Текст книги "Диалоги (август 2003 г.)"
Автор книги: Александр Гордон
Жанр: Прочая образовательная литература, Наука и Образование
сообщить о неприемлемом содержимом
Текущая страница: 5 (всего у книги 16 страниц) [доступный отрывок для чтения: 5 страниц]
В.В. Возражений практически нет. Возражения только к термину «думал…» …
Д.С. Ну не надо, это же не о воде.
В.В. Только к этому слову…
А.Г. То есть вы хотите сказать, что в начале эволюционного процесса на Земле сразу появились организмы, которые были, по сути дела, адекватны сегодняшним по потреблению кислорода.
Д.С. Да, совершенно верно, могу ещё процитировать Вернадского: «На протяжении всех геологических веков на Земле существовала жизнь, одинаковым образом отражавшаяся на химических процессах в земной коре». Каково?
В.В. Замечательно, всё совершенно правильно, только это надо уточнить сейчас уже на совершенно конкретных новых материалах, которые получены не только вами. Тут следует сказать, что часто многие оппоненты говорят: «А, это единичные работы, никто другой такого больше не показал». На самом деле, по поводу того, что вода может диссоциировать с образованием водорода и кислорода, в последние годы появились работы и абсолютно независимые. Например, есть такой «Джорнел оф кемикл коммьюникейшнс», в котором японцы в 98-м, потом в 99 году представили работы чисто технологические, где они показали, что в присутствии простейших катализаторов… Я свою точку зрения могу высказать?
Д.С. Это ты про работы группы профессора Икеды? И без ссылок на нас. А мы это же, практически, опубликовали в 93 году…
В.В. Печатайтесь на японском – и будут ссылки на вас. Итак, они показали, что в присутствии простейших катализаторов, окислов железа, марганца, меди, просто перемешивание воды приводит к интенсивному освобождению водорода. Их-то там интересовал водород по совершенно понятным причинам, а не кислород. К такому интенсивному освобождению, что в принципе эту методику можно использовать для получения водорода. Понятное дело, что если из воды получается водород, то, извините, кислород тоже куда-то должен деваться.
Д.С. У них пока КПД получился как у паровоза примерно. Но и то… Ну, у нас тоже получалось нечто вроде.
В.В. Есть и другие работы, которые тоже говорят о появлении кислорода в результате абиогенных процессов. Например, движения материков. И отсюда чрезвычайно важное следствие. Следствие, просто кардинально меняющее все наши представления о ходе биологической эволюции. Если кислород был в начале, до того как появились оформленные организмы, они всё-таки появились не мгновенно, я не большой сторонник идеи креационизма о том, что сразу хлоп – и всё было уже сформировано так, как мы сейчас наблюдаем. Так вот, если в начале был кислород, то, соответственно, весь процесс, не эволюции, а назовём её развитие системы организмов на земле, фактически развитие биосферы, он, конечно, шёл совершенно не по тем путям, которые сейчас пытаются описать.
Что касается анаэробов. Анаэробы есть и сейчас, когда, слава тебе, господи, хватает кислорода в атмосфере. Потом, что такое анаэроб – это, как правило, микроорганизм, который погибает при уже чрезвычайно низких концентрациях кислорода в среде. И основную свою энергию получает за счёт окислительно-восстановительных процессов, связанных не с молекулярным кислородом. Но у этого самого анаэроба есть всегда ферменты, которые имеют дело с теми активными формами кислорода, которые всегда получаются из воды, при диссоциации воды. Когда я познакомился с работами об абиогенной продукции кислорода, естественно, заинтересовало меня то, что сейчас в эволюционной теории очень много говорят об этих чёрных курильщиках, белых курильщиках на дне океанов, где существуют свои собственные чрезвычайно богатые биосферы. Причём в этих биосферах живут не только и не столько даже микроорганизмы, а живут большие организмы, до 50 килограммов. И у этих больших животных есть кровь. А это вообще на дне океанов, ещё при температурах в районе сотни и несколько больше градусов. И зоологи это изучают, а кровь-то должна переносить кислород. Откуда там берётся такое количество кислорода для того, чтобы эти животные могли фактически быть аэробами в этой глубине?
Вот ещё один из чрезвычайно важных моментов, важных факторов. Когда мы говорим о биологическом фотосинтезе как источнике кислорода, то опять же мы выхватываем один только этап из всего жизненного цикла растения. Растение – сначала семечко, оно не производит кислорода. Оно потребляет кислород. Между прочим, растение это может развиваться в течение достаточно длительного времени без света. И вообще без хлорофилла.
Д.С. Вообще, когда растение взрослое, то по потреблению-производству кислорода по сути баланс нулевой…
В.В. Этиолированное растение не имеет хлорофилла, тем не менее, оно растёт, это растение.
И потом растение погибает. Оно погибает, но оно должно превратиться соответственно в гумус, что это за процесс? Это процесс окисления, естественно, без кислорода тления, гниения не происходит. И если свести весь баланс, то, по большому счёту, окажется, что фотосинтез – для растительных организмов – это отдача того, что они вберут на других этапах жизненного цикла.
А.Г. Ну всё, приговор экваториальным лесам уже раздался.
В.В. Нет, ни в коем случае, ни в коем случае. Потому что, помимо всего прочего, есть ещё углекислый газ. Вообще говоря, ведь мы имеем дело с биосферой, как с громадным количеством взаимосвязанных циклов. И если мы из биосферы извлекаем какой-то существенный массивный кусок, то эти все циклы, которые должны быть сопряжены друг с другом, начинают идти вразнос. И когда они начинают идти вразнос, эти циклы, это и приводит к катастрофам. Вот у вас тут были Малинецкий, Курдюмов, они о подобных вещах говорили. Другое дело, что со временем, когда-то, рано или поздно, через миллионы, может, лет снова всё устаканится. Но мы-то живём сейчас. Нам бы не хотелось сейчас попадать в катастрофы.
А.Г. Поскольку мы живём сейчас, у меня вот какой вопрос: если всё-таки увеличение средней температуры планеты достигнет таких значений, что полярные шапки растают, это каким-то образом скажется на содержании кислорода в атмосфере?
Д.С. Может быть. Но ведь пока нет никаких добротных свидетельств тому, что потепление-то есть. Вот другой вопрос, Александр. Если есть такой процесс диссоциации воды, то есть кислород вырабатывается с избытком, а потом сгорает наверху в термосфере, это означает, что на Земле есть ещё дополнительный – к ныне изучаемому – источник озона. Тогда оказывается (и есть такие оценки), что вся идея опасности появления озонных дыр из-за нашей деятельности, из-за этих пшикалок с фреонами, – она просто превращается в детский страх…
В.В. Я хотел бы вернуться к вопросу о том, что, возможно, поддерживает этот самый 21 процент кислорода. Мы говорили большую часть нашего времени о том, как вода производит кислород. А сейчас я хотел бы сказать о том, что вода на самом деле и потребляет кислород. То есть вода – это такая потрясающая совершенно по своей уникальности субстанция, которая является и источником кислорода, и потребителем кислорода. Что такое потребляет кислород? Это значит, что вода окисляется.
А.Г. То есть горит.
В.В. То есть горит, совершенно верно. И здесь на этой картинке представлен пример очень свежей американской работы, сделано крупнейшее открытие в области иммунологии. Казалось бы, какая, так сказать, связь между тем, о чём мы говорили сейчас и иммунологией? Такая красивая синяя красно-жёлтая структура на рисунке – это антитело. Антитела, как известно, в иммунной системе вырабатываются соответствующими клетками. И функция их, как всем хорошо известно, связывать антигены, то есть чужеродные частицы, а дальше сложный цикл включается, сложный процесс устранения этих чужеродных частиц. Открытие заключалось в том, что антитела, помимо всего прочего, являются катализаторами. И катализ они осуществляют совершенно удивительный. Они окисляют кислородом воду. В этот процесс вступает не просто молекулярный кислород, а вот там, на рисунке, кислород со звёздочкой указан, так называемый синглетный кислород. Этот синглетный кислород, в частности, получается обязательно, если есть кислород в среде, и идут те радикальные реакции в воде, когда происходит рекомбинация, когда идёт развал перекиси водорода, то кислород из этого развала получается в синглетной форме, это возбуждённый кислород, то есть уже химически активированный. Так вот эти самые антитела используют активированный химический кислород, а его, судя по всему, получается достаточно, но он очень коротко живущий из-за своей высокой химической активности. Поэтому его мгновенные концентрации чрезвычайно малы. А поток его большой. И этот кислород окисляет воду. И там нарисована такая замечательная картинка, так сказать, сгорания воды. Кислород плюс две молекулы воды – получается две молекулы перекиси водорода.
Антитела делают перекись очень интенсивно. Там нет проблем с измерением того, сколько получится перекиси. Перекиси получается много. Но известно, что катализатор может только ускорять ту реакцию, которая, вообще-то говоря, протекает и сама по себе. Здесь реакция протекает очень быстро. И возникает вопрос, а в каких условиях, когда и как протекает реакция окисления воды кислородом без этих самых антител? И выясняется, что эта реакция протекает на самом деле постоянно.
Д.С. Напомню всё же, что всё живое защищено от перекиси водорода очень сильно, т.е. что перекись водорода – яд…
В.В. Это как раз моя проблема, я всё-таки специалист в области, что такое яды и что такое не яды.
Д.С. Но всё же всё живое защищено от перекиси водорода.
В.В. Дмитрий, всё яд и всё лекарство. Да, как известно, всё зависит от дозы. Правильно? Естественно, не надо 35-процентной перекисью водорода голову мыть, чтобы стать блондинкой.
Перекись водорода ядом просто быть не может в тех концентрациях, в тех дозах, которые вообще мыслимы в реальной среде, как в нашей внутренней, так в нашей внешней. Но это уже тема совсем другого разговора.
Д.С. Не перекись, конечно, а радикалы из воды…
В.В. И радикалы тоже, это тема другого разговора, Дмитрий. Тема другого разговора, и мы с тобой неоднократно на эту тему говорили, что без радикалов жизнь невозможна. В частности, если говорить о радикалах, я не знаю, были ли на этой передаче разговоры по поводу аэроионов Чижевского. Аэроионы Чижевского – это супероксидные радикалы. Ещё Чижевский показал, что если в воздухе этих радикалов нет, если поместить животное в условия нормальной атмосферы, нормальной концентрации кислорода, нормальной концентрации азота, то мышки за неделю, крысы за две недели умирают со 100-процентной вероятностью от удушья.
А.Г. Я просто хотел узнать, возможно, просчитать всё-таки… Почему мне эта мысль не даёт покоя – потому что были геологические периоды в истории, когда повышалась температура и полярные шапки таяли.
Д.С. Ну – это тоже не факт. Может, эти шапки льда в другом месте в это время возникали? Гренландия, например, она же по определению Зелёная страна, а что мы сейчас имеем?
А.Г. Но я всё-таки хочу досказать свою мысль, с вашего позволения. Может быть, это просто-напросто естественный механизм регуляции так называемого парникового эффекта? Потому что, если выделяется дополнительное количество кислорода, который, сгорая в термосфере, как вы сказали, вызывает повышенную концентрацию озона, который экранирует землю от ультрафиолетовых лучей, – она начинает остывать. Вот естественный механизм регуляции парникового эффекта.
В.В. Совершенно верно. Если следующую ещё картинку показать, то там будет виден тот процесс, который мы наблюдаем в пробирке. Процесс, как вы видите, колебательный. Так вот, вообще говоря, все процессы, которые представляют интерес, это все колебательные процессы. Проблема заключается только в том, и тоже, по-видимому, здесь об этом говорилось, в каком масштабе времени мы их рассматриваем, эти процессы. Это могут быть гигантские совершенно по своей продолжительности циклы, с точки зрения нашего личного масштаба времени, так сказать, с точки зрения продолжительности нашей личной жизни.
А.Г. А может быть, вибрация…
В.В. Это могут быть чрезвычайно высокочастотные процессы. И, между прочим, мы говорили по поводу того, как диссоциирует вода, как она окисляется, как идут эти процессы. Эти все процессы, так или иначе, становятся колебательными. И здесь нарисовано кое-что уже из наших экспериментов. Мы чуть-чуть затронули ту тему, что как только вода диссоциирует, там появляются радикалы. Эти радикалы, во-первых, сами по себе проявляют высокую химическую активность. При этом азот есть, углекислый газ есть. При взаимодействии радикалов с азотом, с углекислым газом будут появляться при обычной температуре более сложные соединения. Но даже если эти радикалы не взаимодействуют с азотом, с углекислым газом, а только друг с другом, то будут выделяться кванты энергии, которых достаточно для того, чтобы возбудить соответственно азот и углекислый газ. При такой их химической трансформации получаются амины или оксиды азота, то есть получается то, что мы называем связанный азот. А из углекислого газа будет получаться формальдегид.
Д.С. По сути дела это реакция фотосинтеза.
В.В. Но как только мы получаем связанные формы азота и формальдегид, и если их концентрация превышает некую критическую концентрацию, то они начинают взаимодействовать друг с другом. А кислород тоже уже имеется. И это их взаимодействие друг с другом идёт так, как нарисовано на этой картинке. То есть взаимодействие их друг с другом приводит к появлению более сложных органических соединений, сопровождается окислением и восстановлением. Эти процессы сопровождаются дополнительным излучением энергии, причём энергии электронного возбуждения, что способствует ускорению, усилению этого процесса. И этот процесс превращается в самоорганизующийся процесс. Колебания, которые здесь видны, это колебания в данном случае излучения из простой водяной системы, в которую ввели простой альдегид и аминокислоту, простейшую аминокислоту. В ходе этой реакции появляются уже гораздо более сложные химические структуры, они окрашены, представляют собой хромофоры, флуорофоры и прочие активные соединения. Появляются предшественники нуклеиновых оснований. И это происходит очень быстро.
А.Г. Я боюсь, но и надеюсь, что это тема отдельной программы. Поскольку у нас совсем времени остаётся, давайте посмотрим клип, который мы приготовили.
Д.С. Я с удовольствием. Я его бесконечно люблю. Это просто гроза. И здесь видны капли, и как они чудесно взаимодействуют с поверхностью воды…
В.В. Кстати, Дим, радикалы – жуткая штука. После грозы ты надеваешь противогаз?
Д.С. Так в том-то всё и дело, что жуткая. Я же и говорю про это, а ты меня останавливаешь.
В.В. После грозы обязательно надевай противогаз, а то отравишься озоном. Озон ведь – страшное дело.
Д.С. Так вот: одна из идей – попыток объяснить, как и где происходит диссоциация воды и нарабатывается столь много пероксида водорода в природе, -базировалась на том, что это в значительной степени происходит в грозах, в грозовых разрядах. Действительно, видимо, процессы диссоциации воды при грозах происходят… Вот, смотрите, тут и просачивание, сжимание щелей на поверхности из-за набухания водой почвы и капли…
В.В. Кстати, мы такого рода опыты ставили, брали землю сухую и заливали её водой. И это светилось.
Д.С. К тому же и в энергетическом балансе, общем по Земле, энергии гроз сильно маловато для появления известного количества пероксида водорода…
А во-вторых, эти разряды в некотором смысле разрушительны так же, как и созидательны. То есть они могут приводить к диссоциации воды, они могут способствовать синтезу, например, соединений азота и углерода, но эти разряды, эти синтезированные вещества в первую очередь и деструируют.
Потому что если хоть что-то чуть-чуть более высоко организуется, то оно становится и более уязвимым для таких экстремальных условий. А по общей энергетике на Земле грозы оказались не конкурентоспособны по сравнению с таким процессом, как испарение – конденсация.
А.Г. То есть эта повышенная концентрация озона после грозы, она всё-таки не связана с электрическими разрядами?
Д.С. Нет, нет, она, конечно же, связана с электрическими разрядами…
В.В. Дело в том, что опять же нельзя всё напрямую связывать только с электрическими разрядами. Безусловно, электрический разряд – основной источник. Но сам по себе этот разряд запускает цепной процесс, в ходе которого нарабатывается ещё дополнительное количество озона сверх того, что идёт просто от электрического разряда.
А.Г. Понятно. Понятно, что образованию атмосферы на нашей планете мы обязаны диссоциации воды, поддержанию баланса кислорода мы обязаны диссоциации воды…
Д.С. А вот почему 20 с небольшим процентов кислорода удерживается всё время в атмосфере – это нерешённая задача.
В.В. Ну, это вами не решённая задача, потому что вы не учитывали проблему окисления воды. Я думаю, что если это посчитать, то куда может деваться такое количество, кроме как не в ту же воду?
Д.С. Это, возможно, один из механизмов. Но есть же ещё всё время и процессы выветривания, то есть кислород на это тратится. всё-таки когда-то ещё кислород тратился и на создание оболочки Земли. Она была создана – эта шлаковая оболочка, на которой мы живём, она окисленная целиком.
В.В. Но вода поступает непрерывно. Следующий вопрос, самый важный, на который нет ответа: откуда взялась вода?
Д.С. Есть такой очень интересный последователь Вернадского – Владимир Николаевич Ларин…
Oкраска рыб
07.08.03
(хр.00:49:04)
Участники:
Александр Евгеньевич Микулин – доктор биологических наук
Жерар Александрович Черняев – доктор биологических наук
Александр Гордон: …да ещё каждый цвет разделён по спектру. То есть невероятное количество. Я задаю вопрос продавцу этих блЁсен: скажите, пожалуйста, а какая из них лучше? Он говорит: поскольку я не имел чести в своей жизни общаться ни с одной рыбой, я не могу ответить вам на этот вопрос. Поскольку эти цвета не для рыб, а для рыбаков. Но практика показывает, что и для рыб тоже. Ведь рыбья окраска для хищника – это же сигнализатор?
Жерар Черняев: Несомненно.
Александр Микулин: С одной стороны, сигнализатор. Но, с другой стороны, окраска у жертвы должна быть такой, чтобы хищник её как можно меньше видел. Кстати, и такая же проблема у хищника. Хищник должен подкрасться к жертве так, чтобы он не был заметён.
А.Г. То есть, не работает принцип: чем ярче, тем лучше. всё-таки это должно быть ближе к естественным условиям…
А.М. Видите ли, тут сложная проблема. Вообще-то рыба, наверное, не уступает по своему великолепию окрасок и форм, и прочего ни бабочкам, ни птицам. Это, конечно, только в музеях достаточно сложно узнать, насколько они красивы, поскольку они там грязно-коричневого цвета, как правило, бывают. И это всё разнообразие, конечно, необычайно сложно объяснить. Во-первых, для чего оно нужно? Во-вторых, как это возникло? Почему именно такие пигменты появились, ведь количество пигментов значительно больше? Ну, хотя бы взять такой пример. Гемоглобина полно в рыбе. Почему гемоглобин не выводится на поверхность кожи для того, чтобы участвовать в окраске? Миоглобин, цитохромы, да и витамин В-12 очень яркий, кроме того что есть внутри, можно было бы использовать. А круг пигментов, которые вообще используются в окраске, очень узок. Есть масса пигментов, которые поступают с пищей. Почему не используется хлорофилл, например? Или целый ряд иных растительных пигментов. Мы хорошо знаем наземные растения – сколь разнообразны цветы. В воду они, правда, редко попадают, хотя есть и свои водные, некоторые из которых потребляют рыбы, то есть пигментов много. А рыбы используют достаточно узкий набор пигментов. И как это всё возникло в эволюции, конечно, проблема достаточно интересная.
Вот, к примеру, мы видим полосатых рыб, или амфиприон – тёмное тело, белая полоса, красные плавники. Зачем? Почему именно такой набор? Понятно, глаз, наверное, спрятан, чтобы хищник не знал, с какой стороны вообще находится голова.
Ж.Ч. Этот расчленяющая окраска…
А.Г. Да, что-то такое непонятное.
А.М. Жёлтая окраска – на таком фоне рыба должна быть незаметной. Почему такое большое великолепие и разнообразие цветов коралловых рыб? Можно, конечно, предположить, что раз там много всевозможных цветов, то каждая рыба около какого-то цвета становится менее заметной. Это в аквариуме, когда они находятся, или оказываются не на том фоне, нам они кажутся вызывающе яркими. Вот эти проблемы, конечно, интересно решить.
Да, несомненно, что окраска должна чаще всего прятать. Но есть и другой способ спрятаться – стать совершенно прозрачными, вот как рыба-лапша. Я думаю, это единственный пока экземпляр в мире, где рыба сохранена в таком прозрачном виде. Там даже икра видна. И если на неё посмотреть на фоне дна…
А.Г. Я попробую сейчас на фоне пиджака своего показать…
А.М. …Видны одни глаза. Следовательно, крупный хищник не будет нападать, потому что эта жертва в размер дафнии. За каждой дафнией он не будет гоняться, поскольку он больше потратит энергии на такое питание, чем получит, ловя каждого рачка… Те, которые питаются мелкими объектами, они не страшны, поскольку они сами мельче, чем данный объект. То есть это способ защиты от нападения.
Второй пример, правда, не из области рыб. Медуза-корнерот из Чёрного моря. Тоже вариант быть незаметной, насколько это возможно, в толще воды. Вот эту тему окраски мы и хотели бы сегодня обсудить.
Ж.Ч. Эта окраска рыб – покровительственная – способствует тому, чтобы рыба была менее заметна в воде и могла быть защищена от хищников. Существует ещё предупреждающая окраска. Это мы видим на рисунках.
Можно рисунок? Вот предупреждающая окраска цихлазомы Мееки. Видите, у неё красное брюшко. Это гнездующая рыба. Она охраняет место от соперников и потом охраняет своё потомство. Одновременно окраска привлекает рыб к нересту, это брачный наряд. Он показывает самке, что гнездо готово, можно спариваться.
Существует несколько типов окраски. Самая ходовая – пелагическая окраска, когда тёмная спина, светлое брюхо. У морских рыб это тёмная, чёрная или синяя спина, а у пресноводных рыб – зеленоватая. Здесь мы видим анчоусы. А так выглядит пресноводная плотва. Бока серебристые, они отражают свет, и на фоне поверхности воды рыба фактически незаметна. Киль, который находится внизу рыбы, сводит тень на нет, и рыба фактически незаметна, она как серый объект находится в воде.
Есть русловая окраска, у таких речных рыб, как хариус.
А.Г. Лещ, окунь, да?
Ж.Ч. Теперь окунь. Окуни – это зарослевые рыбы. Например, щука, судак, берш, эти рыбы – с поперечными полосами на теле, это хищники-засадчики. Он стоит в кустах, потом выбрасывается, хватает рыбу и обратно уходит в укрытие.
Русловая окраска, например, у пескарей. У таких рыб вдоль тела бывает много пятнышек или продольных полос. Это тоже скрадывает рыбу, именно в прозрачных водотоках, и её практически не видно на фоне дна.
А.М. Но могут быть и не хищники с полосками. Это не обязательно. Так существуют барбусы, данио. Причём у них полосы в разных направлениях.
Ж.Ч. Если у поверхностного слоя, то полосы будут горизонтальные. Если же они прячутся в растительности, полосы будут вертикальны, как у барбуса суматрануса, допустим.
Но есть также расчленяющая окраска. Это амфиприон, который здесь показан. Это рыба-клоун, которая живёт и размножается в актиниях. Но если ей надо пойти покушать, то расчленяющая окраска вводит в заблуждение хищников, потому что отдельно красные пятная, белые пятна, они…
А.М. Облик рыбы не возникает.
А.Г. Да, даже на этой фотографии её практически не видно.
А.М. Кстати, и здесь можно посмотреть – вот амфиприон: красные плавники, тёмное тело. На белом фоне будет отчленяться голова от тела, на тёмном фоне будут плавники плавать независимо от рыбы.
Ж.Ч. И глаз, главное, замаскирован, чтобы никто не съел.
Ещё стайная окраска очень важна для стайных рыб, потому что существует взаимодействие рыбы в стае. Рыба должна ориентироваться друг на друга. Либо у них имеются пятна на теле, полосы продольные. Поэтому когда рыба взаимодействует в стае, то это происходит синхронно: либо надо уходить от хищника, рассредотачиваться, либо двигаться к пищевому пятну. То есть само движение синхронизировано именно за счёт зрительных ориентиров.
А.Г. Они привязываются к пятну на теле соседа и вместе с ним…
Ж.Ч. Ещё пятно бывает у хвостового стебля.
А.Г. А, тогда понятно.
Ж.Ч. Это ложный глаз. То есть, когда рыба нацеливается, чтобы схватить другую рыбу, оказывается, что это хвост, а не голова. Поэтому у них разновекторные направления движения.
А.М. Причём глаз при этом желательно спрятать, чтобы собственно…
Ж.Ч. Видите, глаз у хвостовой части у этой рыбы-бабочки, морда закрашена у неё в тёмный цвет, и глаз не видно.
А.Г. То есть куда поплывёт, понять нельзя.
Ж.Ч. И всё обилие этой окраски вызвано в основном пигментными клетками.
А.М. Причём, всеми четырьмя.
Ж.Ч. Все четыре там. Это меланофоры, которые содержат в себе чёрный пигмент, ксантофоры, которые в себе содержат жёлтый пигмент, эритрофоры – красный, и гуанофоры или иридоциты – содержат тот блестящий пигмент, серебристый цвет которого мы видим на боках у рыбы.
А.Г. А как же возникают эти необычные оттенки небесного цвета?
А.М. Вот об этом хотелось бы несколько слов сказать. Дело в том, что, если под блестящим слоем, а он обычно бывает внизу кожи, располагаются чёрные меланофоры, то происходит рассеивание и получается синий цвет. А если сверху добавить ещё жёлтые или красные клетки, то получаются различные оттенки зелёного. Но у некоторых рыб ещё более хитро устроено. Следующий можно рисунок?
Так, например, многие тропические рыбы, обитающие в речушках, где кроны деревьев практически смыкаются…
Ж.Ч. Это Амазонка.
А.М. Да, например, Амазонка. За счёт гуанина, гуанинового блеска, за счёт наклона падения света и расположения кристаллов гуанина (там гуанин в виде кристалла) могут формироваться оттенки от серебристого до голубовато-зеленоватого и даже красновато-жёлтого. Кстати, интересно, что неоновые рыбы с голубовато-зелёным цветом полосы, если попадают под электрический ток, у них эта полоса начинает светиться красным. Но в природе существуют эритрозонусы, у которых нормально отсвечивает…
Ж.Ч. Красным цветом.
А.М. Это не светится, это отражает, отсвечивается полоса. Следующий рисунок.
Это пинагор рыба, самочка. Зелёный цвет здесь возникает отнюдь не за счёт тех пигментов, тех пигментных клеток, которые мы обсуждали только что. Дело в том, что самка вымётывает не всю икру, а икра может быть розоватой, фиолетовой…
Ж.Ч. Зелёной.
А.М. Разных оттенков. Часть оставшейся икры вся превращается в ярко сине-зелёный цвет, после чего кровь становится ярко-зелёной и плавники окрашиваются в зеленовато-синий цвет, что позволяет им после размножения откармливаться среди растений.
А.Г. То есть эта самка после нереста.
А.М. Эта самка после нереста. Самец с красным брюхом, как полагается для охраняющих (брюхо всегда можно прикрыть ко дну, чтобы не видно было), он не питается и соответственно больше месяца сидит и охраняет икру.
Вообще имеет смысл поговорить о механизмах изменения цвета. Рыбы обладают способностью – это не бабочки – менять цвет, не все, правда, но достаточно хорошо. Дело в том, что к чёрным меланофорам подходят нервные окончания, и изменение цвета в значительной степени быстро осуществляется за счёт нервных импульсов. Некоторые авторы указывают, что к красным эритрофорам тоже могут подходить нервные окончания, хотя до конца это не доказано. Всё же остальные клетки, включая меланофоры и эритрофоры, поддаются изменению интенсивности цвета за счёт гуморального воздействия, то есть через кровь, гормонами.
Механизм этого изменения цвета может быть разный. Так, например, меланофоры существуют двух типов. Одни находятся в эпидермисе, другие ниже, собственно в коже, в кориуме. Так вот те, которые находятся в эпидермисе, у них происходит накопление меланина под действием света. Все мы знаем, что когда мы загораем, то становимся чернее. А уменьшение яркости происходит за счёт шелушения кожи, слущивания и таким образом мы светлеем после того, как приехали с юга.
Таким же способом – за счёт изменения концентрации – действуют, например, ксантофоры и эритрофоры, где содержатся красные, каротиноидные пигменты (как у морковки), растворённые в жирах. И во время нереста или перед нерестом, возникает брачный наряд за счёт того, что из пищи в них накапливаются эти каротиноидные пигменты. Но те меланофоры, которые в коже, могут резко менять цвет за счёт того, что зёрна меланина могут собираться в центре…
Ж.Ч. У ядра.
А.М. …Это то, что на рисунке справа. Или могут расползаться по всей клетке. Собрались в центре – посветлела, когда разбежались по всей клетке, соответственно, яркость резко увеличилась. Причём, форма клетки при этом не изменяется. Самое интересное, что это чисто физический процесс смачивания киноплазмы с остальной плазмой клетки, и этот фокус можно проводить вообще даже на мёртвой рыбе, что, в общем-то, и используется при нашей методике.
А.Г. То есть рыба сама не управляет этим процессом?
А.М. Она управляет. Но мы можем также управлять вместо неё. Просто используя поверхностно-активные вещества, к примеру. Теперь следующий рисунок.
Наверное, стоит ещё добавить к сказанному, что большую роль – помимо нервной и гуморальной регуляции окраски – играет содержание внутриклеточного и внеклеточного кальция. То есть помимо этих двух типов регуляции существует ещё и такая регуляция, но о ней несколько позже.
Вообще, в принципе, мы рассказали всё, что можно было бы рассказать об окраске, и на этом можно было бы остановиться, если бы не одна неприятность. Дело в том, что в море ниже 20 метров красные лучи поглощаются, так что там всё в голубом цвете, серо-голубое. И спрашивается: зачем нужна вообще эта окраска, если её невозможно видеть? То есть, похоже, что она может выполнять и какую-то другую функцию.
Да, мы говорили, что на фоне ярких кораллов рыбы должны быть незаметны, но сами кораллы почему столь разнообразны по цвету? Когда они появились в ходе эволюции, ни у них, ни у кого глаз ещё долго не было. Для кого эта окраска? Поэтому есть подозрение, что окраска, видимо, в своей эволюции имела какую-то предшествующую функцию, связанную с поверхностью тела. Но у всех примитивных организмов обычно через поверхность (особенно когда ещё плохо развиты почки) происходит выделение вредных веществ. Давайте посмотрим, а не являлась ли и у рыб окраска исходно причиной выделительной её функции?
Внимание! Это не конец книги.
Если начало книги вам понравилось, то полную версию можно приобрести у нашего партнёра - распространителя легального контента. Поддержите автора!Правообладателям!
Данное произведение размещено по согласованию с ООО "ЛитРес" (20% исходного текста). Если размещение книги нарушает чьи-либо права, то сообщите об этом.Читателям!
Оплатили, но не знаете что делать дальше?