Электронная библиотека » Александр Шадрин » » онлайн чтение - страница 14


  • Текст добавлен: 31 августа 2017, 08:20


Автор книги: Александр Шадрин


Жанр: Физика, Наука и Образование


Возрастные ограничения: +12

сообщить о неприемлемом содержимом

Текущая страница: 14 (всего у книги 39 страниц)

Шрифт:
- 100% +

Наибольшая трудность, с которой мы столкнулись, заключалась в том, что катушки стремились разорваться из-за электродинамических сил, старающихся увеличить их диаметр. Мы разработали метод укрепления катушек стальными бандажами и сконструировали катушку такой формы, чтобы электродинамические силы вместе с силами реакции со стороны бандажа сводились к однородному (гидростатическому) давлению на медь. (Катушка для создания импульсных магнитных полей изображена на рисунке слева). Нагрузка внешнего бандажа теперешней катушки достигает 140 тонн.

Другой проблемой явилась разработка специального выключателя151151
  Аналогичная проблема с выключателем стояла и у Н. Тесла.


[Закрыть]
для прерывания тока синхронно с волной тока. Так как продолжительность тока составляла лишь 0,01 сек, время, отведенное на переключение, составляло лишь несколько десятитысячных секунды, в течение которых контактная медная пластина выключателя должна была отойти на несколько миллиметров от его щеток. Ускорение, требуемое для передвижения медной пластины весом в 1 кг на такое расстояние, примерно в 1 000 раз больше ускорения свободного падения, а требуемая сила превышает тонну. Для этой цели использовался чрезвычайно прочный и тщательно сконструированный кулачковый вал.

Управление было организовано таким образом, что с помощью различных приспособлений после нажатия одной единственной кнопки эксперимент проводился автоматически, а осциллограммы показывали значения тока в катушках и тем самым позволяли измерить магнитное поле.

Затем нам пришлось преодолеть трудность, вызванную ударом при внезапной остановке генератора. При замыкании угловая скорость якоря, который весит 2,5 тонны, уменьшается на 10% за 0,01 сек и возникает большой вращающий момент, который стремится повернуть всю машину на фундаменте. Чтобы избежать влияния этого удара на наши измерения, катушка помещалась в 20 м от генератора так, чтобы измерения заканчивались прежде, чем сотрясение достигало катушки.

Короткое время эксперимента привело к определенным трудностям при наблюдении и измерении, но в целом потеря во времени компенсировалась выигрышем в величине явления, наблюдаемого в очень сильных полях; оно также дало то большое преимущество, что практически исключило влияние изменения температуры на различные явления, так как в течение 0,01 сек температура оставалась более или менее постоянной.

К настоящему времени мы изучили влияние сильных магнитных полей на различные явления, например, при исследовании эффекта Зеемана мы обнаружили, что расщепление линий оказывается столь велико, что можно использовать обычный призменный спектрограф, имеющий большую светосилу, а время экспозиции можно уменьшить до 0,01 сек без существенного уменьшения точности результатов.

Оказалось, что большой интерес представляет изучение изменения сопротивления различных металлов в сильных магнитных полях; в некоторых случаях возрастание сопротивления составляло от 20 до 30 процентов, в то время как в обычных полях возрастание не превышало долей процента. Более того, мы обнаружили, что в сильных полях наблюдается линейный закон возрастания сопротивления с возрастанием поля, в то время как в обычных полях возрастание сопротивления пропорционально квадрату поля. Мы измерили также магнитную восприимчивость различных металлов в сильных полях. Для этой цели были разработаны и сконструированы специальные весы с собственной частотой около 2000—3000 колебаний в секунду. Так как в наших опытах магнитные силы были примерно в 100 раз больше, чем обычно, то весы были достаточно чувствительны, чтобы измерять восприимчивость большинства веществ.

Видно, что при исследовании различных явлений в сильных магнитных полях, существующих очень короткое время, открываются возможности решения широкого круга научных проблем, но для этого требуются специальная техника и аппаратура».


Н. Тесла. Приспособление к опасному начальному «сверхзаряду» было новой особенностью. Исследование этого эффекта стало на долгие годы основной целью энергетических компаний, а предохранители и искровые разрядники стали темой многих патентов и статей. Тесла знал, что странный сверхзарядный эффект наблюдался только в момент, когда динамо подключалось к длинным передающим линиям, именно так, как в случае его взрывных разрядов конденсатора. Хотя оба эти случая были абсолютно разными, они производили сходные эффекты. Мгновенный выброс, обеспеченный динамо на короткий промежуток времени, появлялся сверхконцентрированным в протяжённых линиях. Тесла вычислил, что эта электростатическая концентрация напряжения была по величине на несколько порядков больше, чем могло производить любое динамо того времени. Фактическая энергия каким-то образом усиливалась или трансформировалась. Но как и в какой форме?

Тесла понимал, что «сопротивление линий или компонентов со стороны динамо было непреодолимым барьером, перескочить через который носители заряда не могли. Этот барьер создавал „накопительный“ эффект. Электростатические заряды практически останавливались, и на мгновение удерживались сопротивлением линии. Барьер этот существовал на протяжении короткого миллисекундного интервала времени при замыкании выключателя. Мгновенное приложение сил против этого воображаемого барьера сжимало заряд до такой плотности, которую невозможно получить при использовании обычных конденсаторов. Короткое приложение силы, удар частиц о барьер сопротивления, вызывал в итоге это необычное состояние электрического сгущения. Вот почему провода в его прошлых экспериментах часто взрывались».

Безошибочно угадывалась аналогия с паровыми двигателями: большие паровые двигатели должны были запускаться с большой осторожностью. Требовалась консультация со старыми и многоопытными операторами, которые знали, как «разогреть» двигатель, и при этом не сломать клапаны, что приводило к смертельно опасному взрыву. При слишком резком запуске даже паровые двигатели очень большого объёма могли взорваться. Надо было запускать пар в систему осторожно, пока он плавно и постепенно не заполнял каждое сопло, трубопровод и компонент. Здесь также наблюдался таинственный эффект «скапливания», когда система большого объёма вела себя как необычно большое сопротивление любой силе, приложенной внезапно».

Тесла провёл новую серию экспериментов, чтобы измерить давление ударной волны на больших расстояниях. Он использовал автоматический «размыкающий выключатель». При правильной его настройке стало возможным получать более контролируемого повторение эффекта при включении. В дополнение к этому, он позволял проводить удалённые измерения, которые проливали свет на явление проникновения этой субстанции через экран на большие расстояния. Контроль за напряжением производился изменением скорости вращения высоковольтного динамо. После настройки этих компонентов Тесла мог свободно передвигаться по помещению и проводить измерения, используя в качестве детектора этого проникающего излучения глаза, своё собственное тело, чувствительную нервную систему и накопленный в голове экспериментально опыт распознавания и идентификации свойств. Желая также избежать продолжительного действия давления ударов и уколов искрами, Тесла защитил себя специальными материалами. Применение быстро прерываемого постоянного тока высокого напряжения привело к излучению колющих лучей, которые можно было почувствовать на больших расстояниях от их суперискрового источника. Фактически, Тесла чувствовал уколы даже через щит из спецматериала. Что бы ни высвобождалось из проводов при замыкании выключателя, оно легко проникало через толстые экраны из стекла и меди. Казалось, не было разницы, из чего они были изготовлены. Эффект воздействия излучения на его тело проникал через любое вещество, как будто бы экрана не было вовсе. Здесь явно наблюдался электрический эффект, который проникал прямо через пространство без материальных посредников. Как определил Тесла – это было Радиантное электричество, т.е. вихревое поле из электропотенциалов, волновод, произведённый всепроникающим магнитным монополем.

«Наблюдаемое явление нарушало принципы электростатического заряда, экспериментально найденные Фарадеем. Испускающиеся электростатические частицы обычно растекаются по поверхности металлического экрана, они не проникают вглубь металла».

Новый же эффект имел неэлектрические характеристики. Тесла был искренне заинтригован этим новым странным явлением, и стал изучать литературу в поисках ссылок на его свойства.

Он нашёл полузабытые исследования двух экспериментаторов. В первом случае, Джозеф Генри наблюдал магнетизацию стальных игл мощным искровым разрядом. Необычность данного эксперимента, проведённого в 1842 г., заключается в том, что лейденская банка, искры которой и производили магнетизацию, стояла на верхнем этаже здания, обычно непроницаемого для электричества. Кирпичные стены, толстые дубовые двери, мощная облицовка из камня и железа, оловянные потолки. Более того, иглы были размещены под сводом подвала. Каким образом искры152152
  Аналогичный эффект с возникновением импульсных вихревых токов наблюдался в когерере Бранли после прохождения магнитных монополей, производимых мощной искрой, которые оставляли соответствующие волноводы из удвоенного первичного потенциала.


[Закрыть]
могли так подействовать на иглы через такие естественные барьеры? Доктор Генри был убеждён, что искра создаёт особые «лучи, похожие на свет», и именно эти проникающие агенты и ответственны за магнетизацию.

Второй подобный случай произошёл в 1872 г. в здании высшей школы в Филадельфии. Элиху Томсон, преподаватель физики, искал способ сделать искры большой Искровой Катушки Румкоррфа более видимыми для лекции. Присоединив один полюс катушки к трубе с холодной водой, Томсон был напуган тем, что цвет искр сменился с голубого на белый. Желая усилить этот эффект, Томсон подсоединил другой полюс к большому металлическому листу стола. После включения катушки, возникла оглушительно трещавшая ослепительно белая искра, видная даже с задних рядов. Желая показать этот эксперимент коллеге, Эдвину Хаустону, Томсон подошёл к двери и был внезапно остановлен. Прикоснувшись к бронзовой дверной ручке на дубовой двери, он получил внезапный резкий электрический удар. Выключив Катушку Румкоррфа, Томсон обнаружил, что эффект прекратился. Обсудив случившееся вместе с Эдвином, они снова запустили устройство. Колющий эффект повторился. Тогда оба джентльмена стали бегать по огромному зданию из камня, дуба и железа с электрически изолированными металлическими предметами. Каждое прикосновение перочинным ножом или отвёрткой к любому металлическому объекту, независимо от расстояния до катушки и степени изолированности от пола, порождало длинные продолжительные белые искры. Результат исследования был описан в короткой заметке в журнале «Scientific American» в том же году.

При изучении каждого из этих ранних наблюдений, разделённых тридцатилетним периодом, Тесла ощутил, что они схожи с его открытием. Каждый из этих случаев был вызван небольшими вариациями одного и того же явления. Совершенно случайно каждый экспериментатор добился проявления эффекта создания внешнего поля сверхзаряда. В случае доктора Генри, явление взрыва проявилось единственной вспышкой, так как для накопления первоначального заряда использовалась электростатическая машина. Второй случай был особенным, потому что в нём наблюдалось непрерывное и продолжительное явление сверхзаряда. Такой эффект был редок, потому что обычно он требовал очень точного соблюдения электрических параметров. Тесла вывел это положение из того простого факта, что данный эффект крайне редко наблюдался в лабораториях всего мира. Но на его долю выпала честь осмысления этого явления – ему повезло быстро заметить и осознать аномальные атрибуты этого явления. Тесла знал, что, несмотря на сильный проникающий эффект в каждом случае, только ему удалось добиться полного и максимального проявления сверхзаряда. Его аппарату не было равных, он гарантированно мог высвобождать ту сущность быстроменяющегося электростатического поля, которая была недостижима для других аппаратов.

Несмотря на то, что Тесла сделал это открытие в 1889 г., предварительный обзор эффекта был опубликован только после продолжительной серии экспериментов. «Рассеяние электричества», опубликованное перед Рождеством 1892 г., стало поворотной статьёй Теслы. Именно с этого момента он полностью забросил исследования переменных токов высокой частоты. Полностью отойдя от исследования поля, Тесла начал описывать ударные механические волны и другие эффекты, появляющиеся из коротких и мощных разрядов. Тесла также обратил внимание на «газовые» аспекты феномена. Он обнаружил, что «резко заряженные провода в его экспериментах производят странные газообразные потоки при погружении в масляную ванну. Сначала он полностью приписывал это явление газу, поглощённому проводником, но вскоре обнаружил, что этот эффект продолжается длительное время от одного и того же провода, и никакой объём обычного поглощённого газа не может это объяснить. Определённо, при этом в масле возникали потоки, настолько сильно срывавшиеся с концов заряженного провода, что они зрительно сжимали масло, образуя полости, иногда до пяти сантиметров глубиной». Тесла начал изучать истинную природу лёгкого «газа», вырывавшегося с концов провода, погружённого в масло. Это было началом пути исследований этих полей, приведших его к Филадельфийскому эксперименту и его смерти.

Он подготовил серию продолжительных экспериментов, чтобы выяснить настоящую причину и природу этих поразительных газовых импульсов. В своей статье Тесла описывает волны, проникающие через экран, как «звуковые волны электрифицированного воздуха». Тем не менее, он сделал поразительное описание звука, нагрева, света, давления и шока, которые он чувствовал при прохождении эффекта через медные пластины. Все вместе, они «являли присутствие переносчика газообразной структуры», то есть такого, который состоит из «независимых переносчиков, способных к свободному движению». Так как воздух определённо не был таким «переносчиком», о чём же он говорил? Ниже в той же статье он чётко формулирует, что «кроме воздуха, существует другой переносчик». С помощью удачного экспериментального оборудования, Тесла открыл несколько фактов, касающихся образования этого эффекта. Во-первых, причина его, без сомнения, заключалась в прерывании тока. Именно при замыкании выключателя, в момент его «замыкания и разрыва», эффект вырывался в окружающее пространство. Он был однозначно привязан к времени, длительности импульса. Во-вторых, Тесла обнаружил, что обязательным условием было то, чтобы процесс происходил в виде единственного импульса тока одного направления без обратного хода. Повторение разряда было недопустимо, эффект не проявлялся в последующий за первым импульсом. По этому поводу Тесла сделал краткие заметки, описывая роль ёмкости в цепи, излучающей искру. Он нашёл, что эффект значительно усиливается, если между разрядником и динамо разместить конденсатор. Диэлектрик конденсатора одновременно обеспечивал внушительную энергию для получения эффекта и служил защитой для обмоток динамо. Эффект также можно было значительно усилить увеличением напряжения, ускорением размыкания, и укорочением времени замыкания переключателя. До сих пор для получения своих однонаправленных импульсов Тесла использовал переключатели с вращающимися контактами, как бегунок при распределении зажигания искры для поджига свечей в автомобилях. Когда эти механические импульсные системы перестали справляться с увеличением действия эффекта, Тесла стал искать более автоматические и мощные устройства. Он нашёл этот автоматический выключатель в виде специальных дуговых электрических разрядников. Высоковольтный выход генератора постоянного тока был присоединён к спаренным проводникам через новый дуговой механизм, представлявший из себя очень мощный постоянный магнит, установленный поперёк пути дугового разряда. Дуга разряда автоматически возникала и гасла под действием магнитного поля. В книге Вассилатоса «Лекции, патенты, статьи» изображен искровой разрядник с магнитным гашением дуги.

Отсюда становится ясно, что Тесла работал и с разрядниками с магнитным «обрывом» дуги. Это довольно интересный механизм, потому что он спроектирован для гашения дуги постоянного тока. Дугу постоянного тока довольно трудно зажечь. Присутствие подпружиненных рукояток на каждой стороне позволяет дуговым стержням расположиться на меньшем расстоянии для создания начальной искры, которая возникает при касании концом одного стержня другим. Затем рукоятки отжимаются в начальное положение, позволяя в таких сложных условиях создать дуговой разряд постоянного тока.

Главное свойство этого прибора заключается в том, что он может разрядить или высвободить в виде взрыва заключённую в нём энергию за «немыслимо короткое время» – произвести магнитный монополь очень большой энергии.

Другое из его свойств, также равноценное, заключается в том, что этот заряд переменный и может колебаться с любой задаваемой извне частотой, вплоть до многих миллионов раз в секунду.

Третье свойство этого прибора заключается в том, что: « Когда стеклянная пластина расположена рядом с конденсатором, заряды на котором чередуются, пластина излучает звук. Этот звук возникает из-за ритмического воздействия воздуха на пластину. Я также обнаружил, что звон конденсатора, который впервые отметил сэр Вильям Томсон, связан с присутствием воздуха между или рядом с заряженными поверхностями».


Для достижения требуемого редкого эффекта, требовалось, чтобы подсоединяемые конденсатор и линии соединительных проводов были выбраны таким образом, что получение и разряд необходимого электростатического заряда происходило в прерывистой однонаправленной моде. Такой контур Тесла создавал похожим на пульсирующую струю, когда никакое обратное давление не мешает мощному потоку, в отличие от переменного тока. Электростатический заряд увеличивался до своего максимума и разряжался очень быстро. Постоянное применение высоковольтного динамо оказывало давление на цепь, которое успешно порождало непрерывный процесс «медленного заряда – быстрого разряда». Эффект Тесла мог возникнуть при этом, и только при этом условии. Импульсы буквально текли через аппарат из динамо. Система «конденсатор, разрядник, и его присоединительные провода вели себя как единый вибрирующий клапан».

Высоковольтное динамо оставалось истинным электростатическим источником питания в аппарате. Тесла хорошо оценил этот факт, чувствуя болезненные эффекты, излучающиеся в пространство и проходящие через его тело. Было очевидно, что динамо как-то изменилось при добавлении к нему этих цепей – «пульсирующих клапанов». Динамо, которые он использовал, обеспечивали смертельное напряжение, способное убить человека. Клапанные контуры усиливали «странное» излучение смертельной энергии этого поля. Каким-то образом энергия динамо в неизвестной форме извергалась в пространство с опасной и болезненной силой? Каким таинственным способом достигалось подобное состояние? Результат серии экспериментов породил у Тесла новую концепцию. Он, конечно, обнаружил, что было причастно к его таинственному эффекту ударного поля. Это было по его определению радиантное электричество.

В первую очередь Тесла провёл тщательно разработанные продолжительные исследования для понимания истинной природы этого нового электрического эффекта. Он понял, что странное «ударное поле» на самом деле излучается в пространство из импульсного аппарата. Если это и была электростатическая энергия, то она была более мощной и обладала большей проникающей способностью, чем любое электростатическое поле, которое он когда-либо наблюдал. Если это было всего лишь «прерывающимся» электростатическим полем, почему тогда его сила была такой большой? Тесла начал убеждаться, что он открыл новую электрическую силу, а не сторонний эффект уже известных сил. Именно по этой причине он часто описывал свой эффект как «электродинамический», или «более электростатический».

Путём точного подбора сопряжённых параметров цепи, Тесла научился производить в случае необходимости крайне быстрые серии однонаправленных импульсов. Когда импульсы были короткими, прерывистыми, и обладали точной последовательностью, Тесла обнаружил, что ударный эффект может распространяться по очень большому пространству практически без потери интенсивности. Он также обнаружил, что поражающий эффект с лёгкостью проникал через объёмные металлические экраны и большинство изоляторов.

Разрабатывая способы контроля числа импульсов в секунду (цифровые методы регистрации) и временных интервалов между последовательными импульсами, он начал открывать всё новые и новые эффекты. Длительность каждого импульса давала свои особенные эффекты. Чувствуя колющие удары, даже при нахождении за экраном на расстоянии в пятнадцать футов от аппарата, Тесла сразу подумал об открывающихся перспективах передачи электрической энергии на большие расстояния без проводов. Тесла впервые осознал, что электрошоковые волны предоставляют гораздо большие возможности для изменения мира, чем даже использование его Многофазной системы переменного тока.

Тесла полностью предназначал свои открытия всему миру. «Радиантное электричество» имело особенные свойства неизвестные мировой науке.

Работая с простым, но мощным воплощением своего аппарата, Тесла обнаружил, что радиантное электричество может наводить мощные электрические эффекты на расстоянии. Эти эффекты не были чередующимися, не были обычными поперечными волнами. Это были продольные волны, состоящие из последовательных ударных волн. Прохождение каждой ударной волны с последующей короткой нейтральной зоной порождало радиантное поле. Векторные компоненты этих ударных волн были всегда однонаправленными. Прерывистые ударные волны были способны воздействовать на заряды в направлении своего распространения.

«Объекты, помещённые около устройства, приобретали сильный электрический заряд, сохраняющий свой знак на несколько минут после того, как магнитный разрядник был выключен. Тесла нашёл способ усилить эти эффекты заряда одного знака с помощью всего лишь асимметричного расположения магнитного разрядника. При размещении магнитного разрядника ближе к той или другой стороне заряжающего динамо, можно было выбрать и спроектировать силу с положительным или отрицательным вектором заряда (положительное и отрицательное электричество?»).

Таким образом, стало возможным передать или получить заряд от любого объекта в пространстве, охваченном полем. Это была новая электрическая сила. Тесла сильнее, чем когда бы то ни было, понял, что находится на неизученной территории. Тот факт, что эти радиантные силы распространялись подобно лучам света, отличало их от электромагнитных волн Максвелла.

Некоторые исследователи смогли воспроизвести эти эффекты, потому что понимали абсолютную необходимость изучения параметров, заданных Теслой. Эти факты были разъяснены Эриком Доллардом, который также успешно получил странные и различные эффекты, которые открыл Тесла.

К 1890-му году, после периода напряжённых экспериментов и проектирования оборудования, Тесла описал совокупность компонентов, необходимых для практического применения системы распределения радиантной электрической энергии. Он уже открыл тот факт, что импульсы длительностью менее ста микросекунд могут не ощущаться и не приносить физиологического вреда. Он планировал использовать это обстоятельство в своей системе распределения электроэнергии. Более того, ударные волны продолжительностью в сто микросекунд проникали через любое вещество, что делало их идеальной формой для переноса энергии в городах, требующих большого количества энергии.

В том же году Тесла сделал ещё более удивительное открытие, когда поместил около магнитного разрядника длинную однослойную цилиндрическую медную катушку.

«Катушка, имевшая около шестидесяти сантиметров в длину, вёла себя не так, как прямые медные трубки или другие объекты. Катушка из тонкой медной проволоки обросла венцом белых искр. Завихрения короны были очень длинными и плыли серебряно-белыми потоками, мягкими разрядами, которые, казалось, были значительно более высокими по напряжению. Эти эффекты сильно увеличивались, когда однослойную цилиндрическую катушку разместили в витке провода, идущем от разрядника. Внутри этой „ударной зоны“ цилиндрическая катушка была окружена взрывообразной вспышкой, которая обнимала её поверхность и вырывалась с открытого конца катушки. Казалось, как будто ударная волна отталкивалась от окружающего пространства, чтобы соединиться с катушкой, в странном притягивающем предпочтении. Ударная волна втекала в катушку под прямым углом к обмотке, что было невероятно. Явная длина разрядов прыгающих из венца цилиндрической катушки была неимоверной. Если в магнитном разряднике проскакивала искра в два с половиной сантиметра, то белые мерцающие разряды стекали с катушки более чем на шестьдесят сантиметров. Эти разряды были сравнимы с размером самой катушки! Это была неожиданная и неизвестная трансформация».

Здесь наблюдалось действие, почти «электростатическое» по природе, хотя он и знал, что академические круги не позволят использовать этот термин применительно к данной ситуации. Электростатическая энергия не колеблется, как это делают ударные волны. Взрывообразные ударные волны имеют характеристики, несхожие с таковыми для любых существующих электрических машин. Всё же Тесла выдвинул предположение, что «ударная волна на короткое мгновение своего взрывообразного проявления более походит на электростатическое поле, чем любое другое известное электрическое явление. В электростатических фрикционных машинах, где токи и магнетизм мизерны, очень энергетичное поле заполняет пространство между радиантными линиями. Это «диэлектрическое» поле обычно проходит через пространство, медленно вырастая, пока заряды накапливаются. Здесь же был случай, когда генератор постоянного тока производил сильное напряжение. Это напряжение заряжает изолированный медный виток, вырастая до максимального значения. Если все величины в контуре находились в определённом сочетании, установленном Тесла, то заряд внезапно схлопывался. Время этого коллапса должно было быть более коротким, чем требовался интервал для заряда витка. Схлопывание происходило, когда магнитный разрядник прерывал дугу. Если контур был настроен правильно, то колебаний в обратном направлении не возникало никогда.

Однонаправленная последовательность импульсов заряда – разряда заставляла распространяться наружу очень странное поле, которое слегка походило на «заикающееся» или «прерывистое» электростатическое поле. Но эти термины не могут успешно описать состояния, реально измеренного вокруг аппарата мощного радиантного эффекта, превосходящего все ожидаемые электростатические величины».

Подсчёт соотношений этих разрядов подтверждал их невозможность. Выполняя стандартный расчёт коэффициента трансформации, Тесла не мог вычислить огромный эффект усиления напряжения. Обычные соотношения не помогали, и Тесла выдвинул гипотезу, что эффект полностью подчинялся радиантному правилу трансформации, очевидно требующего опытного определения. Последующие измерения длины разряда и параметров винтовой катушки предоставили ему необходимое математические соотношения.

Он открыл новый закон индукции, в котором радиантные ударные волны фактически усиливали сами себя при сталкивании с сегментированными объектами. Сегментация была ключом к возникновению такого воздействия. Радиантные ударные волны входили в винтовую катушку и «выбрасывались» через её поверхность, от одного конца до другого.

«Эта ударная волна вообще не проходила через обмотку катушки, ведя себя на её поверхности, как воздух на крыле самолёта. Постепенное увеличение электрического давления измерялось вдоль всей поверхности катушки».

В трансформаторе Тесла радиантные ударные волны использовались для получения «чистого напряжения без тока»153153
  Только магнитный монополь обладает свойством проходит через любые преграды со скоростью света и производить волноводы из электропотенциалов, образуя в узлах полволны удвоенный потенциал. Эти волноводы – суть импульсные источники питания такой удвоенной разностью потенциалов.


[Закрыть]
, но если этот поток был направлен на отдаленные металлические плоскости, образовывался «ток» силой в несколько сотен и даже тысяч ампер. Тесла задался вопросом, что входило в состав этого белого, «безтокового» потока.

Тесла чётко установил, что напряжение может быть увеличено до впечатляющей цифры в 10 000 Вольт на дюйм высоты катушки. Это значило, что 24-дюймовая катушка может собрать радиантные ударные волны с первоначально измеренным входным напряжением в 10000 Вольт, и поднять его до максимальной величины в 240 000 Вольт. Подобное соотношение напряжений было ранее невозможно для аппаратов подобной величины и простоты. Впоследствии Тесла обнаружил, что выходное напряжение было связано с сопротивлением витков катушки – «Более высокое сопротивление катушки приводило к большему напряжению на ней».

Он называл свой прерыватель «первичным», а цилиндрическую однослойную катушку, помещённую внутри ударной зоны – «вторичной». Но он никогда не сравнивал эти термины с теми, которые используются в обычных электромагнитных трансформаторах. Его открытие было полностью отличным от электромагнитной индукции. И тому были все основания – вводить реальную странную формулировку. Было одно явление, которое временами расстраивало Теслу. Он измерял нулевой ток в этих длинных медных вторичных катушках. Он определил, что ток, который должен был бы появиться, полностью отсутствовал. Чистое напряжение увеличивалось с каждым сантиметром поверхности катушки. Тесла постоянно ссылался на свои «законы электростатической индукции», которые постигали немногие. Он назвал комбинацию своего прерывателя и вторичной цилиндрической однослойной катушки импульсным «Трансформатором».

Трансформаторы Тесла производили чистое напряжение без тока. Каждый Трансформатор проводил только специфичную длительность импульса с особой силой. Отсюда следовало, что каждый из них должен был быть «настроен» регулировкой разрядника на определённую длительность импульса. Изменение длины дуги обеспечивало такую регулировку. Когда каждый трансформатор был настроен на свой собственный характеристический отклик (подобно резонансу), импульсы могли спокойно течь через систему, подобно газу в трубе. Обнаружив газодинамические аналогии, которые согласовывались с имеющимися данными, и были удачной оценкой в этом отношении, Тесла начал изучать, является ли «белое пламя» разрядов, настолько отличное от того, что он прежде видел, газообразным проявлением электростатической силы. Имелось немалое количество опытов, в которых ясно проявлялась истинно газообразная их природа, настолько непохожая на что-либо электрическое. Способ, которым радиантные ударные волны протекали по проводящим обмоткам белыми мерцающими ламинарными струями, принесли новую революцию в мысли Теслы. Импульсы напряжения пересекали поверхность вторичной катушки подобно газовым импульсам под увеличивающимся давлением. Пока газообразные импульсы не достигали свободного конца катушки, они текли по её медной поверхности, не проникая внутрь. Тесла назвал это специфичное явление «скин-эффектом». В этом отношении разряд вёл себя очень похоже на газ, движущийся над поверхностью трубы.


Страницы книги >> Предыдущая | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 | Следующая
  • 0 Оценок: 0


Популярные книги за неделю


Рекомендации