается с фазным:
Uф = Uл.
Электрические машины и приборы
Чтобы привести в движение любой исполнительный механизм, нужен двигатель, преобразующий какой-либо вид энергии в механическую, а также система механических передач между валом двигателя и исполнительным механизмом. До конца XIX в. в промышленности использовали в основном паровые и водяные двигатели. В настоящее время они практически полностью вытеснены электродвигателями.
Применение электродвигателей для привода в движение исполнительных механизмов (бытовой и промышленной аппаратуры) обусловлено рядом их преимуществ перед другими двигателями. Среди этих преимуществ можно отметить возможность изготовления электродвигателей любой мощности, простоту устройства и управления, надежность эксплуатации, возможность автоматизации.
Электрические машины подразделяются на два вида. Те, которые преобразовывают электрическую энергию в механическую, называются двигателями. Машины, трансформирующие механическую энергию в электрическую, называются генераторами. Действие двигателей и генераторов основано на явлении электромагнитной индукции.
Генераторы переменного тока
Как уже говорилось выше, генераторы преобразовывают механическую энергию в электрическую. Вращающийся ротор генератора расположен в магнитном поле, на его поверхности выполнена обмотка, в которой индуцируется эдс. Если к концам обмотки присоединить резистор, то в нем возникнет ток. Это описание принципа действия простейшего генератора переменного тока. Но устройство данного типа электрической машины должно быть намного сложнее, потому что с его клемм берется довольно высокое напряжение. В связи с этим нужно выполнять большое количество витков обмотки и специальным способом соединять их между собой.
Однако при неподвижном индукторе и вращающихся витках эксплуатация генератора становится громоздкой и неудобной. Данное явление происходит потому, что при помощи подвижных контактов весьма проблематично забирать от генератора выработанную энергию, поскольку ток имеет высокое напряжение, из-за которого контакты начинают искрить. В связи с этим в генераторах переменного тока обмотка выполняется неподвижной, а вращается индуктор. Неподвижная часть машины стала называться статором, а подвижная – ротором.
Обычно статор изготавливают из листовой стали. Это делается для того, чтобы погасить вихревые токи. На магнитные полюса ротора устанавливают обмотки, проводящие электрический ток, который подводят к обмоткам через щетки и кольца от внешнего источника тока. Частота тока, вырабатываемого генератором переменного тока, составляет 50 Гц.
Генераторы постоянного тока
Данные машины – это простые индукционные генераторы, имеющие коллектор. Коллектор преобразовывает переменное напряжение на щетках в постоянное.
Электродвигатель постоянного тока
Простой электрический двигатель служит для превращения электрической энергии в механическую. Его действие основано на движении проводника с током в постоянном магнитном поле. Магнитное поле, в котором вращается якорь такого двигателя, создается при помощи сильного электромагнита, который получает ток от того же источника, что и обмотки якоря. Пока есть электрический ток, якорь будет вращаться. Если на ось якоря посадить шкив или соединить ось якоря с осью какой-нибудь машины, можно вращение якоря использовать для привода этой машины в движение. То есть за счет электрической энергии будет выполняться механическая работа.
Асинхронные электродвигатели
Устройство асинхронного электродвигателя основано на вращающемся магнитном поле. Электродвигатель, в котором вращающееся магнитное поле взаимодействует с током в обмотках ротора, выработанным этим же магнитным полем, называется асинхронным (неодновременным). Трехфазные асинхронные двигатели имеют 2 основные части: неподвижную – статор и подвижную – ротор.
Чтобы увеличить вращающий момент двигателя и уменьшить потери энергии, которая тратится на нагрев двигателя, необходимо создать такие условия, при каких токи будут индуцироваться не во всей толще ротора, а только на его поверхности. Для этих целей ротор изготавливают не в виде сплошного цилиндра, а из стальных листов, изолированных друг от друга. Данные листы выполняются с пазами, в которые укладывают медные или алюминиевые прутки. Концы этих прутков впаиваются в кольца. Ротор становится похожим на беличье колесо, вследствие чего этот вид роторной обмотки и назвали именно так – беличье колесо. Из-за такого способа изготовления ротор становится короткозамкнутым. Асинхронный двигатель с короткозамкнутым ротором – это самый простой электродвигатель, широко применяющийся в промышленности и быту.
Трансформаторы
Трансформатор – это аппарат, при помощи которого переменный ток одного напряжения трансформируется в переменный ток другого напряжения. Устройство трансформатора основано на явлении электромагнитной индукции. Трансформатор представляет собой замкнутый стальной сердечник, изготовленный из пластин. На сердечнике укреплены две катушки с обмотками из проволоки, имеющими разное число витков. Обмотки обладают слабым сопротивлением и большой индуктивностью.
Трансформаторы бывают повышающими и понижающими. В первом случае вторичная обмотка имеет большее число витков, во втором – меньшее. Трансформатор является самым оптимальным аппаратом по преобразованию энергии. КПД современных мощных трансформаторов порой достигает 94–99 %.
Электроизмерительные приборы
Электроизмерительные приборы предназначены для замеров всевозможных электрических величин. Условно их можно разделить на приборы непосредственной оценки и приборы сравнения. В приборах первой группы шкала размечена в тех единицах, которые непосредственно измеряются путем отклонения стрелки. К этой группе относятся амперметры, вольтметры, омметры и пр. В приборах второй группы применяются физические явления, которые перемещают подвижную систему прибора и тем самым создают вращающий момент. Он может быть создан при взаимодействии магнитного поля постоянного магнита и магнитного поля катушки, а также магнитного поля катушки с током и ферромагнетика и т. д.
В зависимости от того, какой именно физический процесс применен в приборе, их подразделяют на приборы магнитоэлектрической, электромагнитной, электродинамической, индукционной, термоэлектрической и других систем.
Каждый прибор при замерах имеет свои погрешности. Допущенные погрешности в зависимости от свойств и качества прибора определяют класс точности данного прибора. Класс точности, как правило, указан на шкале или в паспорте прибора. Всего существует 8 классов точности.
Самое широкое распространение имеют приборы, действие которых основано на электромагнитной системе. Данное техническое устройство представляет собой неподвижную катушку, включаемую в цепь. Внутри катушки имеется сердечник, изготовленный из мягкого железа и насаженный эксцентрично на ось, на которой закреплены также указательная стрелка и спиральная пружина.
Пружина создает противодействующий момент и возвращает стрелку в исходное положение при отсутствии тока. Имеется также поршень, двигающийся в воздушном цилиндре. Поршень играет роль демпфера (воздушного успокоителя).
Приборы электромагнитной системы предназначены для измерения силы постоянного и переменного тока. У приборов с железным сердечником, как правило, класс точности невысок. Их применяют для замеров на щитах и при измерениях, не требующих высокой точности. В условиях лабораторий обычно используют приборы с сердечниками, выполненными из сплава железа с никелем.
Положительными качествами такого рода приборов являются пригодность замеров в цепях как постоянного, так и переменного тока, устойчивость к перегрузкам по току, простота изготовления и хорошая механическая прочность. Минусом данных технических устройств считаются неравномерность шкалы, возникновение остаточного намагничивания сердечника, а также зависимость замеров от внешних магнитных полей.
Полупроводниковые электрические приборы
Полупроводниковыми называются приборы, работа которых основана на электронных процессах, возникающих в полупроводниках. В самих полупроводниках обычно свободных электронов очень мало, в связи с этим собственная проводимость невелика. В случае, когда в полупроводники вводятся какие-либо примеси, возникает дополнительная примесная проводимость, которая обуславливает силу тока.
Полупроводники бывают n-типа и р-типа. В полупроводниках первого типа содержатся такие примеси, атомы которых легко отдают свои электроны, тем самым увеличивая число свободных электронов в полупроводнике. В полупроводниках второго типа примеси способствуют образованию дырок, увеличивая дырочную проводимость. То есть можно сказать, что полупроводники бывают с электронной и дырочной проводимостью.
Если изготовить сплав из полупроводников разных типов, то на границе спая образуется р-n-переход. В случае прямого подключения такого полупроводника к электрической цепи (p-тип к положительному полюсу, а n-тип – к отрицательному), его проводимость будет высокой, а сопротивление – небольшим. При обратном включении (p-тип к отрицательному, а n-тип – к положительному) ток будет минимальным из-за большого сопротивления р-n-перехода.
Полупроводниковые приборы, преобразующие электрическую энергию и имеющие один р-n-переход и два вывода, называются диодами. Обычно диоды изготавливаются из германия, кремния и арсенида галлия. По назначению их подразделяют на выпрямительные, детекторные, переключательные, стабилизаторы напряжения, или стабилитроны.
Полупроводниковые выпрямители надежны в работе, имеют длительный срок службы. Их большим минусом является то, что они имеют ограничения по температуре, т. е. работают в интервале от -70 до +125 °C.
Если полупроводник осветить большим количеством света, то его электрическая проводимость возрастет в разы. Это произойдет за счет разрыва связей и образования свободных электронов и дырок. Такое явление называется фотоэлектрическим эффектом. Приборы, действие которых основано на фотоэлектрическом эффекте, называются фоторезисторами или фотосопротивлениями. Положительными качествами фоторезисторов являются миниатюрность размеров, высокая чувствительность при замерах и т. д. Эти качества дают возможность использовать данные устройства во многих областях науки и техники для учета и измерения слабых световых потоков. Фоторезисторы применяют для определения качества поверхностей, контроля размеров изделий и пр. Они представляют собой полупроводниковый прибор с двумя р-n-переходами. Для пояснения принципа работы рассмотрим один из видов транзисторов, изготовленный из германия или кремния с добавлением донорных и акцепторных примесей. Примеси распределены таким образом, что между двумя слоями полупроводника p-типа возникает очень тонкая прослойка полупроводника n-типа.
Вышеуказанная тонкая прослойка называется основанием или базой. В полупроводнике образуются два р-n-перехода, прямые направления которых противоположны. Наличие трех выводов от областей с разными типами проводимости дает возможность использовать транзисторы во многих электрических схемах. В настоящее время транзисторы очень широко распространены в радио– и электротехнике.
Аккумуляторы
Приборы, способные накапливать и длительное время хранить электрическую энергию называются аккумуляторами. Работа этих устройств основана на принципе обратимости химических реакций. Самыми распространенными считаются кислотные аккумуляторы. Пластины аккумулятора изготавливаются из свинца в виде решеток и покрываются активной массой. Пластины, являющиеся положительным полюсом аккумулятора, представляют собой ряд скрепленных между собой параллельных, поставленных вертикально ребер, которые образуют ячейки. В эти ячейки укладывается активная масса, состоящая из оксида свинца. Отрицательные пластины выполняются в виде свинцовой решетки с ячейками, заполненными активной массой из чистого свинца. В качестве раствора в аккумуляторах используется серная кислота, растворенная в воде. Каждый аккумулятор имеет свой паспорт, в котором указываются предельные значения силы тока при зарядке и разрядке.
Электрические лампы накаливания
Лампы накаливания предназначены для освещения помещений в темное время суток. Принцип действия ламп основан на свечении нагретых током проводников. Лампа состоит из стеклянной колбы, из которой откачан воздух, и металлического цоколя. Внутри колбы на специальных крючках закреплена нить накаливания, выполненная из тугоплавкого металла (вольфрам, осмий, тантал и пр.) или сплавов тугоплавких металлов. Концы нити накаливания припаяны к двум тонким проволокам. Один наружный конец этих проволок припаян к металлическому цоколю, а другой – к винтовой нарезке. Как правило, нить накаливания разогревается до температуры в 2000 °C. Это явление позволяет лампе ярко светиться.
Бывают лампы, имеющие в колбе газ, не поддерживающий горения. Для этих целей обычно применяют азот или аргон. Газ в колбе нужен для того, чтобы нить накаливания как можно дольше не распылялась при разогреве. Это дает возможность поднимать температуру накаливания нити до 2900 °C. На каждой лампе имеется соответствующая маркировка, в которую входят цифры, указывающие напряжение лампы и потребляемую ею мощность.
Люминесцентные дампы
В производстве люминесцентных ламп вместо колб используют стеклянные трубки, покрытые изнутри люминофором. С двух концов в трубке имеются вольфрамовые спирали, впаянные в трубку. На спирали нанесена специальная оксидная паста, дающая возможность электронам покидать спирали. Внутри стеклянная трубка заполнена парами ртути и аргоном. Длина и диаметр трубки зависят от напряжения и мощности лампы. Кроме этого, в лампе имеется стартер, представляющий собой ионное реле, выполненное в виде двух электродов, запаянных в наполненную неоном колбу. Один из электродов стартера – биметаллическая пластина.
После того как лампа включена в сеть, между электродами стартера возникает разряд, нагревающий биметаллическую пластину. Нагреваясь, она изгибается и замыкает второй контакт. Ток, проходящий по цепи, нагревает электроды лампы до температуры 800—1000 °C. Биметаллическая пластина в этот момент остывает, выпрямляется, и цепь размыкается. Для того чтобы в момент размыкания цепи между электродами возникла большая эдс самоиндукции, создающая электрический разряд в парах аргона и ртути, используется дроссель. Но при всей своей пользе дроссель понижает КПД лампы. Для того чтобы избежать этого, используют конденсатор емкостью от 4 до 8 мкФ. При этом КПД возрастает до 95 %.
Для погашения помех в радиоаппаратуре, возникающих в связи с работой люминесцентной лампы, в электрическую цепь включают (параллельно стартеру) конденсатор емкостью 0,06 мкФ. Люминесцентные лампы рассчитаны на напряжение 220 В мощностью 30, 40, 80 и 125 Вт.
Электротехнические изделия и материалы
При монтаже наружных и внутренних проводок используют всевозможные провода и кабели, передающие электроэнергию от уличной электросети к электроприбору. Кроме того, здесь же применяется различная аппаратура, предназначенная для разных целей, – распределительные щиты, пакетные выключатели, а также защитные приборы.
Провода и кабели
Провод – это одна неизолированная, одна или более изолированных жил, поверх которых, в зависимости от условий прокладки и эксплуатации, может иметься неметаллическая оболочка, обмотка или оплетка волокнистыми материалами или проволокой. Провода могут быть голыми и изолированными. Голые провода (ПСО, ПС, А, АС и т. д.) не имеют никаких защитных или изолирующих покрытий токопроводящих жил. Их в основном применяют для воздушных линий электропередач. Изолированными являются провода, токопроводящие жилы которых покрыты изоляцией из резины или пластмассы. Эти провода имеют поверх изоляции оплетку из хлопчатобумажной пряжи или оболочку из резины, пластмассы или металлической ленты. Изолированные провода подразделяют на защищенные и незащищенные.
Защищенными называют изолированные провода, имеющие поверх электрической изоляции оболочку, предназначенную для герметизации и защиты от внешних воздействий. К ним относятся провода АПРН, ПРВД, АПРФ и др. Незащищенным изолированным проводом называется провод, не имеющий поверх электрической изоляции оболочки. Это провода АПРТО, ПРД, АППР, АППВ, ППВ и др.
Шнуром называется провод, состоящий из двух и более изолированных гибких или особо гибких жил сечением до 1,5 мм2, скрученных или уложенных параллельно и покрытых в зависимости от условий эксплуатации неметаллической оболочкой или другими защитными покровами.
Кабелем называется одна или несколько скрученных вместе изолированных жил, заключенных, как правило, в общую резиновую, пластмассовую, металлическую оболочку (НРГ, КГ, АВВГ и др.). Оболочка служит для защиты изоляции жил от воздействия света, влаги, различных химических веществ, а также для предохранения ее от механических повреждении.
Установочные провода предназначены для монтажа силовых и осветительных сетей при неподвижной прокладке на открытом воздухе и внутри помещений. Изготавливают их с медными и алюминиевыми токоведущими жилами, одно– и многожильными, с резиновой и пластмассовой изоляцией, незащищенными и защищенными от легких механических повреждений. Токопроводящие жилы проводов имеют стандартные сечения, мм: 0,35; 0,5; 0,75; 1,0; 1,5; 2,5; 4,0; 6,0; 10,0; 16,0 и т. д.
В зависимости от марок стандартные сечения проводов имеют определенные значения. Если сечение провода неизвестно, то его рассчитывают по следующей формуле:
S = πr2,
где S – сечение провода, мм2; π – число, равное 3,14; г – радиус провода, мм.
Диаметр проволоки токоведущей жилы (без изоляции) измеряют микрометром или штангенциркулем. Сечение жил многопроволочных проводов и кабелей определяют по сумме сечений всех проволок.
Установочные провода с пластмассовой изоляцией АПВ, ПВ изготавливают без оболочки и защитных покровов, так как пластмассовая изоляция не нуждается в защите от действия света, влаги и устойчива к легким механическим воздействиям.
Для защиты проводов с резиновой изоляцией от механических повреждений, действия света и влаги применяют оболочки с фальцованным швом из алюминиевого сплава АМЦ или латуни (АПРФ, ПРФ, ПРФл) или оболочки из ПВХ-пластиката (ПРВД и др.).
Изоляция проводов рассчитана на определенное рабочее напряжение, при котором их можно длительно и безопасно эксплуатировать. Поэтому при выборе марки провода следует учитывать, что рабочее напряжение, на которое рассчитана изоляция провода, должно быть больше или равно номинальному стандартному значению напряжения питающей электросети 380, 220, 127, 42, 12 В.
Установочные провода должны соответствовать подключаемой нагрузке. Для одной и той же марки и одного и того же сечения провода допускаются различные по величине нагрузки, которые зависят от условий прокладки. Например, провода или кабели, проложенные открыто, лучше охлаждаются, чем проложенные в трубах или скрыто под штукатуркой. Провода с резиновой изоляцией допускают длительную температуру нагрева их жил, не превышающую 65 °C, а провода с пластмассовой изоляцией – 70 °C.
Провода маркируют буквами, после которых цифрами записывают число и площадь сечения токопроводящих жил. При обозначении провода принята следующая структура. В центре ставится буква П, обозначающая провод, или ПП – плоский двух– или трехжильный провод. Перед буквами П или ПП может стоять буква А, обозначающая, что провод изготовлен из алюминиевых токопроводящих жил; если буквы А нет, то токопроводящие жилы изготовлены из меди.
Вслед за буквой П или ПП стоит буква, характеризующая материал, из которого выполнена изоляция провода: Р – резиновая, В – поливинилхлоридная и П – полиэтиленовая изоляция (АПРР, ППВ и др.). Резиновая изоляция провода может быть защищена различными оболочками: В – из ПВХ пластиката, Н – негорючая хлорпреновая оболочка (найрит). Буквы В и Н ставят после букв материала изоляции провода – АПРН, ПРИ, ПРВД.
Если провод имеет оплетку из хлопчатобумажной пряжи, покрытой лаком, то это обозначается буквой Л, а если пряжа пропитана противогнилостным составом, то буква в марке провода опускается. Букву Л ставят на последнем месте в обозначении марки провода.
Провода, имеющие гибкие токоведущие жилы, имеют в маркировке букву Г, которая ставится после резиновой – Р или перед поливинилхлоридной – В изоляцией (ПРГИ и др.). Одно– и многожильные провода, предназначенные для прокладки в стальных трубах и имеющие оплетку, пропитанную противогнилостным составом, имеют в конце марки буквы ТО (АПРТО, ПРТО).
Поливинилхлоридная оболочка проводов с резиновой изоляцией выполняется маслостойкой. Плоские провода в разделительном основании могут иметь перфорацию шириной отверстия до 4 мм и длиной до 20 мм. Расстояние между краями отверстий – до 15 мм. Провода могут иметь метки, с помощью которых при монтаже легче различать жилы.
Для устройства тросовых проводок внутри помещений и снаружи, устройства ответвлений от воздушных линий в жилые дома и постройки выпускаются специальные провода, имеющие несущий стальной трос, который расположен внутри провода, между его изолированными жилами. Тросовые провода выпускаются 2-, 3– и 4-жильными и имеют резиновую изоляцию или изоляцию из поливинилхлоридного пластиката. Токопроводящие жилы провода АВТ имеют изоляцию черного, синего, коричневого и других цветов. Установочные провода предназначены для эксплуатации при температуре окружающей среды от -40 до + 50 °C и относительной влажности 95 + 3 % (при температуре + 20 °C).
Силовые кабели, так же как и провода, маркируют буквами, после которых цифрами записывают число и площадь сечения токопроводящих жил. Для электропроводок можно использовать силовые небронированные кабели с резиновой и пластмассовой изоляцией. Для защиты изоляции жил от света, влаги, химических веществ, а также механических повреждений кабели покрывают оболочками из различных материалов. Металлические оболочки из свинца, алюминия и стали не являются защитным покровом кабелей (бронью). При изоляции кабелей, изготовленных из влагонепроницаемых материалов (пластмассы и резины), вместо металлической оболочки может использоваться пластмассовая или резиновая оболочка.
Кабели с резиновой изоляцией имеют маркировку АСРГ, СРГ, ВРГ, АВРГ, АНРГ, НРГ; с пластмассовой изоляцией – АВВГ, ВВГ, АПВГ, П В Г, АПсВГ, ПсВГ, АПвВГ, ПвВГ.
Первая буква в обозначении марок кабелей, за исключением буквы А, определяет материал: В – ПВХ пластикат, П – полиэтилен, Пс – самозатухающий полиэтилен, Пв – вулканизирующийся полиэтилен, Н – найритовый, С – свинцовый. Вторая буква определяет материал изоляции В – ПВХ пластикат, Р – резиновая. Третья буква Г обозначает, что кабель небронированный.
Силовые кабели указанных марок предназначены для эксплуатации в стационарном состоянии при температуре окружающей среды от -50 до + 50 °C с относительной влажностью воздуха до 98 %. Кабели рассчитаны на длительно допустимую температуру их жил до 70 °C.
Кабели марок АНРГ и НРГ имеют резиновую негорючую оболочку. Для подключения переносных ламп, передвижных электрифицированных машин и переносных электроприборов к сети применяют гибкие кабели с резиновой изоляцией типа КГ, КГН, КЛГ, КПГСН и др.
Наиболее распространенные марки проводов
Площадь сечения проводов и кабелей в зависимости от силы тока
Для производства монтажа бытовых электропроводок обычно берут несколько марок проводов и кабелей. В приведенной таблице дан широкий спектр проводов и кабелей. Это сделано для того, чтобы потребителю было легче выбрать наиболее подходящую марку.
Поскольку площадь сечения проводов и кабелей напрямую зависит от токовой нагрузки, то марку необходимого материала выбирают именно исходя из этого.
Правообладателям!
Данное произведение размещено по согласованию с ООО "ЛитРес" (20% исходного текста). Если размещение книги нарушает чьи-либо права, то сообщите об этом.Читателям!
Оплатили, но не знаете что делать дальше?