Электронная библиотека » Ю. Чурляев » » онлайн чтение - страница 1


  • Текст добавлен: 12 марта 2016, 21:22


Автор книги: Ю. Чурляев


Жанр: Медицина, Наука и Образование


сообщить о неприемлемом содержимом

Текущая страница: 1 (всего у книги 5 страниц) [доступный отрывок для чтения: 1 страниц]

Шрифт:
- 100% +

Григорьев Е.В., Чурляев Ю.А.
Тяжелая черепно-мозговая травма: клиническая патофизиология, анестезия и интенсивная терапия. Учебное пособие

Интенсивная терапия, реанимация и анестезия тяжелой черепно-мозговой травмы (ТЧМТ) является одной из актуальных проблем современной медицины. Это связано с высокой летальностью и развитием тяжелых последствий с временной или стойкой утратой трудоспособности. Несмотря на многочисленные исследования в области патогенеза первичных и вторичных повреждений головного мозга, разработку современных методов диагностики, лечения и реабилитации больных с ТЧМТ, летальность в последние годы существенно не изменилась и остается на уровне 35-68 % (Береснев В.П. и соавт., 1996; Доброхотова Т.А. и соавт., 1998; Gordon E., 1991; Word Y.D., Becker D.R., 1996). Наряду с этим у большинства выживших (60-70 %) в результате тяжелой черепно-мозговой травмы наблюдается снижение работоспособности и инвалидизация (Гайдар Б.В., 1998). Немаловажным и актуальным в проблеме терапии ТЧМТ является разносторонность взглядов на использование специфических компонентов интенсивного лечения (дегидратация, кортикостероиды), высокая частота госпитализации больных данной категории в неспециализированные стационары. Описанные факторы обуславливают целесообразность упорядочивания знаний по интенсивной терапии ТЧМТ с рассмотрением некоторых вопросов патогенеза и клинической физиологии повреждения головного мозга.

ПАТОФИЗИОЛОГИЧЕСКИЕ МЕХАНИЗМЫ ТЧМТ

При рассмотрении ТЧМТ выделяются два специфических компонента: внутричерепная дистензия и отек головного мозга. Следствием изменения перечисленных компонентов являются уменьшение мозгового кровотока за счет снижения церебрального перфузионного давления и различные варианты дислокации головного мозга с последующим его ущемлением в естественных и искусственных (костные дефекты) отверстиях.

Внутричерепное давление является результатом взаимодействия трех компонентов внутричерепного объема: вещество мозга 80 %, ликвор – 10 % и объем крови 10 % от общего внутричерепного объема. Гипотеза (доктрина) Монро-Келли сформулирована в 1983 г и гласит, что любое увеличение или уменьшение компонентов внутричерепного объема приводит к компенсаторному изменению остальных составляющих.

При оценке изменений объема и давления в полости черепа используется две основных характеристики.

Эластичность – изменение давления в ответ на изменения объема (мм рт.ст.). Нормальный уровень – не более 2 мм рт.ст. на 1 мл объема. При увеличении показателя считается, что эластичность увеличивается, то есть возможности компенсации внутричерепных объемов снижаются.



Податливость (комплайнс) – дополнительный внутричерепной объем, увеличивающий давление в 10 раз. Норма – 22-30 мл, менее 18 – патологическая податливость.

Третий показатель, объединяющий два выше описанных – емкостное сопротивление.

Для эффективной оценки состояния внутричерепного давления необходим его мониторинг. Ценность использования данного метода мониторинга оценивается неоднозначно, существуют мнения, что сам факт мониторирования ВЧД (особенно инвазивных методик) способен вызывать серьезные нарушения (в частности, интракраниальные инфекционные осложнения). Однако, не смотря на выше сказанное, мониторинг ВЧД является стандартом эффективной ИТ тяжелой ЧМТ, особенно если речь идет о методах по коррекции внутричерепной дистензии – использование гипервентиляции, инфузия барбитуратов и т.д.


Рис. 1. Методы мониторинга внутричерепного давления


Спинномозговая жидкость (ликвор). Ликвор образуется хориоидальными сплетениями боковых желудочков головного мозга до 500-600 мл/сутки. В субарахноидальном пространстве циркулирует до 150 мл ликвора, 90 % реабсорбируется в синусы твердой мозговой оболочки. Основная функция ликвора – обеспечение защиты для головного мозга, участие в метаболизме, нейротрансмиссия, транспорт метаболитов. Изменения концентрации активных ионов и ряда других веществ способы изменить параметры спонтанной вентиляции, мозгового кровообращения и мышечного тонуса. Совместно с интерстициальной жидкостью ликвор обеспечивает стабильность уровня глюкозы для нейрональной ткани.


ТАБЛИЦА 1

ВЛИЯНИЕ ФАРМАКОЛОГИЧЕСКИХ ПРЕПАРАТОВ НА ПРОДУКЦИЮ ЛИКВОРА

0 – нет влияния, ↑ – увеличение, ↓ – снижение


Рис. 2. Формирование ликвора


Объем вещества головного мозга. Объем мозга составляет 80-85 % от внутричерепного содержимого, основная часть этого объема – внутри– и внеклеточная вода – 1000-1200 мл.

Внеклеточное (экстрацеллюлярное) пространство в коре мозга, в сером веществе его ядер, в стволе мозга, в спинном мозге, в отличие от остальных органов человека, очень небольших размеров. Общий объем внеклеточного пространства головного мозга около 300 мл. Внеклеточное пространство непосредственно связано с желудочками мозга (Cseer H.F. et al., 1977, Cseer H.F. et al., 1981). Есть сведения о том, что экстрацеллюлярное пространство соединено также с лимфатической системой. Знание этих анатомических деталей позволяет четко представить пути, по которым возможен пассаж избыточной жидкости при разрешении отека мозга. Обмен между внеклеточной жидкостью и капиллярами ограничен проницаемостью гематоэнцефалического барьера.

Отек мозга – это возрастание количества внутриклеточной и/или внеклеточной жидкости, что увеличивает объем мозга и приводит к повышению внутричерепного давления. Компенсаторные механизмы естественной аутокоррекции ВЧГ при отеке мозга – уменьшение внутричерепных объемов ликвора и крови. Следствием данного процесса является дислокация структур головного мозга и следствия этого патологического процесса.


Рис. 3. Кривая объем-давление для головного мозга


Вазогенный отек. Наиболее часто встречающаяся форма отека головного мозга, характеризующаяся увеличением объема внеклеточной жидкости. Основной механизм формирования вазогенного отека – повышение проницаемости капилляров, вследствие нарушения функции гематоэнцефалического барьера. В зависимости от выраженности патологических изменений капилляров меняется состав отечной жидкости, которая представляет собой смесь плазмы крови, продуктов распада мозговой ткани и нормальной внеклеточной жидкости. Градиент давления в капиллярах создается системным артериальным давлением. Отечная жидкость распространяется в мозге за счет формирования межтканевого градиента давлений. Преимущественной зоной накопления отечной жидкости является белое вещество головного мозга.

Основными причинами повышения проницаемости капиллярного русла являются метаболические нарушения транспортных систем эндотелиальных клеток и структурные повреждения эндотелия капилляров, приводящие к нарушению межэндотелиальных связей, разрыву клеток, возрастанию пиноцитоза. Важно отметить, что объем экстрацеллюлярной жидкости в зоне повышенной капиллярной проницаемости возрастает на 50 % (Cseer H.F. et al., 1981). Очевидно, что, чем больше площадь поражения капилляров и выше в них гидростатическое давление, тем более выраженным будет увеличение объема внеклеточной жидкости.

Осмотический отек. Эта форма отека головного мозга, так же как и вазогенный отек, характеризуется увеличением объема внеклеточной жидкости. Но механизм формирования осмотического отека принципиально иной: осмолярность плазмы ниже, чем осмолярность экстра-целлюлярной жидкости, вода в соответствии с осмотическим градиентом из капилляров движется в интерстициальное пространство. Для того чтобы такой градиент сформировался, необходима сохранность функции гематоэнцефалического барьера. При нарушении ГЭБ никакого эффективного осмотического градиента быть не может. Основные причины снижения осмолярности плазмы следующие: а) чрезмерная секреция антидиуретического гормона; б) избыточное внутривенное введение гипоосмолярных растворов; в) неадекватный гемодиализ у больных с почечной недостаточностью; г) прием большого количества жидкости больными с нарушенной психикой. Перемещение жидкости из капилляров во внеклеточное пространство мозга становится клинически значимым при снижении осмолярности плазмы на 10 % от нормального уровня.

Теоретически осмотический отек головного мозга может быть следствием повышения осмолярности во внеклеточном пространстве. Такое развитие событий может быть при рассасывании внутримозговой гематомы с повышенным уровнем белка в интерстициальной жидкости (но для этого необходима сохранность гематоэнцефалического барьера).

Гидроцефалический (интерстициальный) отек. Еще одной формой отека головного мозга, сопровождающейся увеличением объема интерстициального пространства, является гидроцефалический отек, обусловленный блокадой путей, соединяющих интерстициальное пространство головного мозга с макроскопическими ликворосодержащими пространствами. Для клинициста эта форма отека имеет практическое значение. Так, у больных с острой гидроцефалией в начале происходит увеличение объема интерстициальной жидкости в перивентрикулярных отделах. Узкие в норме пространства между глиальными клетками и аксонами расширяются. Астроциты набухают, атрофируются и погибают. У больных с хронической гидроцефалией деструкция аксонов, разрушение миелина, фагоцитоз липидов микроглии являются характерными гистологическими признаками. Кроме стаза внеклеточной жидкости, причиной отека у этих больных может быть и обратный ток спинномозговой жидкости из желудочков мозга. Так же, как и при любой иной форме отека мозга, в зоне отек; снижается регионарный мозговой кровоток. По-видимому, часть функциональных расстройств в ЦНС, наблюдаемых у больных с гидроцефалией, обусловлена снижением регионарного кровотока в зоне отека.

Ряд патологических состояний приводит к клинически значимому увеличению объема внутриклеточной жидкости. Как правило, этот процесс (увеличение внутриклеточной жидкости) завершается снижение мозгового кровотока, нарушением функции ГЭБ и вторичным развитием вазогенного отека. Выделяют несколько форм внутриклеточного отека мозга.

Ишемический отек. В отличие от вазогенного отека, ишемический формируется первично в коре головного мозга, а не в белом веществе. На ранних стадиях ишемического отека происходит внутриклеточное накопление воды и натрия. Выход калия из клеток начинается на более поздних стадиях. Гематоэнцефалический барьер некоторое время остается интактным. Основной причиной ишемического отека является недостаточность натрий-калиевого насоса, обусловленная дефицитом энергии. Само по себе перераспределение воды между вне– и внутриклеточными пространствами не вызывает увеличения массы мозга. Объем внеклеточного пространства при этом может уменьшаться. Такой вариант возможен при полном или почти полном прекращении кровотока. При частичной ишемии или при восстановлении кровотока (реперфузии) происходит перемещение жидкости из капилляров как во вне-, так и во внутриклеточные пространства (постишемический отек). Реперфузионный синдром может быть по своим последствиям так же фатален, как и полная ишемия головного мозга.

Цитотоксический отек. В настоящее время принято выделять цитотоксический отек из ишемических и постишемических состояний. К цитотоксическому отеку относят состояния, связанные с нарушением функции клеток вследствие воздействия различных ядов, вирусов, интоксикацией и пр.

Церебральный кровоток. Внутричерепной объем крови – 3-7 мл/100 г вещества мозга, общий мозговой кровоток – 50 мл/100 г/мин; кровоток в сером веществе – 80 мл/100 г/мин; кровоток в белом веществе – 20 мл/100 г/мин. Региональный церебральных кровоток зависит от метаболической активности, поэтому может существенно различаться в анатомических структурах мозга и меняться в течение одной минуты.

Внутричерепной объем крови заключен в артериях, капиллярах, венах, включая венозные синусы. Традиционно считается, что увеличение мозгового кровотока вызывает повышение внутричерепного объема крови. Поэтому все препараты, повышающие ЦК, рассматриваются как способствующие повышению внутричерепного давления.

Очевидно, что при массивном поражении головного мозга сложные взаимоотношения между отеком, ишемией, локальными изменениями перфузионного давления приведут к труднопредсказуемым изменениям взаимосвязи между мозговым кровотоком и объемом крови. Тем не менее, в клинической практике целесообразно и оправдано допущение о том, что изменения мозгового кровотока и внутричерепного объема крови происходят согласованно и однонаправлено.

Ряд авторов считают, что артериальная гипотензия и гиповолемия являются основной причиной вторичных повреждений головного мозга.

На уровень ЦК существует две точки зрения: системное артериальное давление следует поддерживать на нормальном для данного пациента уровне или несколько ниже, что способствует предотвращению вазогенного отека головного мозга и снижает опасность внутричерепного кровоизлияния. Однако в последнее время существует иная точка зрения на целесообразность умеренной артериальной гипертензии для профилактики и терапии вторичных повреждений головного мозга.

В основе этого положения лежат следующие предположения. Ауторегуляция мозгового кровотока – это способность изменения диаметра сосудов в зависимости от изменения перфузионного давления мозга. Если увеличивается перфузия, то диаметр мозговых сосудов уменьшается, снижается ВЧД. Эти положения высказываются при оценке «сосудосуживающих» и «сосудорасширяющих» каскадов.


Рис. 4. Сосудорасширяющий каскад


Рис. 5. Сосудосуживающий каскад


Системное артериальное давление оказывает влияние на реактивность мозговых сосудов, так, эффект рСО2 на церебральный кровоток реализуется максимально при систолическом АД от 90 до 140 мм рт.ст. (или при данных среднего АД от 70 до 110 мм рт.ст.)

Эффекты ишемии-реперфузии. Описаны два типа сосудистых нарушений, развивающихся в результате ишемии мозга: no-reflow феномен и замедленная постишемическая реперфузия.

No-reflow феномен сочетает результаты повышенной вязкости крови, сдавления мелких сосудов периваскулярными отечными глиальными клетками и формирование внутрисосудистой диссеминированной агрегации элементов крови. Определенную роль в развитии неврологических нарушений играет пост ишемическая гипоперфузия. Она вызывается вазоконстрикцией, обусловленной активацией ионов кальция в мышечных и эндотелиальных клетках сосудов. Повышение продукции тромбоксана А2, сильного вазоконстриктора, который формируется из арахидоновой кислоты во время реперфузии, также вносит свой вклад в гипоперфузию. Активация внутриклеточных процессов также вносит свой вклад в процесс ишемии: активация полиморфоядерных лейкоцитов, выделение цитокинов, ответ эндотелиальных клеток, синтез простагландинов, активация тромбоцитов, системы коагуляции, реактивность микрососудистого русла.

Во время ишемии клетка нервной ткани тормозит расход АТФ, а также синтезирует АТФ путем анаэробного гликолиза. Последний процесс происходит путем перехода лактата в пируват, что является чрезвычайно невыгодным в плане синтеза энергии и обуславливает энергетический дефицит. При полной ишемии лактат-ацидоз клетки будет выражен значительно. Ацидоз вызывает увеличение проницаемости ГЭБ и потенцирует отек головного мозга. Во время ишемии серьезное значение приобретает и внутриклеточный ток кальциевых ионов, так как кальций аккумулируется в нейронах, а для его удаления требуется энергия. Данные факторы предполагают включение в комплекс ИТ ТЧМТ методов элиминации кальциевых ионов, а также антигипоксантное направление в лечении больных.

ДИАГНОСТИКА ТЧМТ

Своевременность и адекватность медикаментозного лечения ТЧМТ по своей значимости приравнивается к оперативному вмешательству по устранению травматического сдавления головного мозга. Это связано с понятием «Time Window» – временного терапевтического окна, на протяжении которого можно предотвратить или затормозить развитие механизмов вторичной травмы мозга и расширение зоны первичных травматических повреждений. Необходимо отметить, что успех в лечение тяжелой ЧМТ зависит от активности и адекватности взаимодействия врачей различных специальностей – анестезиологов-реаниматологов, нейрохирургов, травматологов, хирургов.

Клинические формы ЧМТ:

1. Сотрясение головного мозга.

2. Ушибы головного мозга различной степени тяжести.

3. Диффузное аксональное повреждение.

4. Сдавление головного мозга.

5. Сдавление головы.

6. Комбинированная форма.


Рис. 6. Схема ишемических и реперфузионных факторов повреждения


Рис. 7. Кальцийзависимые реакции, приводящие к гибели нейронов


К категории тяжелой ЧМТ относят: оценка по шкале ком Глазго не более 8 баллов, ушиб головного мозга тяжелой степени, диффузное аксональное повреждение и острое сдавление головного мозга в сочетании с любым вариантом ушиба головного мозга (угрожающая клиника манифестирует в течение 24 часов после травмы).

Стадии течения травматической болезни головного мозга

1. Острая стадия

2. Стадия формирования анатомических повреждений

3. Стадия стабилизации

4. Стадия регресса анатомических повреждений

5. Стадия регресса функциональных изменений

6. Стадия психологической реабилитации

7. Стадия социальной реабилитации

Классификационными признаками ТЧМТ являются: степень, вид и локализация ушиба головного мозга; тип течения, вид и локализация гематомы; наличие дислокационного синдрома и его вид; степень угнетения сознания; наличие субарахноидального кровоизлияния; фазы клинической компенсации ЧМТ.

Реанимационным пациент считается на протяжении первых трех стадиях течения травматической болезни головного мозга, когда начинают формироваться 4-5 стадии больной может переводиться в профильное отделение.

Комплексное обследование больных, поступающих в реанимационное отделение, включает в себя:

– клиническую оценку неврологического статуса;

– рентгенологические исследования (краниография в трех проекциях, компьютерная томография головного мозга, магнитно-резонансная томография и/или транскаротидная (трнасфеморальная) церебральная ангиография);

– исследование ликвора (при отсутствии противопоказаний, которыми являются: острые внутричерепные объемные образования, клинические признаки дислокации головного мозга, расстройства функции ствола головного мозга, клиническая декомпенсация вклинения с нарушениями системной гемодинамики) с оценкой клеточного и биохимического состава;

– нейрофизиологические методы исследования (минимальный объем – эхо-энцефалоскопия с определением смещения срединных структур, электроэнцефалография в динамике терапии после проведения оперативного вмешательства);

– исследование газового и кислотно-основного состава венозной и артериальной крови;

– биохимическое исследование крови (обратить следует внимание на вторичные факторы повреждения головного мозга – гипергликемия или гипогликемия, азотемия, избыточная гемодилюция или гемоконцентрация, изменения натриевого баланса и осмолярности).

Степень утраты сознания определяется согласно принятой в России классификации (Коновалов А.Н. и соавт., 1985) и по шкале ком Глазго – ШКГ (Teasdale G. et al., 1979).

Классификация уровней нарушения сознания

Ясное сознание – полная ориентация, адекватные реакции, сохранность произвольной спонтанной деятельности.

Оглушение (сомноленция) – угнетение сознания с сохранением ограниченного словесного контакта на фоне повышения порога восприятия внешних раздражителей и снижения собственной психической активности.

Сопор – глубокое угнетение сознания с сохранностью координированных защитных реакций и открывание глаз на болевые, звуковые и другие раздражители.

Кома I (умеренная) – реакция больного на болевые раздражители сохранена. В ответ на них могут появиться сгибательные и разгибательные движения дистонического характера. Защитные двигательные реакции не координированы. На боль больной не открывает глаза. Зрачковые и роговичные рефлексы сохранены, брюшные угнетены, сухожильные вариабельны. Повышены рефлексы орального автоматизма и патологические стопные рефлексы.

Кома II (глубокая) – характеризуется отсутствием каких-либо реакций на любые внешние раздражители, разнообразными изменениями мышечного тонуса (от нормального до диффузной гипотонии), снижением или отсутствием рефлексов без двустороннего мидриаза, сохранением спонтанного дыхания и сердечно-сосудистой деятельности при выраженных их нарушениях.

Кома III (терминальная) – определяется двусторонним фиксированным мидриазом, диффузной мышечной атонией, выраженными нарушениями витальных функций, расстройствами ритма и частотой дыхании, апноэ, резчайшей тахикардией, артериальной гипотонией.

В 1970 году в широкую практику была введена шкала Глазго для количественной оценки нарушения сознания.


ТАБЛИЦА 2

ШКАЛА КОМ ГЛАЗГО


Сумма баллов (можно установить соотношение количественных показателей по ШКГ и качественных – по классификации Коновалова):

– 15 баллов – сознание ясное,

– 13-14 баллов – оглушение,

– 9-12 баллов – сопор,

– 4-8 баллов – кома,

– 3 балла – смерть мозга.

Исход болезни у больных, имеющих 9 и более баллов, значительно более благоприятен, чем у пациентов, имеющих 8 и менее баллов. Количество баллов от 3 до 8 соответствует 60 % летальности, от 9 до 12 – 2 %, от 13 до 15 – летальность приближается к нулю. Необходимо помнить, что шкалу не следует использовать у пациентов, находящихся в состоянии медикаментозной седации и тем более на фоне ИВЛ введения миорелаксантов. Принципиально важно регистрировать оценку состояния пациента на исходном этапе и после начала терапии в динамике наблюдения.

Для характеристики общего состояния нейрореанимационных больных используется пять градаций, представленных в таблице 3.

Наиболее опасными состояниями при изменении сознания являются синдромы вклинения. Различают следующие виды вклинения:

1. Центральное

2. Височно-тенториальное

3. Мозжечково-тенториальное

4. Вклинение миндалин мозжечка в дуральную затылочно-шейную воронку 5. Вклинение лобной и теменной долей под серп мозжечка.


ТАБЛИЦА 3

ГРАДАЦИИ ОБЩЕГО СОСТОЯНИЯ НЕЙРОРЕАНИМАЦИОННЫХ БОЛЬНЫХ


Центральное вклинение является результатом движения полушарий и подкорковых образований книзу. При этом происходит сдавление диэнцефальной области и среднего мозга. Височно-тенториальное вклинение является результатом смещения вещества височной доли в вырезку намета мозжечка, что приводит к гидроцефалии вследствие нарушения пассажа ликвора по сильвиеву водопроводу. Мозжечково-тенториальное вклинение происходит при движении полушарий в вырезку намета между его краем и четверохолмием, способствует нарушению венозного оттока из полости черепа по большой вене мозга и гидроцефалии. Вклинение миндалин мозжечка возникает при локализации процесса в задней черепной ямке, что ведет к исходному нарушению витальных функций.

В процессе вклинения выделяют несколько стадий, которые могут быть определены по клиническим и неврологическим симптомам:

1. Ранняя диэнцефальная (дыхание типа Чейна-Стокса, глазодвигательные нарушения).

2. Стадия среднего мозга – верхних отделов моста (несахарный диабет с полиурией, колебания температуры, патологический ритм дыхания Чейна-Стокса, децеребрационная ригидность).

3. Стадия нижних отделов моста – верхних отделов продолговатого мозга (дыхание полипное, фиксированные зрачки со слабой фотореакцией, мышечная атония, патологические разгибательные рефлексы).

4. Стадия продолговатого мозга (терминальная кома, атония, арефлексия, артериальная гипотония).


ТАБЛИЦА 4

ШКАЛА ИСХОДОВ ГЛАЗГО

ПРИНЦИПЫ ИНТЕНСИВНОЙ ТЕРАПИИ ТЧМТ

Основные задачи реанимации и интенсивной терапии при ТЧМТ заключаются в предупреждении и устранении вторичных факторов повреждения головного мозга, наступающих вследствие общей и церебральной гипоксии, несоответствия кровоснабжения метаболическим потребностям мозга в условиях перестройки его энергетического и нейромедиаторного обмена, нарушения проницаемости ГЭБ и коллоидно-осмотического гомеостаза мозга: отека, набухания мозга, нарушения ликвороциркуляции, кровообращения, ведущих к внутричерепной дистензии, дислокации и ущемлению структур мозга, коррекцию перфузионного давления и превентивная терапия ишемии.

Комплекс мероприятий реанимации и интенсивной терапии при повреждениях мозга складывается из общих и специфических компонентов.

1. К общим компонентам относятся: искусственное поддержание на всех этапах лечения функции жизненно важных органов и систем организма (дыхания, кровообращения, метаболизма) как основы для восстановления церебральных функций.

2. К специфическим компонентам нейрореанимации относятся мероприятия, направленные на защиту мозга и восстановление его структурно-функциональной целостности, нормализацию гематоэнцефалического барьера, кровообращения, метаболизма и ликвороциркуляции, предупреждение и лечение отека-набухания мозга, внутричерепной гипертензии, нейромедиаторных нарушений.

Обязательным условием адекватного осуществления общих и специфических компонентов нейрореанимации и интенсивной терапии является мониторинг жизненно важных функций организма, функционального состояния мозга и систем его жизнеобеспечения.

Система нейромониторинга тяжелой ЧМТ

Нейромониторинг является важным компонентом интенсивной терапии больных с внутричерепными кровоизлияниями и представляет собой совокупность клинико – инструментальных методов оценки состояния головного мозга. Система нейромониторинга включает в себя:

− Оценку неврологического статуса.

− Методы нейровизуализации.

− Методы оценки мозгового кровотока.

− Методы контроля внутричерепной гипертензии.

− Методы оценки метаболизма мозга.

− Нейрофизиологические методы.

Оценка неврологического статуса. Оценка неврологического статуса занимает важное место в обследовании пациентов с внутричерепными кровоизлияниями, находящихся в критическом состоянии. Первоочередное внимание следует уделять определению уровня сознания, наличию менингеальной и дислокационной симптоматики. Важно отметить необходимость динамической оценки неврологического статуса. Ее надо производить несколько раз в течение суток при стабильном состоянии пациента и более часто при нестабильном состоянии и проведении манипуляций, которые могут ухудшить состояние больного. К таким манипуляциям относятся: люмбальная пункция, интубация трахеи, трахеостомия, фибробронхоскопия и внутрибольничная транспортировка. Необходимо отметить, что в сочетании с современными технологическими возможностями динамическая оценка неврологического статуса продолжает оставаться одним из наиболее важных способов оптимизации интенсивной терапии.

Методы нейровизуализации. К методам нейровизуализации относят компьютерную томографию (КТ), магнитно-резонансную томографию (МРТ), ангиографию и, при отсутствии возможности проведения КТ или МРТ, эхоэнцефалоскопию.

КТ и МРТ позволяют получать послойное изображение структур головного мозга в аксиальной, сагиттальной и фронтальной проекциях, оценивать степень аксиальной и поперечной дислокации мозга, состояние ликворных пространств, наличие и динамику ушибов головного мозга и зон ишемии. Полученные данные оказывают влияние на тактику интенсивной терапии. Однако КТ и МРТ отличаются по диагностическим возможностям.

Ангиография является методом выбора при диагностике сосудистых аномалий и травматических повреждений сосудов головного мозга, а также позволяет проводить различные эндоваскулярные операции.

При отсутствии возможности выполнения КТ и МРТ для ориентировочной диагностики объёмных очаговых внутричерепных процессов применяется эхоэнцефалоскопия (ЭхоЭС), позволяющая регистрировать смещение срединных структур мозга. Возможности метода ограничены по сравнению КТ и МРТ.


ТАБЛИЦА 5

ПРЕИМУЩЕСТВА И НЕДОСТАТКИ МРТ И КТ


Методы оценки мозгового кровотока. Оценка общего и локального мозгового кровотока может быть прямой и косвенной.


ТАБЛИЦА 6

МЕТОДЫ ОЦЕНКИ МОЗГОВОГО КРОВОТОКА


Методы измерения общемозгового кровотока (Кети-Шмидта и динамическая сцинтиграфия) обладают высокой точностью и позволяют проводить количественную оценку измерений. К недостаткам методик следует отнести необходимость использования изотопов при динамической сцинтиграфии.

Методы измерения регионарного кровотока (однофотонная эмиссионная томография и функциональная МРТ) позволяют проводить динамическую оценку регионарного кровотока. В тоже время методы обладают высокой стоимостью и не дают возможности количественной оценки.

Транскраниальная допплерография является неинвазивным методом и позволяет оценивать линейную скорость кровотока в крупных церебральных артериях. Однако метод не позволяет оценивать объемные показатели кровотока и обладает высокой «оператор-зависимостью» (существенную роль имеет угол наклона датчика). В настоящее время применяются аппараты для т.н. дуплексной (двойной) УЗДГ, которые позволяют одновременно проводить эхотомографию и допплерографию, что обеспечивает визуализацию на экране монитора не только функциональных показателей мозгового кровотока, но и структурно-морфологического изображения экстра– и интракраниальных сосудов.

Расчетные методики

1. Основанные на принципе Фика. Принцип Фика описывает взаимоотношения между мозговым кровотоком (МК), артерио-венозной разницей в содержании кислорода АВРO2 и потреблением мозгом кислорода (ПМКO2): МК=ПМКO2/ АВРO2.

2. К широко используемым косвенным методам оценки мозгового кровотока относится расчет ЦПД. Под ЦПД понимается разница между средним артериальным и средним внутричерепным давлением (ВЧД).

Методики контроля внутричерепной гипертензии. Измерение ВЧД является наиболее широко используемым инструментальным средством нейромониторинга. Общепринято расценивать как критический уровень повышения ВЧД величину 25 – 30 мм рт. ст., хотя клинический опыт демонстрирует отсутствие тесной связи между абсолютной величиной ВЧД и развитием дислокации мозга. Выделяют инвазивное и неинвазивное измерение ВЧД. Инвазивное измерение (внутрижелудочковое, субдуральное, эпидуральное, субарахноидальное и паренхиматозное) проводят при помощи фиброоптических, гидравлических и пневматических систем.


ТАБЛИЦА 7

ИНВАЗИВНОЕ ИЗМЕРЕНИЕ ВЧД


Для неинвазивного измерения используют отоакустические методы. Отоакустические методы основаны на изменении комплайнса барабанной перепонки в ответ на изменение давления перилимфы в лабиринте улитки при колебаниях ВЧД. Метод находится в процессе исследования. Основное преимущество заключается в неинвазивности.

Методы оценки метаболизма мозга. К методам оценки метаболизма головного мозга относят: определение насыщения гемоглобина кислородом в яремной вене, прямое определение напряжения кислорода в ткани мозга, церебральную оксиметрию, микродиализ вещества головного мозга.

Внимание! Это не конец книги.

Если начало книги вам понравилось, то полную версию можно приобрести у нашего партнёра - распространителя легального контента. Поддержите автора!

Страницы книги >> 1
  • 0 Оценок: 0

Правообладателям!

Данное произведение размещено по согласованию с ООО "ЛитРес" (20% исходного текста). Если размещение книги нарушает чьи-либо права, то сообщите об этом.

Читателям!

Оплатили, но не знаете что делать дальше?


Популярные книги за неделю


Рекомендации