Электронная библиотека » Александр Чичулин » » онлайн чтение - страница 2


  • Текст добавлен: 21 октября 2023, 21:49


Автор книги: Александр Чичулин


Жанр: Руководства, Справочники


Возрастные ограничения: +12

сообщить о неприемлемом содержимом

Текущая страница: 2 (всего у книги 8 страниц) [доступный отрывок для чтения: 2 страниц]

Шрифт:
- 100% +
Методы предварительной обработки данных

Предварительная обработка данных играет жизненно важную роль в подготовке данных к обучению нейронной сети. Он включает в себя ряд методов и шагов по очистке, преобразованию и нормализации данных. В этой главе мы рассмотрим некоторые распространенные методы предварительной обработки данных, используемые в нейронных сетях:

1. Очистка данных:

– Очистка данных включает в себя обработку отсутствующих значений, выбросов и несоответствий в наборе данных.

– Отсутствующие значения могут быть вменены с использованием таких методов, как среднее условное исчисление, медианное условное исчисление или условное исчисление на основе статистических моделей.

– Выбросы, которые представляют собой экстремальные значения, отклоняющиеся от большинства данных, могут быть обнаружены и либо удалены, либо обработаны с помощью таких методов, как Winsorization или замена статистически правдоподобными значениями.

– Несогласованные данные, такие как конфликтующие записи или проблемы с форматированием, могут быть устранены путем проверки и стандартизации данных.

2. Нормализация и стандартизация данных:

– Нормализация и стандартизация данных – это методы, используемые для масштабирования числовых признаков до аналогичного диапазона.

– Нормализация масштабирует данные до диапазона от 0 до 1, в то время как стандартизация преобразует данные в среднее значение 0 и стандартное отклонение 1.

– Нормализация часто подходит для алгоритмов, которые предполагают ограниченный входной диапазон, в то время как стандартизация полезна, когда объекты имеют различные масштабы и распределения.

3. Одноразовое горячее кодирование:

– Одноразовое кодирование используется для представления категориальных переменных в виде двоичных векторов.

– Каждая категория преобразуется в двоичный вектор, где только один элемент равен 1 (что указывает на наличие этой категории), а остальные равны 0.

– Одноразовое кодирование позволяет использовать категориальные данные в качестве входных данных в нейронных сетях, позволяя им обрабатывать нечисловую информацию.

4. Масштабирование функций:

– Масштабирование признаков гарантирует, что числовые объекты находятся в аналогичном масштабе, не позволяя одним объектам доминировать над другими из-за различий в величинах.

– Общие методы включают минимальное и максимальное масштабирование, когда функции масштабируются до определенного диапазона, и стандартизацию, как упоминалось ранее.

5. Уменьшение размерности:

– Методы уменьшения размерности уменьшают количество входных элементов, сохраняя при этом важную информацию.

– Анализ главных компонент (PCA) и t-SNE (t-распределенное стохастическое встраивание соседей) являются популярными методами уменьшения размерности.

– Уменьшение размерности может помочь смягчить проклятие размерности и повысить эффективность обучения.

6. Сплит и перекрестная проверка обучения-тестирования:

– Чтобы оценить производительность нейронной сети, важно разделить данные на обучающий и тестовый наборы.

– Обучающий набор используется для обучения сети, а тестовый – для оценки ее производительности на невидимых данных.

– Перекрестная проверка – это еще один метод, при котором набор данных разделяется на несколько подмножеств (складок) для итеративного обучения и тестирования сети, получения более надежной оценки ее производительности.

Эти методы предварительной обработки данных применяются для обеспечения того, чтобы данные находились в подходящей форме для обучения нейронных сетей. Очищая данные, обрабатывая отсутствующие значения, масштабируя функции и уменьшая размерность, мы можем улучшить производительность сети, повысить ее эффективность и добиться лучшего обобщения невидимых данных.

Обработка отсутствующих данных

Отсутствующие данные являются распространенной проблемой в наборах данных и могут существенно повлиять на производительность и надежность нейронных сетей. В этой главе мы рассмотрим различные методы эффективной обработки отсутствующих данных:

1. Удаление отсутствующих данных:

– Одним из простых подходов является удаление экземпляров или объектов, содержащих отсутствующие значения.

– Если только небольшая часть данных имеет отсутствующие значения, удаление этих экземпляров или функций может не оказать существенного влияния на общий набор данных.

– Однако этот подход следует использовать с осторожностью, так как он может привести к потере ценной информации, особенно если отсутствующие данные не являются случайными.

2. Среднее/медианное условное исчисление:

– Среднее или медианное условное исчисление предполагает замену отсутствующих значений средним или медианным значением соответствующего признака.

– Этот метод предполагает, что отсутствующие значения отсутствуют случайным образом (MAR), а непропущенные значения обладают теми же статистическими свойствами.

– Условное исчисление помогает сохранить размер выборки и поддерживать распределение признака, но может привести к смещению, если пропуск не является случайным.

3. Регрессионное вменение:

– Регрессионное условное исчисление предполагает прогнозирование пропущенных значений с использованием регрессионных моделей.

– Регрессионная модель обучается на непропущенных значениях, а затем модель используется для прогнозирования отсутствующих значений.

– Этот метод фиксирует взаимосвязи между отсутствующим признаком и другими признаками, что позволяет более точно вменить.

– Тем не менее, он предполагает, что отсутствие функции может быть разумно предсказано другими переменными.

4. Множественное вменение:

– Множественное условное исчисление – это метод, при котором отсутствующие значения вменяются несколько раз для создания нескольких полных наборов данных.

– Каждому набору данных присваиваются различные правдоподобные значения, основанные на наблюдаемых данных и их неопределенности.

– Затем нейронная сеть обучается на каждом вмененном наборе данных, и результаты объединяются для получения более надежных прогнозов.

– Множественное условное исчисление объясняет неопределенность в условном исчислении недостающих значений и может привести к более надежным результатам.

5. Выделенные архитектуры нейронных сетей:

– Существуют специальные архитектуры нейронных сетей, предназначенные для непосредственной обработки отсутствующих данных.

– Например, замаскированный автоэнкодер для оценки распределения (MADE) и автоэнкодер шумоподавления (DAE) могут обрабатывать пропущенные значения во время обучения и вывода.

– Эти архитектуры учатся восстанавливать отсутствующие значения на основе имеющейся информации и могут обеспечить повышенную производительность наборов данных с отсутствующими данными.

Выбор метода обработки отсутствующих данных зависит от характера и степени отсутствия, предположений о механизме отсутствующих данных и характеристик набора данных. Важно тщательно рассмотреть последствия каждого метода и выбрать тот, который наилучшим образом соответствует конкретным требованиям и ограничениям имеющегося набора данных.

Работа с категориальными переменными

Категориальные переменные создают уникальные проблемы в нейронных сетях, поскольку для их эффективного использования требуется соответствующее представление и кодирование. В этой главе мы рассмотрим методы работы с категориальными переменными в нейронных сетях:

1. Кодирование этикетки:

– Кодировка меток присваивает уникальную числовую метку каждой категории в категориальной переменной.

– Каждая категория сопоставляется с целочисленным значением, что позволяет нейронным сетям обрабатывать данные.

– Однако кодирование меток может привести к появлению порядковых отношений между категориями, которых не существует, что может привести к неправильным интерпретациям.

2. Одногорячее кодирование:

– Одноразовое кодирование – популярный метод представления категориальных переменных в нейронной сети.

– Каждая категория преобразуется в двоичный вектор, где каждый элемент представляет наличие или отсутствие определенной категории.

– Однотонная кодировка гарантирует, что каждая категория представлена одинаково, и удаляет любые подразумеваемые порядковые отношения.

– Это позволяет нейронной сети рассматривать каждую категорию как отдельную функцию.

3. Встраивание:

– Встраивание – это метод, который изучает низкоразмерное представление категориальных переменных в нейронной сети.

– Он сопоставляет каждую категорию с плотным вектором непрерывных значений, при этом аналогичные категории имеют векторы, расположенные ближе в пространстве внедрения.

– Встраивание особенно полезно при работе с многомерными категориальными переменными или когда отношения между категориями важны для задачи.

– Нейронные сети могут изучать вложения в процессе обучения, фиксируя значимые представления категориальных данных.

4. Встраивание сущностей:

– Встраивание сущностей – это специализированная форма внедрения, использующая преимущества связей между категориями.

– Например, в рекомендательных системах встраивание сущностей может представлять категории пользователей и элементов в совместном пространстве внедрения.

– Встраивание сущностей позволяет нейронной сети изучать отношения и взаимодействия между различными категориями, повышая ее предсказательную силу.

5. Хеширование функций:

– Хеширование признаков, или трюк с хешированием, – это метод, который преобразует категориальные переменные в векторное представление фиксированной длины.

– Он применяет хеш-функцию к категориям, сопоставляя их с предопределенным количеством измерений.

– Хеширование функций может быть полезно, когда количество категорий велико и их кодирование по отдельности становится непрактичным.

Выбор метода работы с категориальными переменными зависит от характера данных, количества категорий и отношений между категориями. Обычно используются одноразовое кодирование и внедрение, причем встраивание особенно эффективно при захвате сложных взаимодействий категорий. Тщательное рассмотрение соответствующего метода кодирования гарантирует, что категориальные переменные правильно представлены и могут внести значимый вклад в предсказания нейронной сети.

Часть II: Построение и обучение нейронных сетей

Нейронные сети с прямой связью
Структура и принципы работы

Понимание структуры и принципов работы нейронных сетей имеет решающее значение для их эффективного использования. В этой главе мы рассмотрим ключевые компоненты и принципы работы нейронных сетей:

1. Нейроны:

– Нейроны являются основными строительными блоками нейронных сетей.

– Они принимают входные сигналы, выполняют вычисления и выдают выходные сигналы.

– Каждый нейрон применяет линейное преобразование ко входу, за которым следует нелинейная функция активации для введения нелинейности.

2. Слои:

– Нейронные сети состоят из нескольких слоев взаимосвязанных нейронов.

– Входной слой получает входные данные, выходной слой создает окончательные прогнозы, и между ними может быть один или несколько скрытых слоев.

– Скрытые слои позволяют сети изучать сложные представления данных, извлекая соответствующие функции.

3. Веса и смещения:

– Каждая связь между нейронами в нейронной сети связана с весом.

– Веса определяют силу связи и контролируют влияние выхода одного нейрона на вход другого.

– Смещения – это дополнительные параметры, связанные с каждым нейроном, позволяющие им вносить сдвиг или смещение в вычисления.

4. Функции активации:

– Активационные функции привносят нелинейность в вычисления нейронов.

– Они определяют, следует ли активировать нейрон или нет, основываясь на его входе.

– Общие функции активации включают сигмоид, tanh, ReLU (выпрямленный линейный блок) и softmax.

5. Распространение с прямой связью:

– Распространение с прямой связью – это процесс передачи входных данных через слои сети для создания прогнозов.

– Каждый слой выполняет вычисления на основе входных данных, полученных от предыдущего слоя, применяя веса, смещения и функции активации.

– Выходы одного слоя служат входными данными для следующего слоя, продвигаясь по сети до тех пор, пока не будут получены окончательные прогнозы.

6. Обратное распространение:

– Обратное распространение – алгоритм, используемый для обучения нейронных сетей.

– Он вычисляет градиенты функции потерь по отношению к весам и смещениям сети.

– Градиенты указывают направление и величину самого крутого спуска, направляя обновления параметров сети для минимизации потерь.

– Обратное распространение распространяет градиенты назад по сети, слой за слоем, используя правило цепи исчисления.

7. Обучение и оптимизация:

– Обучение нейронной сети включает в себя итеративную настройку ее весов и смещений, чтобы свести к минимуму разницу между прогнозируемыми и фактическими результатами.

– Алгоритмы оптимизации, такие как градиентный спуск, используются для обновления параметров на основе рассчитанных градиентов.

– Обучение обычно включает в себя подачу в сеть помеченных обучающих данных, сравнение прогнозов с истинными метками и соответствующее обновление параметров.

Понимание структуры и принципов работы нейронных сетей помогает в разработке и обучении эффективных моделей. Регулируя архитектуру, функции активации и процесс обучения, нейронные сети могут изучать сложные взаимосвязи и делать точные прогнозы по различным задачам.

Реализация нейронной сети с прямой связью

Реализация нейронной сети с прямой связью включает в себя перевод концепций и принципов в практическую реализацию кода. В этой главе мы рассмотрим шаги по реализации базовой нейронной сети с прямой связью:

1. Определите сетевую архитектуру:

– Определите количество слоев и количество нейронов в каждом слое.

– Определитесь с функциями активации, которые будут использоваться в каждом слое.

– Определите входные и выходные размеры в зависимости от поставленной задачи.

2. Инициализируйте параметры:

– Инициализируйте веса и смещения для каждого нейрона в сети.

– Случайная инициализация обычно используется, чтобы нарушить симметрию и избежать застревания в локальных минимумах.

3. Реализуйте распространение с прямой связью:

– Передавайте входные данные через слои сети, по одному слою за раз.

– Для каждого слоя вычислите взвешенную сумму входных данных и примените функцию активации для получения выходных данных слоя.

– Прямое распространение продолжается до тех пор, пока не будет достигнут выходной уровень, генерируя прогнозы сети.

4. Определите функцию потерь:

– Выберите подходящую функцию потерь, которая измеряет расхождение между прогнозируемыми выходными данными и истинными метками.

– Общие функции потерь включают среднеквадратичную ошибку (MSE) для задач регрессии и потери кросс-энтропии для задач классификации.

5. Реализуйте обратное распространение:

– Вычислить градиенты функции потерь по отношению к весам и смещениям сети.

– Распространяйте градиенты назад по сети, слой за слоем, используя правило цепи исчисления.

– Обновите веса и смещения с помощью алгоритма оптимизации, такого как градиентный спуск, на основе вычисленных градиентов.

6. Обучите сеть:

– Перебирайте обучающие данные, передавая их в сеть, выполняя прямое распространение, вычисляя потери и обновляя параметры с помощью обратного распространения.

– Отрегулируйте скорость обучения, которая контролирует размер шага обновления параметров, чтобы сбалансировать скорость сходимости и стабильность.

– Отслеживайте прогресс обучения, оценивая потери на отдельном проверочном наборе.

7. Оцените сеть:

– После того, как сеть будет обучена, оцените ее производительность на невидимых данных.

– Используйте прямое распространение для создания прогнозов для набора оценочных данных.

– Вычисляйте соответствующие показатели, такие как точность, прецизионность, отзыв или среднеквадратичная ошибка, в зависимости от типа проблемы.

8. Итерация и тонкая настройка:

– Экспериментируйте с различными сетевыми архитектурами, функциями активации и параметрами оптимизации для повышения производительности.

– Настройте модель, настроив гиперпараметры, такие как скорость обучения, размер пакета и методы регуляризации, такие как отсев или регуляризация L2.

Реализация нейронной сети с прямой связью включает в себя перевод математических концепций в код с использованием языка программирования и фреймворка глубокого обучения, такого как TensorFlow или PyTorch. Следуя шагам, описанным выше, и экспериментируя с различными конфигурациями, вы можете обучать и использовать нейронные сети для различных задач.

Тонкая настройка модели

Тонкая настройка нейронной сети предполагает оптимизацию ее производительности путем корректировки различных аспектов модели. В этой главе мы рассмотрим приемы тонкой настройки нейронной сети:

1. Настройка гиперпараметров:

– Гиперпараметры – это настройки, которые определяют поведение нейронной сети, но не изучаются на основе данных.

– Примеры гиперпараметров включают скорость обучения, размер пакета, количество скрытых слоев, количество нейронов в каждом слое, параметры регуляризации и функции активации.

– Тонкая настройка включает в себя систематическое изменение этих гиперпараметров и оценку производительности сети для поиска оптимальной конфигурации.

2. Планирование скорости обучения:

– Скорость обучения определяет размер шага при обновлении параметров во время обучения.

– Выбор подходящей скорости обучения имеет решающее значение для конвергенции и предотвращения превышения или застревания в локальных минимумах.

– Методы планирования скорости обучения, такие как снижение скорости обучения с течением времени или использование адаптивных методов, таких как Adam или RMSprop, могут помочь точно настроить производительность модели.

3. Методы регуляризации:

– Методы регуляризации предотвращают переобучение и улучшают обобщение, добавляя дополнительные ограничения или штрафы к функции потерь.

– Регуляризация L1 и L2 добавляет штрафной термин к функции потерь в зависимости от величины весов, поощряя меньшие веса и уменьшая чрезмерную зависимость от определенных признаков.

– Dropout случайным образом деактивирует часть нейронов во время обучения, заставляя сеть изучать более надежные и разнообразные представления.

4. Увеличение данных:

– Методы дополнения данных модифицируют обучающие данные, чтобы увеличить их размер и разнообразие, помогая сети лучше обобщать.

– Распространенные методы увеличения данных включают случайную обрезку, поворот, переворачивание и добавление шума или искажений к входным данным.

– Увеличение данных может помочь уменьшить переобучение и улучшить способность модели обрабатывать изменения в реальных данных.

5. Перенос обучения:

– Transfer Learning использует предварительно обученные модели на больших наборах данных и адаптирует их к новым задачам или областям.

– Вместо обучения с нуля передаются знания предварительно обученной модели, и только последние несколько слоев настраиваются под конкретную задачу.

– Трансферное обучение особенно полезно, когда новая задача имеет ограниченные данные или когда предварительно обученная модель изучила полезные общие функции.

6. Модельный ансамбль:

– Ансамбль моделей объединяет прогнозы из нескольких моделей для более точных и надежных прогнозов.

– Разные модели могут иметь разные сильные и слабые стороны, и их сочетание может привести к повышению общей производительности.

– Ансамблевые методы включают усреднение прогнозов нескольких моделей или использование более продвинутых методов, таких как упаковка, повышение или укладка.

Тонкая настройка модели включает в себя итеративный процесс настройки гиперпараметров, методов регуляризации и других аспектов, основанных на экспериментах и оценке. Важно отслеживать производительность модели на данных проверки или тестирования и избегать переобучения, используя правильные стратегии проверки и методы регуляризации. Тонкая настройка модели позволяет оптимизировать ее производительность и повысить способность эффективно обрабатывать реальные данные.

Сверточные нейронные сети (CNN)
Введение в CNN

Сверточные нейронные сети (CNN) – это специализированный тип нейронной сети, предназначенный для обработки и анализа структурированных сетчатых данных, таких как изображения и видео. В этой главе мы познакомим вас с ключевыми понятиями и компонентами CNN:

1. Мотивация для CNN:

– Традиционные нейронные сети не очень хорошо подходят для обработки сетчатых данных из-за их полностью связного характера.

– CNN были разработаны для использования локальных пространственных отношений, присутствующих в изображениях, и эффективного захвата соответствующих функций.

2. Сверточные слои:

– Сверточные слои являются фундаментальными строительными блоками CNN.

– Они состоят из фильтров (также известных как ядра или детекторы признаков), которые сканируют входные данные, извлекая локальные объекты.

– Каждый фильтр выполняет операцию свертки, вычисляя скалярное произведение между его весами и небольшой областью входных данных.

– Сверточные слои применяют несколько фильтров параллельно, генерируя несколько карт объектов в качестве выходных данных.

3. Объединение слоев:

– Объединение слоев уменьшает пространственную размерность карт объектов, сохраняя при этом наиболее значимую информацию.

– Общие методы пулинга включают максимальное объединение, среднее объединение и минимальное объединение.

– Объединение в пулы помогает сделать сеть более инвариантной к небольшим трансляциям и вариациям входных данных.

4. Функции активации в CNN:

– Функции активации привносят нелинейность в вычисления в CNN, позволяя им моделировать сложные отношения.

– Общие функции активации, используемые в CNN, включают ReLU (выпрямленный линейный блок), сигмоид и tanh.

– ReLU широко используется в CNN из-за его способности смягчать проблему исчезающего градиента и обеспечивать более быструю конвергенцию.

5. Архитектуры CNN:

– Различные архитектуры CNN были разработаны для решения различных задач и достижения современной производительности.

– Примеры включают LeNet-5, AlexNet, VGGNet, GoogLeNet и ResNet, каждый из которых имеет свои собственные архитектурные инновации и принципы проектирования.

– Эти архитектуры обычно складывают несколько сверточных и объединяющих слоев, за которыми следуют полностью связанные слои для классификации или регрессии.

6. Перенос обучения с помощью CNN:

– CNN преуспевают в изучении богатых представлений функций из изображений, и трансферное обучение использует эту возможность.

– Предварительно обученные модели CNN, обученные на больших наборах данных, таких как ImageNet, можно использовать в качестве экстракторов признаков для других задач.

– Трансферное обучение экономит время обучения и требует меньше данных, так как предварительно обученные модели уже изучили значимые функции.

CNN произвели революцию в задачах компьютерного зрения, таких как классификация изображений, обнаружение объектов и сегментация изображений. Их способность автоматически изучать иерархические представления объектов из необработанных данных делает их мощными инструментами для анализа и понимания визуальной информации. В следующих главах мы углубимся в архитектуру CNN, методы обучения и практические приложения.

Внимание! Это не конец книги.

Если начало книги вам понравилось, то полную версию можно приобрести у нашего партнёра - распространителя легального контента. Поддержите автора!

Страницы книги >> Предыдущая | 1 2
  • 0 Оценок: 0

Правообладателям!

Данное произведение размещено по согласованию с ООО "ЛитРес" (20% исходного текста). Если размещение книги нарушает чьи-либо права, то сообщите об этом.

Читателям!

Оплатили, но не знаете что делать дальше?


Популярные книги за неделю


Рекомендации