Электронная библиотека » Нил Тайсон » » онлайн чтение - страница 7


  • Текст добавлен: 12 июня 2018, 11:40


Автор книги: Нил Тайсон


Жанр: Зарубежная образовательная литература, Наука и Образование


Возрастные ограничения: +12

сообщить о неприемлемом содержимом

Текущая страница: 7 (всего у книги 9 страниц) [доступный отрывок для чтения: 2 страниц]

Шрифт:
- 100% +
* * *

На ультра-коротковолновом конце электромагнитного спектра находятся высокочастотные и высокоэнергичные гамма-лучи с длинами волн, измеряемыми в пикометрах (приставка «пико-» означает одну триллионную часть). Они были открыты в 1900 году, но из космоса их удалось уловить лишь в 1961 году при помощи телескопа новой конструкции, установленного на борту спутника НАСА «Эксплорер-XI». Все, кто пересмотрел научно-фантастического кино, знают, что гамма-лучи вредны для здоровья. От них, чего доброго, станешь зеленым и мускулистым или паутина поползет от запястий, да мало ли. Но еще их очень трудно поймать. Сквозь обычные линзы и зеркала они проходят, не задерживаясь. Тогда как же их наблюдать? В начинку телескопа на «Эксплорере-XI» входил так называемый сцинтиллятор, который в ответ на попадающие в него гамма-лучи испускает электрически заряженные частицы. Если измерить энергию частиц, можно сказать, какого рода высокоэнергичный свет их создал.


Эксплорер-XI


Через два года СССР, Великобритания и США подписали Договор о запрещении испытаний ядерного оружия в атмосфере, космическом пространстве и под водой, поскольку именно в этих средах ядерные отходы легко распространяются и загрязняют территорию за пределами государства, которое провело испытания. Но в то время шла холодная война, и никто никому не доверял. США поступили согласно принципу «доверяй, но проверяй», особенно актуальному в военное время, и запустили новую серию спутников – «Вела» – задачей которых было улавливать вспышки гамма-лучей, которые возникли бы, если бы СССР тайно проводили ядерные испытания. Спутники и правда регистрировали вспышки гамма-лучей – практически ежедневно. Однако русские были ни при чем. Гамма-лучи приходили из глубокого космоса – и, как потом установили ученые, это были визитные карточки коротких, но мощных взрывов далеких звезд, то и дело происходящих во Вселенной: так родилось новое направление в моей научной дисциплине – гамма-астрономия.

В 1994 году гамма-обсерватория имени Комптона сделала открытие, столь же неожиданное, что и открытия спутников «Вела»: частые вспышки гамма-лучей у самой поверхности Земли. Эти вспышки получили логичное название «атмосферные гамма-вспышки». Что это – ядерная катастрофа? Очевидно, нет, раз вы сейчас читаете эти строки. Не все природные гамма-вспышки одинаково смертоносны, более того, не все они имеют космическое происхождение. В данном случае не менее пятидесяти подобных вспышек ежедневно происходят в атмосфере Земли над грозовыми облаками за долю секунды до обычной молнии. Откуда они берутся, пока загадка, но самые правдоподобные гипотезы гласят, что во время электрической бури свободные электроны разгоняются до околосветовых скоростей, а потом тормозятся около ядер атомов атмосферы и рождают гамма-лучи.

* * *

Сегодня телескопы наблюдают все невидимые части спектра – иногда с Земли, но в основном из космоса, где обзору не мешает поглощающая земная атмосфера. Теперь мы наблюдаем события от низкочастотных радиоволн в десяток метров длиной от пика до пика и до высокочастотных гамма-лучей, длина волны которых не превосходит одну квадрильонную долю метра. Такая богатая палитра полос спектра обеспечивает неисчерпаемый источник астрофизических открытий. Хотите выяснить, сколько газа таится между звезд в галактиках? Радиотелескопы знают это лучше всех. Без микроволновых телескопов ничего невозможно узнать о фоновом космическом излучении, невозможно понять, что такое Большой взрыв. Интересно подсмотреть, что делается в звездных инкубаторах, расположенных в глубинах галактических газовых облаков? Обратите внимание на то, что делают инфракрасные телескопы. Занимаетесь излучением из окрестностей обычных и сверхмассивных черных дыр в центре какой-нибудь галактики? К вашим услугам ультрафиолетовые и рентгеновские телескопы. Хотите полюбоваться высокоэнергичным взрывом гигантской звезды массой в сорок солнц? Следите за развитием событий в гамма-телескопы.

Со времен экспериментов Гершеля с солнечными лучами, «невидимыми глазу», мы проделали долгий путь и теперь можем исследовать Вселенную как она есть, а не какой она кажется. Гершель бы нами гордился. Мы обрели подлинное космическое зрение, лишь увидев невидимое – ослепительную сокровищницу объектов и явлений, происходящих во всем космосе и во все времена, какая в минувшие века и не снилась науке.

10. Между планет

Издалека кажется, будто наша Солнечная система пуста. Если заключить ее в сферу – такую большую, чтобы в нее поместилась орбита Нептуна, самой дальней планеты (нет, не Плутона, с этим придется смириться), – объем, занятый самим Солнцем, всеми планетами и их спутниками, займет чуть больше одной триллионной части охваченного пространства. Однако на самом деле она далеко не пустая: в пространстве между планет содержатся всевозможные обломки, камешки, ледяные шары, пыль, потоки заряженных частиц и дальнобойные космические зонды. Кроме того, пространство пронизано чудовищными гравитационными и магнитными полями.

Межпланетное пространство настолько не пустое, что Земля, двигаясь по орбите со скоростью 30 километров в секунду, встречает сотни тонн метеоритов ежедневно – почти все они не крупнее песчинки. И почти все сгорают в верхних слоях атмосферы, поскольку врезаются в воздух с такой энергией, что испаряются от соударения. Наш хрупкий биологический вид эволюционировал под этим защитным слоем. Более крупные метеориты – с теннисный мяч размером – разогреваются быстро, но неравномерно и зачастую разлетаются на множество мелких обломков, а уже потом испаряются. Еще более крупные метеориты обгорают по поверхности, но все же долетают до поверхности Земли. Казалось бы, за 4 миллиарда 600 миллионов обходов вокруг Солнца Земля должна была подчистить весь мусор на своем орбитальном пути. Однако когда-то все было гораздо хуже. В течение полумиллиарда лет после формирования Солнца и его планет на Землю падало столько всякого хлама, что от постоянных энергичных соударений, вырабатывавших тепло, атмосфера Земли была раскалена, а земная кора – расплавлена.

Один особенно большой метеорит стал причиной возникновения Луны. Пробы лунного грунта, полученные астронавтами с «Аполлона», показали, что там неожиданно мало железа и других массивных элементов, и это говорит о том, что Луна, скорее всего, вырвалась из бедной железом земной коры и мантии после столкновения по касательной с залетной протопланетой размером с Марс. Орбитальный мусор, оставшийся после этой встречи, сгустился и сформировал наш прелестный спутник с низкой плотностью. Помимо этого сенсационного события, период тяжелой бомбардировки, который Земля пережила во младенчестве, не уникален для планет и других крупных небесных тел Солнечной системы. Все они выдержали подобный натиск, и поверхности Луны и Меркурия, на которых в отсутствие воздуха не было и эрозии, сохранили много свидетельств той поры в виде кратеров.

Пробы лунного грунта, полученные астронавтами с «Аполлона», показали, что там неожиданно мало железа и других массивных элементов, и это говорит о том, что Луна, скорее всего, вырвалась из бедной железом земной коры и мантии после столкновения по касательной с залетной протопланетой размером с Марс.

Шрамы от космического мусора, оставшегося после формирования Солнечной системы, видны не только в ней самой: межпланетные окрестности также содержат камни всевозможных размеров, выбитые из Марса, Луны и Земли отдачей после скоростных соударений. Компьютерные модели падений метеоритов убедительно показывают, что поверхностные камни возле зон удара выбивает вверх с такой скоростью, что они рвут гравитационные узы с родным небесным телом. Если учесть, сколько на Землю попадает метеоритов марсианского происхождения, можно сделать вывод, что на нас ежегодно сыплется дождь из тысячи тонн марсианской породы. Возможно, примерно столько же достигает Земли с Луны.


Обратная сторона Луны


В сущности, нам не нужно было лететь на Луну, чтобы получить лунный грунт. Множество лунных обломков падают на нас сами, просто мы их не выбираем, и к тому же во времена программы «Аполлон» мы еще не знали об этом.

* * *

Большинство астероидов в Солнечной системе живут и работают в главном поясе астероидов, более или менее плоской зоне между орбитами Марса и Юпитера. По традиции кто открыл астероид, тот и называет его как хочет. Художники обычно изображают пояс астероидов как лабиринт из каменистых обломков, протянувшийся широким кольцом в плоскости Солнечной системы, однако общая масса этого пояса составляет менее 5 % массы Луны, которая сама составляет чуть больше процента массы Земли. Вроде бы пустяк. Однако из-за накопленных возмущений орбит астероидов среди них всегда есть смертоносная группа небесных тел, чьи эксцентрические орбиты пересекают земную. Простые расчеты показывают, что большинство из них в течение ближайшего миллиона лет столкнутся с Землей. Астероид диаметром больше километра при столкновении принесет достаточно энергии, чтобы разрушить экосистему Земли и поставить большинство видов животных под угрозу исчезновения.

Это было бы скверно.

Астероиды – не единственные небесные тела, опасные для жизни на Земле. Есть еще пояс Койпера: это кишащая кометами кольцевидная область, начинающаяся сразу за орбитой Нептуна и включающая в себя Плутон. Возможно, она продолжается за орбиту Нептуна на расстояние, равное дистанции от Нептуна до Солнца. Американский астроном Герард Койпер, родившийся в Нидерландах, выдвинул гипотезу, что в холодных глубинах космоса за орбитой Нептуна сохранился замороженный мусор, оставшийся после формирования Солнечной системы. Поскольку там нет массивных планет и падать некуда, большинство этих комет будут вращаться по орбите вокруг Солнца еще миллиарды лет.

Астероиды – не единственные небесные тела, опасные для жизни на Земле.

Как и в поясе астероидов, некоторые тела из пояса Койпера вращаются по эксцентрическим орбитам, пересекающим орбиты других планет. Орбиту Нептуна пересекают Плутон и ансамбль его собратьев под названием «Плутино». Другие объекты из пояса Койпера долетают даже до внутренних областей Солнечной системы и пересекают орбиты планет как попало. В их число входит и комета Галлея, самая знаменитая из всех комет.

А далеко-далеко за поясом Койпера, на полпути к ближайшим звездам, раскинулась сферическая резервация комет под названием облако Оорта – в честь Яна Оорта, голландского астрофизика, первым выдвинувшего гипотезу об ее существовании. Эта зона порождает кометы с большим периодом обращения – гораздо больше, чем человеческая жизнь. В отличие от комет из пояса Койпера, кометы из пояса Оорта могут падать во внутренние области Солнечной системы под любым углом и откуда угодно. Две самых ярких кометы 90-х годов прошлого века – кометы Хейла – Боппа и Хякутакэ – происходили из облака Оорта и в ближайшем будущем не вернутся.

* * *

Если бы наши глаза видели магнитные поля, Юпитер был бы в десять раз больше полной Луны. Все космические корабли, которые отправляются на Юпитер, должны конструироваться с учетом этой мощной силы. Как показал в XIX веке английский физик Майкл Фарадей, если протянуть проволоку через магнитное поле, на ней создается разность потенциалов. Поскольку космические зонды металлические и летят очень быстро, в них индуцируется электрический ток. Этот ток генерирует свое магнитное поле, взаимодействующее с магнитным полем среды, что тормозит движение зонда.

Когда я подводил баланс в последний раз, вокруг планет в Солнечной системе вращалось 56 спутников. А потом в одно прекрасное утро просыпаюсь и узнаю, что вокруг Сатурна открыли еще десяток. После этого случая я решил больше их не считать. Теперь меня интересует только одно: интересно ли туда наведаться или их поизучать. По некоторым параметрам спутники в Солнечной системе гораздо удивительнее планет, вокруг которых они вращаются.

* * *

Луна, спутник Земли, примерно в 300 раз меньше Солнца в диаметре, но при этом в 300 раз ближе к нам, поэтому Солнце и Луна на небе одинакового размера – это уникальное совпадение, которого не наблюдается больше ни в одной паре планеты и спутника в Солнечной системе: именно поэтому полные солнечные затмения у нас так фотогеничны. Кроме того, Земля удерживает Луну приливным захватом: у Луны одинаковые периоды обращения вокруг своей оси и вокруг Земли. Во всех таких случаях захваченный спутник всегда повернут к своей планете одной стороной.

Система спутников Юпитера – компания чудаков и оригиналов. Ио, ближайший спутник Юпитера, тоже находится в приливном захвате и подвергается постоянному механическому напряжению из-за гравитационного взаимодействия с Юпитером и другими спутниками, отчего этот маленький шарик так разогревается, что его внутренние породы плавятся: недаром Ио принадлежит рекорд по вулканической активности в Солнечной системе. На спутнике Юпитера Европе столько H2O, что благодаря механизму разогрева, такому же, как и на Ио, лед под поверхностью растаял и получился теплый океан. Если где-то и есть почти такая же подходящая среда для развития жизни, как на Земле, то это на Европе. Один мой сотрудник-художник спросил, как назывались бы инопланетяне с Европы – неужели европейцы? В отсутствие более подходящего ответа пришлось сказать «да».

Самый большой спутник Плутона Харон так велик и так близок к Плутону, что они с Плутоном оба поймали друг друга в приливный захват: их периоды обращения по орбите друг вокруг друга и периоды обращения вокруг своей оси одинаковы. Это называется двойной приливный захват – звучит как еще не изобретенный борцовский прием.

Спутники планет принято называть в честь древнегреческих мифологических персонажей в жизни древнегреческого аналога того римского бога, в честь которого названа планета. Светская жизнь у античных богов была очень запутанная, поэтому недостатка в персонажах мы не испытываем. Единственное исключение из этого правила – спутники Урана, названные в честь различных главных героев английской классической литературы. Английский астроном Уильям Гершель первым обнаружил планету, которая находится дальше остальных, видимых невооруженным глазом, и был готов назвать ее в честь тогдашнего короля, которому верно служил. Если бы сэру Уильяму это удалось, список планет выглядел бы так: Меркурий, Венера, Земля, Марс, Юпитер, Сатурн и Георг. К счастью, здравомыслие возобладало, и несколько лет спустя планета получила классическое имя Уран. Однако спутники его Гершель предложил называть в честь героев пьес Шекспира и поэм Поупа, и эта традиция соблюдается до сих пор. Среди 27 спутников Урана есть Ариэль, Корделия, Дездемона, Джульетта, Офелия, Порция, Пак, Умбриэль и Миранда.

Солнце теряет вещество с поверхности со скоростью больше миллиона тонн в секунду. Мы называем это солнечным ветром, который состоит из высокоэнергичных заряженных частиц.

Поток частиц мчится сквозь пространство со скоростью в тысячи километров в секунду и отражается магнитными полями планет. Тогда частицы устремляются по спирали к северному и южному магнитному полюсу, бомбардируют молекулы газа и зажигают в атмосфере многоцветные полярные сияния. Космический телескоп имени Хаббла зарегистрировал полярные сияния у полюсов Сатурна и Юпитера. А на Земле северные и южные сияния – аврора бореалис и аврора аустралис – служат постоянным напоминанием о том, как прекрасна защитная атмосфера.

Принято считать, что земная атмосфера достигает десятков километров от поверхности. Спутники на «низких» околоземных орбитах, как правило, летают на расстоянии от 150 до 600 километров от Земли и проходят полный оборот примерно за 90 минут. Дышать на такой высоте невозможно, однако кое-какие атмосферные молекулы еще встречаются – и их достаточно, чтобы постепенно истощать орбитальную энергию ничего не подозревающих спутников. Чтобы преодолеть сопротивление воздуха, спутнику нужно периодически делать рывки, иначе он упадет на Землю и сгорит в плотных слоях атмосферы.

Солнце теряет вещество с поверхности со скоростью больше миллиона тонн в секунду. Мы называем это солнечным ветром, который состоит из высокоэнергичных заряженных частиц.

Альтернативный способ определить, где проходит граница атмосферы, – задаться вопросом, где плотность молекул атмосферных газов равна плотности молекул газов межпланетного пространства. По такому определению толщина земной атмосферы составляет несколько тысяч километров. Гораздо выше этого уровня, на расстоянии в 40 000 километров от поверхности Земли (одна десятая расстояния до Луны), проходят орбиты спутников связи. Эта высота избрана не только потому, что земная атмосфера перестает оказывать на спутники существенное влияние, но и потому, что на ней скорость спутника такова, что он совершает один оборот вокруг Земли ровно за сутки. Когда орбита идеально согласуется с темпом вращения Земли, спутник словно парит над одной точкой, а значит, служит идеальным передатчиком сигналов между разными областями земной поверхности.

* * *

Законы Ньютона особо оговаривают, что, хотя гравитация планеты слабеет, когда от нее удаляешься, нет такого расстояния, на котором она будет равна нулю. Планета Юпитер со своим мощным гравитационным полем благополучно отражает множество комет, которые могли бы натворить бед, попади они во внутреннюю Солнечную систему. Юпитер служит для Земли гравитационным щитом – мускулистым старшим братом, благодаря которому на Земле случаются долгие, по сто миллионов лет, периоды относительного мира и покоя. Без покровительства Юпитера сложной жизни было бы непросто стать такой, какая она есть, поскольку она постоянно находилась бы под угрозой вымирания в результате катастрофического столкновения с каким-нибудь метеоритом.

Когда мы запускаем в космос зонды, то практически всегда эксплуатируем гравитационные поля других планет. Например, зонд «Кассини», побывавший на Сатурне, дважды заручился гравитационной помощью Венеры, один раз – Земли (во время обратного пролета) и один раз – Юпитера. Траектории от планеты к планете, напоминающие путь биллиардного шара, многократно отражающегося от бортиков, встречаются сплошь и рядом. Иначе наши крошечные зонды не смогли бы набрать достаточно скорости и энергии и добраться до цели – одними лишь рукотворными ракетными двигателями здесь не обойтись.

В том, что между планет в нашей Солнечной системе болтается столько мусора, теперь виноват и я. В ноябре 2000 года астероид из основного пояса 1994KA, который открыли Дэвид Леви и Кэролин Шумейкер, назвали 13123–Тайсон в мою честь. Мне это необычайно приятно, однако особенных причин зазнаваться здесь нет: астероиды частенько носят обычные человеческие имена, например, Джоди, Гарриет или Томас. На свете есть даже астероиды Мерлин, Джеймс Бонд и Санта. Их насчитывается уже сотни тысяч – того и гляди, у нас кончится запас имен. Не знаю, настанет ли такой день, но я утешаюсь, что мой комок космического мусора не одинок – в межпланетном пространстве полным-полно хлама, названного в честь людей, реальных и вымышленных.

А еще я рад, что в данный момент мой астероид не летит к Земле.

11. Экзопланета Земля

С места на место на Земле можно перемещаться по-разному: кому нравится плыть, кому бегать, кому ходить, кому ползать, – но любой из этих способов дает возможность полюбоваться вблизи неисчерпаемой сокровищницей всяких земных диковин. То заметишь жилку розового известняка на стене каньона, то увидишь, как божья коровка ест тлю на стебле розы или крабик выкапывается из песка. Надо только присмотреться.

Если глядеть в иллюминатор взлетающего самолета, все эти детали быстро исчезают. Никаких вкусненьких тлей. Никаких любопытных крабиков. Выходишь на крейсерскую высоту километров в десять – и уже не узнаешь сетку крупных автострад.

Когда поднимаешься еще выше, в космос, детали продолжают пропадать. Из иллюминатора Международной космической станции, которая проходит на высоте около 400 километров, днем можно различить Париж, Лондон, Нью-Йорк и Лос-Анджелес, но только потому, что в школе на уроке географии выучил, где они находятся. Ночью крупные города, конечно, ярко светятся. Днем, вопреки распространенному мнению, Великие пирамиды в Гизе, скорее всего, не увидишь, а Великую китайскую стену – и подавно. Отчасти они незаметны потому, что по цвету сливаются с почвой и камнем окружающего пейзажа. И хотя Великая китайская стена тянется на тысячи километров, в ширину она всего метров семь, гораздо у́же федеральных автострад в Америке, которые еле-еле различимы с борта трансконтинентального авиалайнера.

С орбиты невооруженным глазом были видны клубы дыма от горящих нефтяных вышек Кувейта в конце первой войны в Персидском заливе в 1991 году и от горящих башен-близнецов Всемирного торгового центра в Нью-Йорке 11 сентября 2001 года. Кроме того, оттуда видны границы между коричневыми засушливыми землями и зелеными орошаемыми. Вот, в общем-то, и все – люди больше не сотворили ничего такого, что можно различить с высоты в несколько тысяч километров. Зато явления природы оттуда видны прекрасно – например, бури в Мексиканском заливе, ледоход на севере Атлантики, извержения вулканов где угодно.

С Луны, до которой почти 400 000 километров, Нью-Йорк, Париж и остальные города-блестки не видны даже как мельчайшие искорки. Но даже оттуда можно разглядеть, как движутся по планете крупные атмосферные фронты. С Марса, когда он находится ближе всего к Земле – на расстоянии примерно 50 миллионов километров, – в большой любительский телескоп можно разглядеть крупнейшие горные цепи со снежными вершинами и контуры земных континентов. Если же улететь на Нептун, за четыре с половиной миллиарда километров, – по космическим масштабам это соседняя улица, – само Солнце станет в тысячу раз тусклее и будет занимать на небе площадь в тысячу раз меньше, чем на земном небосклоне. А как же сама Земля? Она превратится в точечку не ярче тусклой звезды и почти затеряется в свете Солнца.

В 1990 году космический аппарат «Вояджер-1» сделал из-за орбиты Нептуна знаменитую фотографию, на которой Земля выглядит, по выражению американского астрофизика Карла Сагана, как «бледно-голубая точка». И это он Земле еще польстил. Без подписи на фото ее и не найти.

Что было бы, если бы какие-нибудь высокоумные инопланетяне из глубин Вселенной изучали небеса своими органами зрения, совершенными от природы, да еще и с помощью новейших оптических приборов, порожденных их совершенной цивилизацией? Какие видимые качества планеты Земля они бы отметили?

Прежде всего, конечно, голубой цвет. Вода покрывает более двух третей поверхности Земли, и одно ее полушарие практически полностью занимает Тихий океан. Любое разумное существо, располагающее соответствующим оборудованием и знаниями, позволяющими разглядеть цвет нашей планеты, несомненно, сделало бы вывод о наличии воды – третьей по распространенности молекулы во Вселенной. Если бы у его оборудования было достаточно высокое разрешение, инопланетянин увидел бы не просто бледно-голубую точку. Он рассмотрел бы изрезанные контуры берегов – явное свидетельство, что вода эта жидкая. А еще умный инопланетянин сообразил бы, что если на планете есть жидкая вода, то температура и атмосферное давление на ней попадают во вполне определенные рамки.

В видимом свете можно было бы различить и шапки льдов на полюсах, растущие и сокращающиеся из-за сезонных колебаний температуры. А также вычислить период обращения нашей планеты – 24 часа: за такое время в окуляры попадали бы узнаваемые участки суши. Еще инопланетяне разглядели бы крупные атмосферные фронты и их перемещения; тщательно изучив эти данные, собратья по разуму наверняка научились бы отличать черты атмосферных облаков от черт поверхности самой Земли.

А теперь пора проверить все это на практике. Ближайшая экзопланета – ближайшая планета, вращающаяся вокруг другой звезды, а не Солнца, – находится в соседней звездной системе Альфа Центавра, примерно в четырех световых годах от нас, которую видно в основном из южного полушария. Расстояние от нас до большинства зарегистрированных экзопланет составляет от десятков до сотен световых лет. Яркость Земли приблизительно в миллиард раз меньше яркости Солнца, а поскольку наша планета находится очень близко к Солнцу, то наблюдать ее непосредственно в телескоп, улавливающий видимый свет, практически невозможно. Это все равно что пытаться разглядеть светлячка на голливудской съемочной площадке, где светят мощные прожекторы. Так что, если инопланетяне нас и найдут, то скорее всего в результате поисков в других диапазонах, а не в видимом свете, например, в инфракрасном, где наша яркость по сравнению с Солнцем несколько выше. Впрочем, может быть, их инженеры придумали какую-то принципиально другую стратегию.

Ближайшая экзопланета – ближайшая планета, вращающаяся вокруг другой звезды, а не Солнца, – находится примерно в четырех световых годах от нас, в соседней звездной системе Альфа Центавра, которую видно в основном из южного полушария.

Может быть, они поступают так, как обычно делают наши собственные охотники за планетами: смотрят на звезды и ждут, не будет ли их свет слегка дергаться через равные промежутки времени. Если свет звезды периодически дергается, это выдает существование планеты на орбите, даже если сама планета очень тусклая и ее не видно.

Вопреки распространенному мнению, строго говоря, планета не вращается по орбите вокруг своей звезды. На самом деле планета и ее звезда вращаются по орбитам вокруг общего центра масс. Чем массивнее планета, тем заметнее реакция звезды – и тем легче зарегистрировать подергивания, когда анализируешь ее свет. К несчастью для инопланетян-охотников за планетами, Земля очень маленькая, так что Солнце шевелится едва-едва, что еще сильнее затрудняет задачу инопланетных инженеров.

* * *

Телескоп «Кеплер», который запустило НАСА, специально сконструирован и настроен так, чтобы искать землеподобные планеты вокруг солнцеподобных звезд, и применяет при этом другой метод поиска, что позволяет существенно расширить каталог экзопланет. «Кеплер» ищет звезды, чья общая яркость немного падает через равные промежутки времени. В таких случаях «Кеплер» благодаря точному прицелу улавливает, как звезда становится чуть-чуть тусклее, поскольку прямо перед ней проходит одна из ее планет. Этот метод тоже не позволяет видеть планету как таковую. Даже каких-то особенностей поверхности звезды так не различишь. «Кеплер» просто регистрирует изменение светимости звезды, однако это позволило нам добавить в каталог тысячи экзопланет, в том числе сотни звездных систем с несколькими планетами. Кроме того, данные «Кеплера» помогают рассчитать размер экзопланеты, период ее обращения и расстояние от звезды. Также можно сделать обоснованную оценку массы планеты.

Если вам интересно, то когда Земля проходит перед Солнцем – а ведь в любой момент можно найти какую-то точку Галактики, откуда открывается именно такой вид, – мы блокируем одну десятитысячную долю поверхности Солнца и тем самым ненадолго заставляем его тускнеть на одну десятитысячную обычной яркости. Уж как есть. Так что инопланетяне обнаружат Землю, но ничего не смогут узнать о происходящем на ее поверхности.

Тут на помощь приходят радио– и микроволновое излучения. Может быть, у наших любопытных инопланетян есть что-нибудь вроде пятисотметрового радиотелескопа из китайской провинции Гуйчжоу. Если они еще и сумеют настроиться на нужную частоту, то наверняка заметят Землю, то есть заметят нашу высокоразвитую цивилизацию как один из ярчайших источников на небе. Вспомните, сколько у нас всяких устройств, которые генерируют радио– и микроволновое излучение: не только обычные радиопередатчики, но и телевидение, мобильные телефоны, микроволновые печки, пульты, открывающие двери гаражей и машин, коммерческие радары, военные радары, спутники связи. Мы ярко сияем в длинноволновом диапазоне, и это яснее ясного говорит, что на нашей планете происходит что-то необычное, поскольку в естественном состоянии маленькие каменистые планетки почти не излучают радиоволн.

Так что если любопытные инопланетяне направят в нашу сторону свой радиотелескоп, они, вероятно, сделают вывод, что на этой планете развита технология. Однако есть одна сложность: возможны и другие толкования. Не исключено, что инопланетяне не смогут отличить сигналы с Земли от сигналов крупных планет Солнечной системы, поскольку все они мощно излучают в радиодиапазоне, особенно Юпитер. А может, наблюдатели просто решат, что мы какая-то новая разновидность странных радиоизлучающих планет. Или примут радиоизлучение Земли за солнечное и сделают вывод, что Солнце – какая-то новая разновидность странных радиоизлучающих звезд.

В таком же тупике оказались наши, земные астрофизики из Кембриджского университета в Англии. Они изучали небеса при помощи радиотелескопа – искали любой сильный источник радиоволн – и Энтони Хьюиш с коллегами обнаружили очень странное явление – объект, пульсировавший с исключительно стабильным периодом чуть больше секунды. Его заметила Джоселин Белл, которая тогда была аспиранткой Хьюиша.

Вскоре коллеги Белл установили, что импульсы доходят откуда-то издалека. Возникло непреодолимое искушение решить, что сигнал имеет технологическое происхождение, что какая-то иная культура испускает его и тем самым выдает свою деятельность. Как вспоминает Белл, «у нас не было доказательств, что эти радиоимпульсы исключительно природного происхождения… я просто хотела защитить диссертацию по какой-нибудь новой технике, а маленькие зеленые человечки, вот глупенькие, выбрали именно мою антенну и мою частоту, чтобы сообщить нам о себе» (Jocelyn Bell, Annals of the New York Academy of Sciences 302 (1977):685). Однако не прошло и нескольких дней, как Белл обнаружила и другие повторяющиеся сигналы, исходящие из других точек нашей галактики Млечный Путь. Белл и ее коллеги поняли, что открыли новый класс космических объектов – звезды, состоящие из одних нейтронов, которые с каждым оборотом испускают в нашу сторону импульс радиоволн. Поэтому Хевиш и Белл и назвали их пульсарами.

Но оказывается, радиоперехват – не единственный способ космического шпионажа. Есть еще космохимия.

Химический анализ атмосфер планет – бурно развивающаяся отрасль современной астрофизики. Легко догадаться, что космохимия опирается на спектроскопию, анализ света при помощи спектрометра. Благодаря инструментам и методам спектроскопистов, космохимики могут сделать вывод о существовании жизни на экзопланете независимо от того, разумна ли эта жизнь и располагает ли она технологиями. Эта наука так действенна, поскольку любой элемент, любая молекула, где бы она ни находилась во Вселенной, по-своему поглощает, испускает, отражает и рассеивает свет. Как мы уже знаем, стоит пропустить этот свет через спектрометр, и обнаружатся характерные черты, которые по праву можно назвать химическими отпечатками пальцев. Самые наглядные отпечатки оставляют химические вещества, которые сильнее всего возбуждаются от давления и температуры среды. В атмосферах планет очень много таких веществ. А если на планете богатая флора и фауна, ее атмосфера насыщена биомаркерами – спектральными свидетельствами жизни. Скрыть эти свидетельства очень трудно, каково бы ни было их происхождение – биогенное (вызванное отдельными видами или всеми живыми существами), антропогенное (вызванное широко распространенным видом Homo sapiens) или техногенное (вызванное исключительно технологией).


Страницы книги >> Предыдущая | 1 2
  • 4.6 Оценок: 5

Правообладателям!

Данное произведение размещено по согласованию с ООО "ЛитРес" (20% исходного текста). Если размещение книги нарушает чьи-либо права, то сообщите об этом.

Читателям!

Оплатили, но не знаете что делать дальше?


Популярные книги за неделю


Рекомендации