Электронная библиотека » Микаэль Лонэ » » онлайн чтение - страница 10


  • Текст добавлен: 16 мая 2018, 00:40


Автор книги: Микаэль Лонэ


Жанр: Прочая образовательная литература, Наука и Образование


Возрастные ограничения: +12

сообщить о неприемлемом содержимом

Текущая страница: 10 (всего у книги 14 страниц) [доступный отрывок для чтения: 4 страниц]

Шрифт:
- 100% +

13
Мировой алфавит


«Философия написана в этой огромной книге, которая всегда открыта перед нашими глазами – я имею в виду Вселенную. Но мы не сможем ее понять до тех пор, пока не научимся понимать ее язык и символы, из которых она состоит. Она написана на языке математики, а его символы – это треугольники, круги и другие геометрические фигуры, без помощи которых человек не сможет постичь ее смысл».

Эти слова, входящие с число самых известных в истории науки, были написаны в 1623 г. самим Галилео Галилеем в его книге под названием «Пробирщик» (итал. Il Saggiatore).

Галилео Галилей, несомненно, был одним из самых деятельных и талантливых ученых всех времен. Итальянского ученого часто называют основоположником современной физики. Надо сказать, что список его открытий поистине впечатляет. Он создал первый телескоп, открыл существование колец Сатурна, солнечные пятна, фазы Венеры и основные четыре спутника Юпитера. Один из самых известных сторонников гелиоцентрической системы мира, сформулированной Коперником, он описал принцип относительности движения, который теперь носит имя Галилея, и был первым, кто экспериментально изучал падающие тела.

В «Пробирщике» описывается тесная связь между физикой и математикой. Галилео Галилей был одним из первых, кто заметил эту зависимость. Необходимо отдельно отметить, что он пошел в хорошую школу, где в возрасте 19 лет ему преподавал основы математики Остилио Риччи, один из учеников Тартальи. Для ученых последующих поколений алгебра и геометрия окончательно стали языком, на котором говорит мир.

Необходимо иметь четкое представление о природе этой взаимозависимости между математикой и физикой. Потому что, конечно же, мы уже неоднократно видели с самого начала нашей истории, что математика всегда использовалась, чтобы изучить и понять мир. Однако в XVII в. произошло нечто новое. До этого времени математические модели оставались на уровне человеческих конструкций, созданных по аналогии с физическими объектами. Когда землемеры из Месопотамии использовали геометрию для измерения прямоугольного поля, оно было размечено человеком. В природе нет правильных прямоугольников – их расчерчивают люди. Аналогично этому, когда географы проводят триангуляцию местности для составления карты, полученные треугольники наносятся искусственно.

Сейчас же речь идет о совсем другой задаче, не просто об описании окружающего мира с математической точки зрения! Да, некоторые ученые эпохи Античности уже пытались сделать это раньше. Например, Платон, который, как вы помните, проводил параллель между пятью правильными многогранниками и четырьмя стихиями и космосом. Эта идея была гордостью пифагорейцев, хотя на самом деле их теории редко носили серьезный научный характер. Построенные на чисто метафизических соображениях и не подтвержденные экспериментально, почти все они в конечном счете были опровергнуты.

В XVII в. ученые пришли к выводу, что сама природа в различных своих проявлениях управляется точными математическими законами, которые могут быть выявлены экспериментальным путем. Одним из наиболее ярких достижений этого периода, несомненно, стало открытие закона всемирного тяготения Исааком Ньютоном.

В своей работе «Математические начала натуральной философии» (от лат. Philosophiae naturalis principia mathematica) английский ученый впервые доказал, что падение тел на Землю и вращение звезд на небе можно объяснить одним явлением: все объекты Вселенной притягиваются друг к другу. Эту силу практически невозможно обнаружить для мелких предметов, но она становится огромной в случае, если речь идет о планетах или звездах. Земля притягивает объекты, поэтому они падают. Земля притягивает Луну и, в какой-то степени можно сказать, что Луна падает тоже. Но поскольку Земля круглая и Луна движется на высокой скорости, она непрерывно падает рядом с Землей, вращаясь по кругу! Аналогичным образом планеты вращаются вокруг Солнца.

Ньютон не только открыл закон притяжения, но и вывел математическую формулу для определения величины силы, с которой объекты притягивают друг друга. Любые два тела притягиваются с силой, пропорциональной произведению их масс, разделенному на квадрат расстояния между ними. Что, используя символы Виета, можно записать следующим образом:



В этой формуле буква F обозначает интенсивность силы, m1 и m2, соответственно, массы двух тел, сила притяжения между которыми определяется, и d – расстояние между ними. Число G обозначает постоянную, равную 0,0000000000667. Ее малая величина объясняет то, что у небольших объектов сила притяжения незначительна, а у обладающих гигантской массой планет и звезд – ощутима. Задумайтесь над тем, что всякий раз, когда вы поднимаете что-то, ваша мышечная сила больше, чем сила притяжения Земли!

С появлением этой формулы физические проблемы стали математическими задачами. Так, стало возможным вычислять траектории небесных тел и, в частности, прогнозировать события! Для того чтобы определить дату следующего затмения, достаточно найти значение неизвестных алгебраического уравнения.

В последующие десятилетия с помощью формулы Ньютона сделаны значительные открытия. Из закона всемирного тяготения вывели, что Земля слегка придавлена со стороны полюсов, что было впоследствии подтверждено геометрами, измерившими каждый меридиан с помощью триангуляции. Одним из наиболее впечатляющих успехов применения ньютоновской теории считается расчет времени возвращения кометы Галлея.

Со времен эпохи Античности ученые замечали случайное появление комет на небе. Две школы давали различное толкование этому явлению. Последователи Аристотеля полагали, что кометы – атмосферные явления, происходящие относительно близко к Земле, в то время как пифагорейцы считали, что это своего рода планеты, то есть более удаленные объекты. Когда Ньютон опубликовал «Математические начала натуральной философии», споры все еще продолжались, и ученые двух школ продолжали дискутировать по этому вопросу.

Один из способов доказать, что кометы – это далекие звезды, обращающиеся вокруг Солнца, – найти определенную закономерность: вращающийся объект должен возвращаться в одну и ту же точку с регулярной периодичностью. К сожалению, в начале XVIII в. еще не удалось обнаружить никакую закономерность такого рода. Но затем, в 1707 г., британский астроном, друг Ньютона Эдмунд Галлей заявил, что, возможно, кое-что обнаружил.

В 1682 г., когда Галлей впервые наблюдал комету, увиденное не показалось ему чем-то очень необычным. За год во время своего пребывания во Франции до этого астроном встретился с Кассини I в Парижской обсерватории. Кассини I обсуждал с ним свое предположение о периодичности возвращения комет. Затем Галлей погрузился в астрономические архивы, в которых были описаны два других случая появления кометы: в 1531 и 1607 гг. Кометы появлялись в 1531, 1607 и 1682 гг., то есть каждый раз ровно через 76 лет. А что если это была одна и та же комета? Галлей утверждает, что комета вернется в 1758 г.!

Пятьдесят один год неизвестности! Ожидание было невыносимо долгим. Другие ученые воспользовались этим, чтобы уточнить прогноз Галлея. В частности, было сделано предположение, что гравитационное притяжение двух таких планет-гигантов, как Юпитер и Сатурн, может несколько изменить курс кометы. В 1757 г. астроном Жером Лаланд и математик Николь-Рейн Лепот занимались расчетами, основанными на модели, разработанной Алекси Клеро, которая, в свою очередь, основывалась на уравнениях Ньютона. Они долго и кропотливо на протяжении нескольких месяцев делали расчеты, чтобы окончательно предсказать прохождение кометы рядом с Солнцем в апреле 1759 г. с возможной погрешностью не более чем на месяц.

А затем произошло невероятное событие. Комета прилетела снова, и весь мир увидел ее в небе, что было триумфом Ньютона и Галлея. Она прошла рядом с Солнцем 13 марта во временном интервале, который правильно вычислили Клеро, Лаланд и Лепот. Галлей, к сожалению, не дожил до возвращения кометы, которой было впоследствии дано его имя, но теория гравитации и благодаря этому применение математики в физике получили поразительное по своей силе и красоте подтверждение.

Ирония судьбы в том, что Галилео Галилей, помимо своей идеи о постижении мира с помощью математики, говорил в «Пробирщике» об атмосферном происхождении комет! Его книга была ответом математику Орацио Грасси, который за несколько лет до этого защищал противоположную точку зрения. Известность Галилея и полемический стиль сделали его книгу бестселлером своего времени, но ни слава, ни успех не являются подтверждением истины. «И все-таки она вертится», – мог бы ответить Грасси Галилею.

Помимо ошибки Галилея этот пример ярко иллюстрирует устойчивость научного процесса, который происходит в это время. Научные выводы не зависят от ранее выдвинутых авторитетными учеными мнений, даже если речь идет о Галилео Галилее. Факты – упрямая штука. Реальная природа комет, как и всех других физических объектов мира, не зависит от идей, которые люди вкладывают в них. В эпоху Античности, когда признанный ученый допускал ошибку, его многочисленные ученики, как правило, без колебаний следовали его курсу, ставя во главу угла авторитет ученого. Зачастую нескольких столетий недоставало для того, чтобы опровергнуть неверное знание с помощью элементарного эксперимента. Тот факт, что заблуждение Галилея было опровергнуто в течение всего лишь нескольких десятилетий, является признаком высокого уровня компетентности научного сообщества!

Рассчитать путь кометы, которую уже видели ранее, весьма непросто, но открыть с помощью вычислений новое небесное тело, о котором совсем ничего не известно, – это задача совсем иного порядка. Среди основных прорывов в области астрономии, сделанных с помощью математики, следует отдельно выделить открытие планеты Нептун в XIX в. Восьмая и последняя планета Солнечной системы, она единственная обнаружена учеными не в результате наблюдений, а с помощью математических вычислений! Это открытие сделал французский астроном и математик Урбен Леверье.

Начиная с конца XVIII в. многие астрономы заметили отклонения в траектории движения Урана, на тот момент последней известной планеты. Траектория, по которой она двигалась, не в полной мере соответствовала закону всемирного тяготения. Этому могло быть только два объяснения: либо теория Ньютона была ложной, либо эти отклонения были следствием существования еще одной планеты. Исходя из наблюдений за траекторией Урана, Леверье начал вычислять положение этой гипотетической новой планеты. Ему потребовалось два года напряженной работы, чтобы получить результат.

Наступил момент истины. В ночь с 23 на 24 сентября 1846 г. немецкий астроном Иоганн Готтфрид Галле направил свой телескоп в направлении, которое сообщил ему Леверье, приложил глаз к окуляру и… увидел ее. Еле заметное голубоватое пятно, затерявшееся в глубине ночного неба. Планета была там, на расстоянии более четырех миллиардов километров от Земли!

Какое прекрасное опьяняющее чувство, какое ощущение всеобщей вселенской силы, какие еще непостижимые эмоции, должно быть, испытал в тот день Леверье, который на кончике пера, благодаря своим уравнениям, смог найти, поймать и практически контролировать этот титанический танец планет вокруг Солнца! Благодаря математикам небесные монстры, которых когда-то считали богами, в одночасье стали ручными, укрощенными, послушными и мурчащими под ласками алгебры. Можно легко представить себе состояние сильного волнения, которое охватило все мировое астрономическое сообщество в последующие дни, и даже сегодня любой астроном-любитель, установив свой телескоп в направлении Нептуна, почувствует, как мурашки пошли у него по спине.

Жизнь любой научной теории имеет свои фазы. Так, все начинается с гипотезы, сомнений, ошибок, прогресса и предположений. Затем наступает время доказывания, проведения опытов, в результате чего гипотеза или подтверждается, или окончательно отвергается. И тогда наступает самый желанный момент, когда теория имеет достаточно оснований, чтобы с ее помощью делать выводы об окружающем мире без эмпирического подтверждения. Момент, когда уравнения могут предшествовать полученному опыту и даже предсказывать не наблюдавшиеся ранее явления, которые могут оказаться совершенно неожиданными. Момент, когда теория превращается из открытия в первооткрывателя, который становится союзником, почти коллегой создавших ее ученых. Так, теория сформировалась, и наступило время открытия кометы Галлея и Нептуна. А еще время грандиозного открытия Эйнштейном 29 мая 1919 г. общей теории относительности, время бозонов Хиггса, обнаруженных в 2012 г., вывод о существовании которых сделан с помощью стандартной модели физики элементарных частиц, а также время гравитационных волн, обнаруженных впервые 14 сентября 2015 г.

Прежде чем получить признание, все великие научные открытия делаются с помощью математики, алгебраических уравнений и геометрических построений. Математика продемонстрировала свою невероятную силу, и сегодня ни одна серьезная теория физики не осмелится говорить на другом языке.

Кристаллография

Повсеместное использование математики также распространяется и на химию, где мы встречаемся со старым знакомым. В начале XIX в. французский минералог Рене Жюст Гаюи, уронив кусок известкового шпата, обнаружил, что он распадается на множество фрагментов, имеющих одинаковую геометрическую структуру. Форма элементов, на которые он распался, не были случайными, они имели плоские грани, образовывавшие определенные углы друг с другом. Обратив внимание на такое явление, Гаюи делает вывод, что известковый шпат, должно быть, сформирован из множества однотипных элементов, которые связаны между собой идентичным образом. Твердое тело, обладающее таким свойством, назвали кристаллом. Другими словами, кристалл под микроскопом представляет собой структуру атомов или молекул, которая повторяется во всех направлениях.

Структура, которая повторяется? Это вам ничего не напоминает? Поразительно похоже на месопотамские узоры и арабские замощения полов. Узор – это повторяющаяся последовательность в одном направлении, замощение – в двух. Для изучения кристаллов необходимо использовать те же принципы, но на этот раз в трехмерном пространстве. Месопотамские ремесленники обнаружили семь видов узоров, а арабские мастера – семнадцать видов замощения. С помощью алгебраических структур теперь можно было доказать, что эти цифры окончательные и других типов нет. Эти же алгебраические структуры позволили рассчитать, что существует 230 видов замощения в трехмерном пространстве. Среди простейших видов можно выделить мощение кубами, шестигранными призмами или усеченными октаэдрами,[16]16
  Октаэдр – одно из пяти Платоновых тел, с которым мы уже ранее сталкивались. Усеченный октаэдр получается путем отсечения вершин октаэдра таким же образом, как получался усеченный икосаэдр (форма футбольного мяча) путем отсечения вершин икосаэдра.


[Закрыть]
графическое изображение которых приводится ниже.


Трехмерные структуры, состоящие из кубов, шестигранных призм или усеченных октаэдров (слева направо). Такие структуры можно продолжать в пространстве до бесконечности


Элементы идеально стыкуются между собой, образуя структуру, которая может простираться до бесконечности во всех направлениях. Кто бы мог подумать, что отголоски геометрии, распознанные в узорах, нанесенных мастерами Месопотамии, в дальнейшем породят идею, лежащую в основе изучения свойств материи?

Кристаллы встречаются повсеместно в нашей жизни. В качестве примеров можно привести поваренную соль, состоящую из множества мелких кристаллов хлорида натрия, или кварц, регулярные колебания которого под воздействием электрического тока являются неотъемлемой частью работы наших часов. Но будьте внимательны, слово «кристалл» иногда используется в повседневном языке некорректно.

Так, хрустальные бокалы на самом деле не состоят из кристаллов в научном смысле этого слова.[17]17
  В некоторых языках слово «хрустальный» и «кристальный» в значении «состоящий из кристаллов» имеют одинаковое написание. – В. М.


[Закрыть]

Если вы хотите полюбоваться на самые эффектные образцы, можете посетить минералогическую коллекцию. Так, одна из самых красивых коллекций в мире экспонируется в Университете Пьера и Марии Кюри в Париже.

Невероятная эффективность математизации мира, однако, не отвечает на следующий обескураживающий вопрос. Почему язык математики так идеально подходит для описания мира? Для того чтобы понять это, вернемся к формуле Ньютона.



Гравитационная сила в соответствии с формулой определяется с помощью двух действий умножения, деления и возведения во вторую степень. Простота этого выражения кажется маловероятным совпадением! Известно, что не все цифры могут быть выражены с помощью простых математических формул. Это касается, например, числа π и многих других. С точки зрения статистики сложные цифры еще более многочисленны, чем простые. Если взять случайное число, то будет гораздо больше шансов, что оно окажется нецелым. Аналогичным образом, вы с большей вероятностью столкнетесь с числом с бесконечным количеством знаков после запятой, чем с целым, а также скорее выбранное вами число не сможет быть выражено в виде формулы, чем будет вычисляться с применением элементарных действий.

Формула Ньютона удивительна еще и тем, что сила в ней определяется в зависимости от массы и расстояния между объектами. Это не просто постоянная величина, как, например, π. Независимо от массы двух тел и расстояния между ними, притяжение между ними всегда будет измеряться по этой формуле! До того момента, когда Ньютон сформулировал этот закон, логично было предположить, что определить силу притяжения с помощью математической формулы невозможно. И даже если допустить существование такой формулы, она могла бы оказаться невероятно сложной, включающей в себя не только умножение, деление и возведение во вторую степень.

К счастью, формула Ньютона оказалась проще! Удивительно, что природа так изысканно говорит на языке математики. Часто в истории оказывалось, что модели, разработанные математикой только из-за их красоты, спустя столетия после своего открытия находят применение в физических науках. И это касается не только силы тяготения. Электромагнитные явления, квантовые свойства элементарных частиц, релятивистская деформация пространства и времени – все это может быть удивительно лаконично выражено математическим языком.

Возьмем в качестве еще одного примера самую известную из всех формул: E = mc2. Это равенство, сформулированное Альбертом Эйнштейном, соотносит массу и энергию физических объектов. Здесь не будет приводиться доказательство этой формулы, так как сейчас у нас стоит другая цель. Но только задумайтесь: принцип функционирования нашей Вселенной, который, как правило, считается одним из самых захватывающих и непостижимых, выражается алгебраической формулой, состоящей всего из пяти символов! Какое чудо! Как правило, в этой ситуации вспоминают фразу Эйнштейна, которая подходит к подобным ситуациям: «Самое непостижимое в этом мире – это то, что он постижим». Остается домыслить, что постижим он с помощью математики. В 1960 г. физик Юджин Вигнер сформулировал это как «непостижимую эффективность математики».

Наконец, так ли хорошо мы знаем эти абстрактные объекты, цифры, фигуры, ряды и формулы, которые, как нам кажется, мы создали? Если математика действительно плод деятельности нашего мозга, зачем же мы тогда ищем ее проявления за пределами нашей головы? Откуда они берутся в окружающем нас мире? В самом ли деле они там есть? Или то, что мы видим, – это не более чем гигантская оптическая иллюзия? Представить себе, что математические объекты существуют вне человеческого разума, было бы равносильно тому, чтобы признать их реальными, даже если они являются чистой абстракцией. Что в таком случае вообще означает глагол «быть», если мы применяем его к бестелесным объектам?

Не надейтесь, что я смогу ответить хотя бы на один их этих вопросов.

14
Бесконечно малые величины


Тесная зависимость математики с физикой недолго оставалась уникальным явлением. Начиная с XVII в. эти две дисциплины постоянно обмениваются идеями, обогащая друг друга. Поскольку физика основывается на формулах, каждое новое открытие требует математического подтверждения. Существуют ли уже соответствующие формулы или их еще предстоит изобрести? В последнем случае перед математиками встает задача создать новые теории на заказ. Так физика становится для них одним из самых главных источников вдохновения.

Развитие ньютоновской теории гравитации стало одним из первых катализаторов развития инновационной математики. Чтобы понять это, вернемся к следу кометы Галлея. Знать силу, которая притягивает ее к Солнцу, это уже что-то, но как, исходя из этой информации, вычислить ее траекторию и другую полезную информацию, такую, как, например, ее положение в конкретную дату или точный период обращения?

Один из классических вопросов, на которые предстоит ответить, – это, в частности, определение пройденного расстояния в зависимости от скорости. Если я скажу вам, что скорость перемещения кометы в пространстве равна 2000 метров в секунду, и спрошу, какое расстояние она пройдет за одну минуту, найти ответ будет достаточно просто. За одну минуту комета пройдет 60 раз по 2000 метров, то есть 120 000 м, или 120 км. Проблема заключается в том, что в реальности все намного сложнее. Скорость кометы не постоянная, а меняется с течением времени. На своем афелии, то есть в самой дальней точке от Солнца, она составляет 800 метров в секунду, в то время как в перигелии, ближе всего к Солнцу, она составляет 50 000 метров в секунду. Большая разница!



И вся сложность заключается в том, что между этими двумя крайностями комета не разгоняется постепенно и никогда не движется на одной скорости. В определенный момент комета движется со скоростью 2000 метров в секунду, но она не постоянна. Мгновение до скорость была немного больше, скажем, 2000,001 метра в секунду и уже через долю секунды после она уже равна 1999,999 метра в секунду. Невозможно найти такой промежуток времени, даже самый крошечный, в котором комета сохраняет постоянную скорость! Как при таких условиях точно рассчитать расстояние, которое она пройдет?

Для того чтобы ответить на этот вопрос, математики прибегают к методу, который странным образом напоминает способ, использовавшийся две тысячи лет назад Архимедом для вычисления числа π. Подобно тому как ученый из Сиракуз сопоставлял круг и многоугольники с большим количеством сторон, можно приблизительно рассчитать траекторию движения кометы, разбив ее путь на все более и более короткие промежутки. Можно, например, предположить, что комета поддерживает постоянную скорость 800 метров в секунду определенный интервал времени, а затем начинает двигаться на скорости 900 метров в секунду еще один интервал времени и так далее. Траектория, рассчитанная таким образом, не будет точной, но может рассматриваться как приближенная. Для того чтобы увеличить точность расчетов, достаточно взять за основу более короткие интервалы. Вместо того чтобы рассматривать интервалы 100 метров в секунду, можно сократить их до 10,1 или даже 0,1 метра в секунду. Чем более мелкие отрезки скорости будут выбраны для расчетов, тем полученная траектория окажется ближе к фактической траектории кометы!

Последовательность приближенных расстояний, пройденных кометой от афелия до перигелия, может выглядеть следующим образом:

47 42 40 39 38,6 38,52 38,46 38,453…

Эти числа приведены в астрономических единицах.[18]18
  Астрономическая единица равна расстоянию от Земли до Солнца и составляет приблизительно 150 миллионов километров.


[Закрыть]
Другими словами, если мы предположим, что скорость кометы остается неизменной в интервале 100 метров в секунду, расстояние между афелием и перигелием будет равняться 47 астрономическим единицам. Этот результат, разумеется, является грубым приближением. Если уточнить интервал до 10 метров в секунду, искомое расстояние будет равно 42 астрономическим единицам. Отрезки, на которых происходит изменение скорости, сокращаются все больше и больше, расстояние приближается к 38,45 астрономическим единицам. Это предельное значение соответствует фактическому расстоянию, которое проходит комета между двумя крайними точками своего пути.

В некотором смысле этот результат можно назвать полученным с помощью разделения траектории кометы на бесконечное число бесконечно малых интервалов. Данный подход аналогичен методу Архимеда, по которому можно рассчитать число π, представив круг как многоугольник с бесконечным числом бесконечно малых сторон! Проблема этих двух утверждений в определении бесконечности. Этот термин знаком нам еще из рассуждений Зенона, в которых неоднозначное и опасное понятие бесконечности приводило к балансированию на грани парадокса.

Таким образом, есть два варианта: либо полностью отказаться от использования понятия бесконечности, кропотливо изучать проблемы ньютоновской физики с помощью рядов предельных приближений, либо собрать всю волю в кулак и осторожно погрузиться в болото бесконечно малых интервалов. Именно по этому пути пошел Ньютон в «Математических началах натуральной философии». Этого же подхода будет придерживаться немецкий математик Готфрид Вильгельм Лейбниц, который независимо от Ньютона сделал аналогичное открытие, а также доработал некоторые понятия, требовавшие уточнений в рассуждениях Ньютона. Из этих исследований будет рождаться новая отрасль математики, которая получит название «исчисление бесконечно малых величин».

Вопрос об авторстве этой отрасли еще долго обсуждался в последующие годы. В то время как Ньютон был первым, кто начал заниматься исследованиями в этом направлении уже с 1669 г., но слишком долго не предавал гласности результаты своей работы, Лейбниц сформулировал соответствующую теорию и опубликовал свою работу в 1684 г., за три года до «Математических начал натуральной философии». Это переплетение дат привело к возникновению конфликта между английским и немецким научными сообществами, каждое из которых не признало первенство другого и даже предъявляло обвинения в плагиате. Сегодня представляется, что ни один из ученых не знал о существовании подобных исследований, и можно считать, что исчисление бесконечно малых величин было открыто каждым из них самостоятельно.

В самом начале теория не была идеальной. Многим пунктам в исследованиях Ньютона и Лейбница все еще не хватало строгости и обоснованности. Как это уже случилось ранее с мнимыми числами, был сделан вывод, что одни методы работают, а другие – нет, без понимания истинных причин этого.

Так, исчисление бесконечно малых величин становится подобным изучению неизведанной территории, когда на карте помечают важные связующие направления и запретные пути, ведущие к тупикам и парадоксам. В 1748 г. итальянский математик Мария Гаэтана Аньези публикует свою работу под названием «Основы анализа» (от итал. Instituzioni Analitiche), в которой впервые будут описаны накопленные на тот момент знания в области молодой дисциплины. Спустя столетие немецкий математик Бернхард Риман опубликует свою работу с наиболее поздними исследованиями применения этой дисциплины.

С этого момента математики начали повсеместно использовать исчисление бесконечно малых величин и применять его в решении многочисленных вопросов, возникающих в связи с тысячами физических явлений. Эта теория оказалась не просто инструментом, позволяющим решать сложные задачи, но и была удивительно красивой. Наука подобна бесконечной игре в теннис, и эти новые разработки будут постепенно находить применение в других областях, как, например, астрономия.

Бесконечно малые величины будут использоваться в решении любых задач, в которых, по аналогии с движением кометы, присутствуют непрерывно изменяющиеся величины. В метеорологии – для того чтобы моделировать и прогнозировать изменение температуры или атмосферного давления. В океанографии – чтобы следить за океаническими течениями. В аэродинамике – для контроля сопротивления воздуха с крыльями самолета или различными космическими аппаратами. В геологии – для мониторинга состояния мантии Земли и изучения вулканов, землетрясений и, в долгосрочной перспективе, дрейфа материков.

В ходе исследований математики обнаружили в бесконечно малом мире множество необычных результатов, некоторые из которых сильно озадачили их.

Одна из первых идей, как определить бесконечно малый интервал, предлагала выбрать в качестве него точку. Еще Евклид определил точку как наименьший геометрический элемент. При длине, равной 0, точка бесконечно мала. К сожалению, эта идея, такая простая в понимании, не может быть взята за основу. Для того чтобы понять это, посмотрите на этот отрезок, длина которого обозначена как 1.



Этот отрезок состоит из бесконечного числа точек, каждая из которых имеет длину, равную 0. Так, можно сказать, что длина отрезка равна бесконечному количеству нулей! На алгебраическом языке это можно записать, как ∞ × 0 = 1, где ∞ обозначает бесконечность. Проблема этого вывода заключается в том, что если мы теперь рассмотрим отрезок, длина которого равна 2, то получится, что она тоже состоит из бесконечного числа точек, что в этот раз соответствует равенству ∞ × 0 = 2. Как может получиться так, что одинаковые расчеты приводят к двум различным результатам? Так, изменяя длину отрезка, мы можем также рассчитать, что произведение ∞ × 0 равно 3, 1000 или даже π!

Исходя из этого мы вынуждены сделать следующий вывод: используемые определения нуля и бесконечности в данном контексте недостаточно точны и не могут быть использованы в дальнейшем. Такие произведения как ∞ × 0, результат которых изменяется в зависимости от его интерпретации, называют неопределенной формой. Невозможно использовать эти формы в алгебраических вычислениях, так как мы сразу столкнемся с тысячами парадоксов! Если бы мы стали применять умножение ∞ × 0, то тем самым пришлось бы признать, что 1 равно 2 и т. д. Короче говоря, необходимо поступать иначе.

Сделаем вторую попытку. Если бесконечно малый интервал не может быть точкой, это может быть отрезок, ограниченный двумя точками, расположенными бесконечно близко друг к другу. Идея привлекательная, но мы снова сталкиваемся с проблемой, потому что таких отрезков не существует. Расстояние между двумя точками может быть сколь угодно малым, но всегда будет иметь положительную длину. Отрезки длиной в сантиметр, миллиметр, одну миллиардную миллиметра или даже меньше, конечно, очень малы, но ни в коем случае не бесконечно малы. Иными словами, две точки никогда не будут соприкасаться.

Есть что-то очень обескураживающее в этом заявлении. Когда вы рисуете непрерывную линию, например отрезок, в ней нет никаких промежутков, и тем не менее точки, которые составляют ее, не соприкасаются! Ни одна точка не соприкасается с другими. Отсутствие отверстий в линии является всего лишь следствием того, что она состоит из бесконечно малых точек. И если определять точки линии по их взаимосвязям, это же явление можно представить в алгебраической форме следующим образом: два различных числа никогда не идут подряд, всегда есть бесконечное множество других чисел, которые находятся между ними. Между числами 1 и 2 находится 1,5. Между числами 1 и 1,1 находится 1,05. А между числами 1 и 1,0001 есть 1,00005. Так можно продолжать до бесконечности. С числом 1, как и со всеми другими, не «соприкасаются» другие числа. Однако бесконечная совокупность бо́льших и меньших чисел обеспечивает непрерывность последовательности.


Страницы книги >> Предыдущая | 1 2 3 4
  • 4 Оценок: 5

Правообладателям!

Данное произведение размещено по согласованию с ООО "ЛитРес" (20% исходного текста). Если размещение книги нарушает чьи-либо права, то сообщите об этом.

Читателям!

Оплатили, но не знаете что делать дальше?


Популярные книги за неделю


Рекомендации