Текст книги "Занимательный космос. Межпланетные путешествия"
Автор книги: Яков Перельман
Жанр: Прочая образовательная литература, Наука и Образование
Возрастные ограничения: +6
сообщить о неприемлемом содержимом
Текущая страница: 3 (всего у книги 14 страниц)
Досадно, конечно, что земная тяжесть так значительна. На Луне напряжение тяжести вшестеро слабее, чем на Земле, и совершенно отсутствует атмосфера, служащая серьезным препятствием полету снаряда; поэтому там для превращения снаряда в спутник почти достаточна была бы одна из тех дальнобойных пушек, которыми наша техника уже располагает в данный момент (нужна начальная скорость 2,3 км/с). А на спутнике Марса – крошечном Фобосе – можно просто бросить камень рукой, чтобы он никогда уже на упал обратно.
Однако мы живем не на Фобосе и не на Луне, а на Земле. Нам необходимо поэтому добиваться секундной скорости около 13–17 км, чтобы иметь возможность перекидывать пушечные снаряды на иные планеты. Достигнем ли мы этого когда-нибудь?
Глава 7. Из пушки на луну. Практика
Итак, можно ли надеяться, что артиллерия когда-нибудь осуществит смелый замысел членов Пушечного клуба, подсказанный им фантазией Жюля Верна?
Нет, – и вот почему.
Нетрудно сообразить, что газы, образующиеся при взрыве орудийного заряда, могут сообщить выталкиваемому снаряду скорость не большую той, какою они обладают сами. С того момента, как скорость снаряда сделается равной скорости молекул пороховых газов, последние перестанут на него напирать, и дальнейшее нарастание скорости прекратится. Энергию же движения газы эти черпают из запаса химической энергии заряда. Зная это, можно вычислить ту предельную скорость, какую данное взрывчатое вещество способно сообщить артиллерийскому снаряду. Черный порох, например, выделяет при сгорании 685 больших калорий на килограмм своей массы. В единицах механической энергии это соответствует – считая по 427 кгм на калорию – 290 000 кгм. Так как живая сила килограмма вещества, движущегося со скоростью v, равна кгм, то имеем уравнение:
откуда v ≈ 2400 м/с. Значит, наибольшая скорость, какую черный порох способен сообщить снаряду, – 2400 м/с, и никакие усовершенствования огнестрельного оружия не превзойдут этого предела.
Из всех известных нам взрывчатых веществ наибольший запас энергии заключает нитроглицерин: 1580 больших калорий на килограмм (пироксилин, отправивший на Луну героев Жюля Верна, развивает при взрыве всего 1100 калорий). В переводе на механическую энергию получим 670 000 кгм, а из уравнения
узнаем соответствующую предельную скорость снаряда: 3660 м/с.
Как видите, это еще далеко от тех 11–17 км/с, какие нужны для выстрела в мировое пространство.
Если для сообщения артиллерийскому снаряду космической скорости не годятся современные взрывчатые вещества, то нельзя ли надеяться на то, что химия снабдит нас когда-нибудь более мощными взрывчатыми составами? Однако химики дают на этот счет мало обнадеживающие сведения. «Нельзя ждать значительного успеха в изобретении сильных взрывчатых веществ. Наши взрывчатые вещества и без того дают очень много тепла и приводят к очень высоким температурам… Трудно надеяться, чтобы химическими способами можно было выйти далеко за пределы этих температур. Таким образом, нельзя рассчитывать изобрести взрывчатые вещества, которые давали бы много больше работы, чем современные» (Е. Шилов «Пределы силы взрывчатых веществ»).
Как видим, пушка, заряжаемая взрывчатыми составами, совершенно недостаточна для обстрела мирового пространства и навсегда останется такой. Но, быть может, это будет осуществлено когда-нибудь пушками электромагнитными, слухи об изобретении которых проникали в печать? Здесь мы вступаем в область неизвестного.
Будем оптимистами и станем надеяться, что это неизвестное сулит успех и поможет людям со временем перебросить снаряд на Луну.
Если бы вопрос состоял только в этом, если бы мы искали способа установить между планетами своего рода небесную почту, если бы мы стремились лишь отправлять в далекие миры посылки для неведомых адресатов, то задача решалась бы электромагнитной пушкой вполне удовлетворительно.
Но мы заботились пока только о снаряде, о том, чтобы он полетел достаточно быстро и достиг своей цели. Подумаем теперь и о том, что будет происходить внутри снаряда. Ведь перед нами не простой артиллерийский снаряд; это своего рода вагон, в котором находятся живые существа. Какая участь ожидает их при полете?
Здесь, а не в самой мысли перекинуть снаряд на Луну, кроется слабое место заманчивого проекта Жюля Верна.
Небывалое путешествие должно было пройти для пассажиров Жюль-Вернова снаряда далеко не так благополучно, как описано в романе. Не думайте, впрочем, что опасность грозит им во время путешествия от Земли до Луны. Ничуть! Если бы пассажирам удалось остаться живыми к моменту, когда они покинут канал пушки, то в дальнейшем путешествии им нечего было бы уже опасаться. В океане Вселенной нет ни бурь, ни волн, ни качки. Встреча с метеором весьма маловероятна; тот «второй спутник Земли», который едва не преградил путь снаряду Жюля Верна, в действительности не существует. А огромная скорость, с которой пассажиры летели бы в мировом пространстве вместе с их вагоном, была бы столь же безвредна для них, как безвредна для нас, обитателей Земли, та секундная скорость в 30 км, с какой мы мчимся вокруг Солнца.
Опасный момент для Жюль-Верновых путешественников представляют те сотые доли секунды, в течение которых снаряд-вагон движется в канале ствола самой пушки. В этот ничтожно малый промежуток времени скорость движения пассажиров должна неимоверно возрасти: от нуля до 16 км/с[16]16
Жюль Верн выбрал для снаряда именно такую скорость в расчете преодолеть не только силу тяжести, но и сопротивление атмосферы.
[Закрыть]. Герои романа были вполне правы, утверждая, что момент, когда снаряд полетит, будет столь же опасен для них, как если бы они находились не внутри снаряда, а прямо перед ним. Действительно, в момент выстрела нижняя площадка (пол) каюты должна ударить пассажиров с такой же силой, с какой обрушился бы снаряд на любое тело, находящееся впереди него. Напрасно пассажиры воображали, что отделаются лишь сильными приливами крови к голове.
Дело неизмеримо серьезнее. Произведем несложный расчет. В канале ствола пушки снаряд движется ускоренно – скорость его увеличивается под постоянным напором газов, образующихся при взрыве; в течение ничтожной доли секунды она возрастает от нуля до 16 км. Как же велико «ускорение» этого движения, т. е. на какую величину нарастает здесь скорость в течение полной секунды? Нужды нет, что движение длится лишь малую долю секунды: расчет можно вести на целые секунды. Оказывается, что секундное «ускорение» ядра, скользящего в канале ствола орудия, выражается огромным числом – 640 км/с (см. Приложение 6). Для сравнения напомню, что секундное ускорение трогающегося курьерского поезда – не более 1 м/с.
Все значение этого числа – 640 км/с за секунду – мы постигнем лишь тогда, когда сравним его с ускорением падающего тела на земной поверхности, ускорением, составляющим всего около 10 м/с за секунду, т. е. в 64 000 раз меньше. Это значит, что в момент выстрела каждый предмет внутри снаряда придавливался бы ко дну снаряда с силой, которая в 64 000 раз более веса самого предмета. Пассажиры почувствовали бы, что внезапно сделались в десятки тысяч раз тяжелее. Цилиндр мистера Барбикена один весил бы десятки тонн. Правда, это длилось бы всего 40-ю долю секунды, но можно не сомневаться, что под действием такой колоссальной тяжести люди были бы буквально расплющены. Бессильны все меры, принятые героями Жюля Верна для ослабления силы удара: пружинные буфера и двойное дно с водой. Продолжительность удара от этого, правда, растягивается, и, следовательно, быстрота нарастания скорости уменьшается. Но при тех огромных величинах, с которыми приходится иметь здесь дело, выгода получается ничтожная: сила, придавливающая пассажиров к полу, уменьшается на какую-нибудь сотую долю, не более.
Нет ли средств избегнуть при взрыве роковой быстроты нарастания скорости?[17]17
В сущности, это огромное ускорение есть лишь другое название для того, что мы именуем сотрясением.
[Закрыть]
Этого можно было бы достигнуть весьма значительным удлинением канала пушки. Легко убедиться вычислением (см. Приложение), что если, например, мы хотим иметь «искусственную» тяжесть внутри ядра в момент выстрела равною обыкновенной тяжести на земном шаре, то нам нужно изготовить пушку длиною – ни много ни мало – в 6000 км. Жюль-Вернова колумбиада должна была бы простираться в глубь земного шара почти до самого центра, чтобы пассажиры были избавлены от этих неприятностей: они почувствовали бы, что стали только вдвое тяжелее.
Надо заметить, что человеческий организм в течение весьма краткого промежутка времени без вреда переносит увеличение собственной тяжести в несколько раз. Когда мы скатываемся с ледяной горы вниз и здесь быстро меняем направление своего движения, то в этот краткий миг вес наш увеличивается раз в 10 (т. е. тело наше в десятки раз сильнее обычного прижимается к салазкам)… Если даже допустить, что человек может безвредно переносить в течение короткого времени 20-кратное увеличение своего веса, то для отправления людей на Луну достаточно будет отлить пушку в 200 км длиною. Однако и это малоутешительно, потому что подобное сооружение лежит за пределами технической достижимости[18]18
В настоящее время ученые рассматривают возможность создания нового варианта «пушки». Речь идет о применении трубопроводного транспорта. Для достижения больших скоростей надо создавать в трубопроводе вакуум и пускать по нему контейнеры с грузом. Достоинство такой «пушки» в том, что выводимый на орбиту груз с момента пуска летит без огромной массы топлива. Как утверждает ученый из Центрального НИИ машиностроения В.П. Богомолов, такую пушку, в принципе, можно применять уже сейчас на Луне: «Из лунной пушки – на Землю!»
[Закрыть]. Не говорю уже о том, что извергающая сила такой непомерно длинной пушки должна значительно уменьшиться вследствие трения ядра в 300-километровом канале орудия.
Рис. 16. При скатывании с ледяной горы вес нашего тела увеличивается в несколько раз
Физика указывает и на другое средство ослабить силу удара. Самую хрупкую вещь можно уберечь от поломки при сотрясении, погрузив ее в жидкость равного удельного веса. Так, если заключить хрупкий предмет в сосуд с жидкостью такой же плотности и герметически закупорить его, то подобный сосуд можно ронять с высоты и вообще подвергать сильнейшим сотрясениям, при условии, разумеется, что сосуд остается цел, – и хрупкий предмет от толчков почти не страдает. Мысль эта впервые высказана К.Э. Циолковским:
«Известно, – пишет он, – что все слабое, нежно устроенное – зародыши – природа помещает в жидкости или окружает ими… Возьмите стакан с водою, куриное яйцо и соль. Яйцо положите в воду, а соль подсыпайте в стакан до тех пор, пока яйцо не начнет подниматься со дна к поверхности воды. Тогда прибавьте немного воды, чтобы яйцо находилось в равновесии во всяком месте сосуда, т. е. чтобы оно, будучи на средней высоте, не поднималось кверху и не опускалось на дно. Теперь ударьте смело стаканом о стол настолько сильно, насколько позволяет крепость стекла, – и от этого яйцо в стакане не шелохнется. Без воды яйцо, конечно, и при самых слабых ударах моментально раскалывается. Опыты эти описаны мною в трудах Московского общества любителей естествознания за 1891 г.».
Не следует думать, однако, что мы могли бы поэтому осуществить смелую затею Жюль-Верновых артиллеристов, если бы наполнили внутренность снаряда соленой водой средней плотности человеческого тела и в эту среду погрузили пассажиров, одетых в водолазные костюмы, с запасом воздуха; после же выстрела, когда нарастание скорости прекратится и пассажиры приобретут скорость снаряда, они могли бы уже выпустить воду и устроиться в каюте, не опасаясь неприятных неожиданностей. Такая мысль ошибочна, потому что тела живых существ имеют неоднородное строение: они состоят из частей различного удельного веса (кости, мускулы и т. п.), а окружить каждую отдельную часть жидкостью соответствующей плотности невозможно.
В частности, невозможно оградить от сотрясения мозг, заключенный в черепной коробке. Между тем, как показали опыты, именно этот орган всего более чувствителен к резким изменениям скорости (мозг сильно придавливается тогда к внутренним стенкам черепа).
Итак, вот какие затруднения нужно было бы преодолеть, чтобы осуществить в действительности заманчивый проект Жюля Верна:
1) Придумать способ метать снаряды со скоростью, всемерно большей, чем начальная скорость быстрейших современных снарядов.
2) Соорудить пушку длиною километров в 300.
3) Поместить пушку так, чтобы жерло ее выступало за пределы земной атмосферы, избегнув этим сопротивления воздуха.
А в результате – отправиться в небесное странствование без малейшей надежды вернуться не только живым, но даже и мертвым: ведь только счастливая случайность помогла героям романа возвратиться на Землю. Жюль-Верново ядро – снаряд неуправляемый; чтобы дать ему новое направление, надо зарядить им пушку. А где взять пушку в мировом пространстве или на другой планете?
Невольно вспоминается глубокое изречение Паскаля: «Никто не странствовал бы по свету, если бы не надеялся когда-нибудь рассказать другим о том, что видел»… Но именно этой надежды пушка Жюля Верна нам не оставляет.
Глава 8. К звездам на ракете
После ряда разочарований мы подходим наконец, к единственному действительно осуществимому проекту межпланетных путешествий. Путь этот указан был впервые нашим ученым К.Э. Циолковским (в 1903 г.) и стоит в стороне от всех фантастических замыслов, рассмотренных ранее. Здесь перед нами уже не фантазия романиста, не просто любопытная задача из области небесной механики, а глубоко продуманный механический принцип, реальный путь к осуществлению заатмосферных полетов в управляемом снаряде – звездолете.
Ничто не может быть проще той мысли, которая положена в основу этого проекта, – двигаться, управляясь в пустом пространстве без опоры. На первых уроках физики знакомимся мы с законом «действия и противодействия», иначе называемым «третьим законом Ньютона»: каждая сила всегда вызывает равную ей силу противодействия. Эта-то последняя сила и поможет нам умчаться в бездны мироздания. Сила противодействия проявляется на каждом шагу, – быть может, именно потому мы и не отдаем себе ясного отчета в ее существовании; нужны особые обстоятельства, чтобы заставить мысль остановиться на ней.
Когда вы стреляете из ружья, вы чувствуете его «отдачу»: давление взрывных газов отбрасывает пулю в одну сторону и с равною силою отталкивает ружье в обратную сторону. Если бы ружье весило столько же, сколько и пуля, приклад ударял бы стреляющего с такою же скоростью, с какою ударяет пуля, выпущенная в упор; каждый стрелок был бы тогда самоубийцей. Но ружье значительно тяжелее пули, и во столько же раз ослабляется действие его возвратного удара. Надо всегда помнить, что вообще действие силы на тело зависит от массы этого тела: одна и та же сила сообщает грузному телу меньшую скорость, чем легкому (соответственно обратному отношению их масс). Закон «равенства действия и противодействия» не следует понимать буквально: само действие почти никогда не равно противодействию, равны лишь действующие при этом силы, могущие вызвать весьма различные результаты.
Наблюдая падение яблока на Землю, не думайте, что земной шар остается неподвижен, нарушая закон противодействия. Притяжение и здесь взаимное; сила действия Земли на яблоко вызывает точно такую же силу противодействия. Яблоко и Земля буквально падают друг на друга, влекомые равными силами; но так как масса земного шара неизмеримо больше массы яблока, то скорость падения Земли неизмеримо меньше скорости падения яблока. Пока яблоко падает с дерева на Землю, наша планета перемещается навстречу яблоку едва на одну стотриллионную долю сантиметра. Практически Земля остается неподвижной и замечается лишь движение яблока.
Этот-то закон, впервые провозглашенный великим Ньютоном, открывает перед нами возможность свободно двигаться, ни на что не опираясь. Перемещаться, ни от чего не отталкиваясь, одними лишь внутренними силами – не звучит ли это так, как поднятие самого себя за волосы по анекдотическому способу барона Мюнхгаузена? Но сходство – чисто внешнее. По существу разница здесь огромная, и насколько бесполезно поднимать себя за волосы, настолько действителен способ движения по принципу отдачи. Природа давно уже осуществила такое перемещение для многих живых существ. Каракатица набирает воду в жаберную полость и затем энергично выбрасывает струю воды через особую воронку впереди тела; вода устремляется вперед, а тело каракатицы получает обратный толчок, отбрасывающий ее назад; направляя трубку воронки вбок или вниз, животное может таким своеобразным способом двигаться в любом направлении. Подобным же образом перемещают свое тело медузы, сальпы, личинки стрекоз и многие другие обитатели вод. Пользуется этим приемом и человеческая техника: вращение водяных и так называемых реакционных паровых турбин тоже основано на законе противодействия.
Нигде, однако, интересующий нас способ перемещения не проявляется так наглядно, как при полете обыкновенной ракеты. Сколько раз любовались вы ее эффектным взлетом, – но приходило ли вам в голову, что вы видите перед собою уменьшенное подобие будущего межзвездного дирижабля? А между тем еще гениальный Гаусс предрекал ракете в будущем великое значение, более важное, чем открытие Америки…
Отчего ракета взлетает вверх при горении наполняющего ее пороха? Даже среди людей науки приходится нередко слышать, будто ракета летит вверх потому, что газами, которые вытекают из нее при горении пороха, она «отталкивается от воздуха». На самом же деле воздух не только не обусловливает движение ракеты, но даже мешает ей: в безвоздушном пространстве ракета должна лететь быстрее, чем в атмосфере. Истинная причина движения ракеты состоит в том, что когда пороховые газы стремительно вытекают из нее вниз, сама трубка ракеты, по закону противодействия, отталкивается вверх. Весьма наглядно объяснены механические условия такого полета в предсмертной записке известного революционера-первомартовца Кибальчича, о котором у нас еще будет речь. Он писал:
«Представьте себе, что мы имеем из листового железа цилиндр, закрытый герметически со всех сторон и только в нижнем дне своем имеющий отверстие. Расположим по оси этого цилиндра кусок прессованного пороха и зажжем его. При горении образуются газы, которые будут давить на всю внутреннюю поверхность цилиндра. Но давления на боковую поверхность цилиндра будут взаимно уравновешиваться, и только давление газов на закрытое дно цилиндра не будет уравновешено противоположным давлением, так как с противоположной стороны газы имеют свободный выход через отверстие[19]19
Это надо понимать в том смысле, что противодействующая сила порождает здесь не напор на стенку, а истечение газов из отверстия.
[Закрыть]. Если цилиндр поставлен закрытым дном кверху, то при известном давлении газов цилиндр должен подняться вверх». – Прилагаемые чертежи поясняют сказанное.
При горении пороха ракеты происходит, в сущности, то же, что и при выстреле из пушки. Снаряд летит вперед, пушка отталкивается назад.
Рис. 17. Увеселительная ракета с цветными звездками (шарики состава бенгальского огня в головной части ракеты)
Если бы пушка висела в воздухе, ни на что не опираясь, она после выстрела устремилась бы назад со скоростью, которая во столько раз меньше скорости снаряда, во сколько раз он легче пушки. Ракета – нечто как раз противоположное пушке; в пушке назначение взрыва – выбросить снаряд, почти не сдвигая ствола пушки; в ракете же взрывные газы предназначаются именно для перемещения самого тела ракеты. Скорость и масса этих газов так значительны, что «отдача» заставляет тело ракеты быстро взлетать вверх. Все время, пока происходит горение пороха, скорость ракеты возрастает; к прежней скорости непрерывно, каждую секунду, прибавляется новая[20]20
Ускорение, с каким движется вверх пиротехническая ракета, в десятки раз больше ускорения земной тяжести.
[Закрыть], да и сама ракета, теряя свои горючие запасы, уменьшает свою массу и потому заметнее поддается действию силы.
Рис. 18. Действие газов внутри ракеты (схема)
Опишу несложный прибор, действие которого объясняется тем же принципом. Прибор нетрудно устроить самому. Он наглядно убеждает в существовании силы, которая должна увлекать ракету в сторону, противоположную истечению газов. Стеклянный сосуд (рис. 19) подвешен к подставке на нитях. В сосуд наливают воды и подставляют под него горелку. Когда вода закипит, пар будет струйкой выбиваться из сосуда, сам же сосуд при этом откачнется в обратную сторону. Но, очутившись вне пламени, реторта скоро охладится; вода перестанет кипеть, пар больше выбиваться не будет, и сосуд вернется в прежнее положение. Опять начнется кипение, опять реторта откачнется, и т. д. Сосуд будет качаться, как маятник («тепловой маятник» Цельнера).
Ньютон, говорят, проектировал устройство самодвижущегося экипажа, устроенного подобным же образом, т. е. в сущности, то, что выполнено теперь строителями ракетного автомобиля.
Рис. 19. «Тепловой маятник» Цельнера
Однако вернемся к ракете и к идее межпланетного корабля. Когда порох в ракете весь выгорит, пустая ракетная трубка, пролетев еще некоторый путь по инерции, падает обратно на землю: ее скорость недостаточна для окончательного преодоления силы тяжести. Но вообразите ракету в десятки метров длиною, снабдите ее таким запасом горючего, чтобы она успела накопить секундную скорость в 11 км (эта скорость, мы знаем, достаточна, чтобы безвозвратно покинуть Землю), – тогда цепи земного тяготения будут разорваны. Способ странствовать в мировом пространстве найден!
Вот физические соображения, приводящие к мысли об устройстве летательного аппарата, способного двигаться не только в атмосфере, но и за ее пределами. Впервые идея подобного аппарата – правда, для земных, а не для межпланетных полетов – была высказана в 1881 г. известным русским революционером-изобретателем Н.И. Кибальчичем в проекте, составленном этим замечательным человеком незадолго до казни. Проект Кибальчича был высказан лишь в форме основной идеи: «Будучи на свободе, я не имел достаточно времени, чтобы разработать свой проект в подробностях и доказать его осуществимость математическими вычислениями», писал он. Гораздо обстоятельнее разработана та же мысль недавно умершим физиком К.Э. Циолковским, создавшим идею настоящего межпланетного дирижабля-звездолета и обосновавшим его на строгом математическом расчете.
По тому же пути, независимо от русских изобретателей, пошли на Западе и другие исследователи, о которых у нас еще будет речь.
Аппарат К.Э. Циолковского – не что иное, как огромная ракета с каютой для пассажиров. «Представим себе, – писал он еще в 1903 г., – такой снаряд: металлическая продолговатая камера, снабженная светом, кислородом, поглотителями углекислоты и других животных выделений, предназначена не только для хранения разных физических приборов, но и для управляющего камерой разумного существа. Камера имеет большой запас веществ, которые при своем смешении тотчас же образуют взрывчатую массу. Вещества эти, правильно и равномерно взрываясь в определенном для этого месте, текут в виде горячих газов по расширяющимся трубам. В расширенном конце, сильно разредившись и охладившись от этого, они вырываются наружу через раструбы с громадною скоростью. Понятно, что такой снаряд, при известных условиях, должен подниматься в высоту… Люди в этом аппарате смогут при помощи особого руля направлять его в любую сторону. Это будет настоящий управляемый космический корабль, на котором можно умчаться в беспредельное мировое пространство, перелететь на Луну, к планетам… Пассажиры смогут, управляя горением, увеличивать скорость своего звездолета с необходимой постепенностью, чтобы возрастание ее было безвредно».
Мы еще вернемся к более подробному описанию проектов подобного рода, а пока отметим существенные преимущества, которыми обладает звездолет К.Э. Циолковского по сравнению с пушечным снарядом Жюля Верна. Прежде всего, сооружение его, конечно, гораздо осуществимее, нежели сооружение исполинской пушки Жюля Верна. Затем, звездолет развивает свою чудовищную скорость не сразу, как пушечное ядро, а постепенно, избавляя пассажиров от опасности быть раздавленными стремительным возрастанием их собственного веса.
Не опасно для ракетного звездолета и сопротивление воздуха: аппарат прорезает атмосферу не с космической скоростью, а с гораздо меньшею, – например, со скоростью современной пули; полную же межпланетную скорость он развивает, лишь очутившись за пределами воздушной оболочки. Там, в мировом пространстве, взрывание может быть совершенно прекращено: звездолет умчится по инерции со скоростью, которая будет убывать лишь под действием земного притяжения. Он может мчаться так, без затраты горючего вещества, миллионы километров, и лишь для перемены направления полета, для изменения скорости или для ослабления удара при высадке на планету понадобится снова пустить в действие взрывной механизм.
Но самое главное преимущество ракетного звездолета состоит в том, что он даст будущим морякам Вселенной возможность, обогнув Луну или посетив какую-нибудь малую планету, в желаемый момент снова возвратиться на родную Землю. Нужно лишь обильно запастись взрывчатыми веществами, как полярные мореплаватели запасаются топливом.
Некоторую опасность представляет разве что встреча с крупным метеоритом – с одним из тех космических камней, которые стремительно прорезают во всех направлениях пустыни межпланетного пространства. Расчет показывает, однако, что вероятность встречи с метеоритом опасных размеров крайне ничтожна (к метеорной опасности мы вернемся еще в другом месте).
Так заманчивая возможность достижения иных миров, путешествия на Луну, на астероиды, к Марсу может превратиться в реальную действительность. Воздух для дыхания нетрудно будет взять с собой (в виде сжиженного кислорода), как и аппараты для поглощения выдыхаемой углекислоты. Мыслимо также снабдить небесных путешественников запасом пищи, питья и т. п. С этой стороны не предвидится серьезных препятствий – по крайней мере, для не слишком долговременных межпланетных путешествий.
Рис. 20. Ракетный звездолет (фантастический рисунок)
Высадка на Луну, на астероид или на один из мелких спутников больших планет – если только поверхность их в таком состоянии, что делает спуск возможным, – будет лишь вопросом достаточного количества взрывчатых веществ. Надлежаще направленными взрывами можно уменьшить огромную скорость ракеты настолько, чтобы падение ее совершалось плавно и безопасно. Но надо иметь еще в запасе достаточно взрывчатого вещества, чтобы вновь покинуть это временное пристанище, преодолеть силу притяжения планеты и пуститься в обратный путь с необходимым запасом для плавного спуска на Землю.
В особых непроницаемых костюмах, вроде водолазных, будущие Колумбы Вселенной, достигнув планеты, смогут рискнуть выйти из небесного корабля. С запасом кислорода в металлическом ранце за плечами будут они бродить по почве неведомого мира, делать научные наблюдения, изучать его природу, мертвую и – если такая имеется – живую, собирать коллекцию… Стать на почву астероидов, поднять камень с Луны, наблюдать Марс на расстоянии нескольких десятков километров, высадиться на его спутник или даже на самую его поверхность, – что, по-видимому, может быть фантастичнее? Однако только с момента применения ракетных приборов начнется новая великая эра в астрономии: эпоха более пристального изучения неба» (Циолковский).
К.Э. Циолковский не дал конструктивного проекта своего звездолета, считая необходимой предварительную, более детальную разработку его идеи с принципиальной стороны. Но в виде наглядного примера одной из возможных форм осуществления основного принципа прилагаю схематический чертеж, выполненный с наброска, который сделан был К.Э. Циолковским по моей просьбе еще в 1914 г. (рис. 21). Вот краткое, составленное им же, пояснение:
«Снаряд имеет снаружи вид бескрылой птицы, легко рассекающей воздух. Большая часть внутренности занята двумя веществами в жидком состоянии: водородом и кислородом. Они разделены перегородкой и соединяются между собой только мало-помалу. Остальная часть камеры, меньшей вместимости, назначена для помещения наблюдателя и разного рода аппаратов, необходимых для сохранения его жизни, для научных наблюдений и для управления. Водород и кислород, смешиваясь в узкой части постепенно расширяющейся трубы, соединяются химически и образуют водяной пар при весьма высокой температуре. Он имеет огромную упругость и вырывается из широкого отверстия трубы или продольной оси камеры. Направление давления пара и направление полета снаряда прямо противоположны».
Рис. 21. Схема внутреннего устройства ракетного корабля по идее Циолковского
Подробнее о звездоплавательных планах К.Э. Циолковского у нас будет речь в особой главе.
Правообладателям!
Это произведение, предположительно, находится в статусе 'public domain'. Если это не так и размещение материала нарушает чьи-либо права, то сообщите нам об этом.