Электронная библиотека » Александр Шадрин » » онлайн чтение - страница 5


  • Текст добавлен: 27 апреля 2014, 22:40


Автор книги: Александр Шадрин


Жанр: Физика, Наука и Образование


Возрастные ограничения: +16

сообщить о неприемлемом содержимом

Текущая страница: 5 (всего у книги 34 страниц) [доступный отрывок для чтения: 10 страниц]

Шрифт:
- 100% +

Порог этого процесса самый большой для атомов, находящихся в газовом состоянии, а минимальный для атомов, закреплённых в решётке твёрдого тела. Так например, для щелочных металлов он достигает нескольких единиц электронвольт и может быть активизирован даже оптическими фотонами.

Механизм передачи частичной энергии микровихрона при комптон-эффекте происходит без его захвата электрическим полем свободного электрона путём привнесения в его волновод кластера электропотенциалов волновода проходящего сквозь него вихрона. Этим и отличается механизм комптон-эффекта от фотоэффекта.

Совершенно другие энергии и радиационные последствия наступают в случае, когда необходимо ионизировать электроны с внутренних K,L,M,N-оболочек атома. Энергии фотонов увеличиваются в тысячи раз, а ионизация электрона с такой внутренней оболочки приводит к каскаду характеристического излучения этого вещества при возвращении и стабилизации атомов в основное состояние. На этом принципе основан рентгено-флюоресцентный метод анализа вещества.

Фотоатомные реакции. Свойства различных микровихронов образовывать те или иные микрочастицы, прежде всего, зависят от промежутка времени и скорости изменения[94]94
  Время жизни атомных возбуждённых состояний или время перехода характеризуется величиной 10-8 с, а ядерных – 10-20 с, у молний это время достигает десятков миллисекунд, у «тяжёлых» СВЧ десятки пикосекунд и мощных токов в переменных импульсах.


[Закрыть]
полей, породивших их, а уж потом от условий полей пространства, через которые они проходят. Внешние свойства вихронов также зависят от длины волны, как свойства радиоволн отличаются от свойств фотонов, рентгеновских лучей и гамма-квантов. Так, например, при энергии налетающего на атом фотона гамма-излучения выше пороговой в 1022 Кэв электромонополь его свободного микровихрона тормозит до полной остановки движение магнитного монополя, взаимодействуя с полем атомного ядра. При этом происходит его деление на два самостоятельных, но замкнутых[95]95
  Таким образом рождается масса и инертность элементарных частиц.


[Закрыть]
и покоящихся вихрона, в фазовом объёме которых уже рождаются гравитационные монополи. На фиг.2.4 приведена схема деления свободного (чёрный шарик) вихрона таких фотонов на два разнополярных (красный и синий).


Фиг.2.4 Схема рождения пары в поле атомного ядра


Природа механизма этого явления заключается в следующем. Находясь в движении в фазовом объёме (от 1/8 до 3/8 периода) фотона, остаток первичного магнитного монополя, через посредство противодействующего ему электрического монополя, уже возбудил равный ему и противоположный. И, в этот момент, внешнее поле отрицательного электрического монополя вихрона взаимодействует с сильным полем атомного ядра[96]96
  Дальнейшее свободное движение микровихрона прекращается электрическим полем ядра, т. е. электрический монополь вихрона взаимодействуют с этим полем.


[Закрыть]
– происходит торможение и остановка магнитных монополей, поляризация, разрыв и деление фазового объёма микровихрона. Электрический и магнитный монополи этого вихрона поляризуются и тормозятся в движении от скорости света до полной остановки. В момент торможения поляризованный магнитный монополь уже не может существовать, также разряжаться и продолжать предыдущий процесс индукции противоположного монополя, поэтому происходит противодействие этому процессу, подобное действию электрического монополя при свободном движении. Это противодействие – квантовый переход в его покоящийся аналог, т. е. в гравитационный монополь, источник покоя в замкнутом объёме новой частицы с массой. При этом, окончание зарядки гравитационного монополя совпадает с полной остановкой после торможения. Свободно-поступательное движение вихрона со скоростью света заменяется рождением двух покоящихся гравитационных монополей. Эти монополи, разряжаясь уже в замкнутом объёме, способны только заряжать-регенерировать поляризованные магнитные монополи и развёртывать при разрядке в этом замкнутом пространстве историю своего рождения в зёрнах-гравпотенциалах. Волновод из этих зёрен во внешнем пространстве индуктирует гравитационное поле противоположное по знаку активному полю тяготения Земли. Процесс периодически повторяется с высокой частотой, но теперь уже вместо электрического монополя, с участием и через посредство зарядки-разрядки гравитационного монополя. Теперь основным носителем кванта индуктированной энергии является гравитационный монополь. Так образуется стабильная однополярная каноническая форма замкнутой оболочки микрочастиц со спином ћ/2 – неполная квантовая завершённость преобразования магнитной энергии со сбросом остатка предела её накопления в гравитационный монополь. В результате, два противоположных и поляризованных монополя создают замкнутые объёмы двух самых лёгких и электрически заряженных стабильных микрочастиц, обладающих массой. Энергия материи в форме одного магнитного заряда, как носителя кванта индуктированной энергии и источника свободного движения со скоростью света – переходит в энергию двух других в форме зарядов состояния покоя – гравитационных монополей. Теперь носителями индуктированной энергии являются гравитационные монополи. Этот процесс переходит в последовательный взаимно-периодический с такой частотой, что при экспериментальной регистрации измеряют лишь величины электрического заряда, массы и спина. Это одиннадцатое свойство свободного запорогового электронного микровихрона – захват электромонополя и деление на два самостоятельных полярных и противоположных вихрона, способных создавать замкнутый фазовый объём однополярной электрически заряженной микрочастицы со спином ½. Такой процесс возможен лишь в связи с тем, что движение изменившихся и поляризованных монополей в этих замкнутых объёмах происходит без индукции встречного монополя, но с самоиндукцией самого себя через посредство разрядки-регенерации вновь рождённого гравитационного монополя – это двенадцатое свойство замкнутого микровихрона. Таким образом, переменный магнитный монополь одного знака может существовать не только в зоне индукции, но и в замкнутом объёме электрона и других заряженных однополярно элементарных частицах. Электрический монополь возникает всегда, как противодействие разрядке магнитного заряда. Гравитационный монополь индуктируется только в замкнутых вихронах, как противодействие изменению скорости в центростремительном движении-вращении магнитного заряда при его торможении во время зарядки и как сброс накопленной энергии при неполном квантовом преобразовании магнитного монополя. Структура геометрического уложения спиралей из зёрен-гравпотенциалов при зарядке на поверхности соответствующих сфер, является полным аналогом структуре (Фиг. 2.1) магнитного заряда – сфера с максимальными значениями зёрен-гравпотенциалов находится в центре. Отличие его свойств от свойств магнитного монополя заключаются лишь в том, что он всегда рождается и связан с тем замкнутым фазовым объёмом микрочастицы, в котором находится (тринадцатое свойство), а при разрядке индуктирует поляризованный магнитный монополь того же знака на удалении четверти длины волны от своего начального местоположения. Волновод из гравпотенциалов, созданный при разрядке в замкнутых волноводах разного диаметра во внешнем пространстве индуктирует[97]97
  И уже здесь надо отметить, что микроскопические уравнения Максвелла необходимо не только делать симметричными, но дополнить индукцией гравитационного монополя в некоторых случаях и с учётом планковской массы.


[Закрыть]
массу покоя частицы. При этом, магнитный монополь всегда движется только на зарядку к центру поверхности полусферы замкнутого волновода. Электрический монополь в этом процессе не возбуждается. Это четырнадцатое свойство замкнутого микровихрона – квантовый переход энергии из источника движения в другую форму в виде источника покоя, т. е. индукция массы микрочастицы во внешнем пространстве с помощью внутреннего волновода из установленных зёрен-гравпотенциалов.

Итак, главное, при разрядке и движении по окружности со скоростью выше скорости света магнитный монополь в свободном микровихроне индуцирует противодействующий процессу уменьшения его заряда электрический монополь, а при торможении и уменьшении скорости до полной остановки он превращается в свой покоящийся аналог – гравитационный монополь.


Фотоядерные реакции лёгкими фотонами. Аналогично с уже рассмотренным процессом фотоатомных реакций с испусканием микрочастиц, происходит процесс Гигантскогорезонанса при пороговых энергиях фотонов от 10 до 25 Мэв, когда длина волны становится сравнимой с диаметром ядра, что приводит также к излучению различных микрочастиц.

Фотоядерные реакции «тяжёлыми» фотонами. Рассмотренные выше фотоны, полученные при излучении возбуждённых атомов или ядер, назовём «лёгкими» фотонами, только таким фотонам свойственно определение их энергии через произведение частоты и постоянной Планка. К их числу следует отнести и лазерное излучение даже высоких плотностей потока луча. Однако в природе Вселенной[98]98
  Такие явления обнаружены в атмосфере Юпитера и Солнца.


[Закрыть]
встречаются такие процессы, например, электрические разряды атмосферных молний, при которых синфазно за очень короткий промежуток времени порядка 10-12 секунды и в очень малом локализованном объёме[99]99
  Такой объём соизмерим с фазовым объёмом длины волны от 10 см до 10 микрон (от 3 до 3 х 104 ГГц) СВЧ излучения.


[Закрыть]
в импульсно-переменном электрическом поле больших токов и напряжений рождаются путём слияния магнитные заряды с максимально возможной плотностью упаковки зёрен-потенциалов как на самих спиралях, формирующих сферу этого заряда, так и названных спиралей, вплотную примыкающих друг к другу (фиг. 2.5). Назовём такие электромагнитные фотоны «тяжёлыми».


Фиг. 2.5 Лёгкие атомные и «тяжёлые» СВЧ – фотоны.


«Тяжёлый» монополь вихрона СВЧ[100]100
  Для краткости изложения в этот термин будем вкладывать смысл частот ЭМВ, включающих длины волн от одного миллиметра до одного микрона, т. е. практически весь ИК-диапазон.


[Закрыть]
диапазона (в его фазовом объёме находится очень большое количество атомов), проходя через кластер вещества, также производит волноводы и способен ионизировать не только электроны внешних и внутренних оболочек атома, но может ионизировать частицы внешних оболочек атомных ядер. Как следствие этих процессов, вдоль потенциалов волновода идут вихревые токи, а первичный химический состав вещества изменяется.

Рассмотренный процесс касается формирования лишь одного атомного микровихрона фотона. А, например, в работах В. В. Авраменко показано рождение мощного потока фотонов на границе разрыва спирали нити обычной бытовой лампы накаливания, при питании одним проводом, включённой в схему, разработанной этим автором. В этих экспериментах по однопроводной передаче энергии горят как исправные лампы, так и перегоревшие – это процесс переноса электрического заряда магнитными монополями.

Вспышки света, предваряющие атмосферный разряд обычной молнии, или при включении вилки в розетку, для питания прибора с потреблением тока более одного ампера – это поток вихронов с широким спектром частоты вплоть до оптических. При этом следует сравнить сходство излучения потока фотонов при возбуждении кластера плазмы (изменение электрического поля в атомах плазмы – однофотонный механизм излучения на один атом) с излучением потока фотонов (вспышки) в глубоком вакууме без атомов и плазмы вблизи электрода, на котором происходит пикосекундное импульсное высоковольтное изменение потенциала. В этом случае имеется область зарождения потока магнитных монополей разной частоты, которое можно детектировать по вспышке мощного потока фотонов в оптическом диапазоне. Отсюда вывод, что во всех случаях, когда в какой-то области пространства начинает мгновенно (скорость изменения) изменяться электрическое поле, всегда рождаются синфазные магнитные монополи за счёт энергии его изменения, которые способны переносить соответствующий электрический и магнитный заряды из одной его точки в другую.

Если окружающее область вспышки пространство содержит атомы, а энергия заряда магнитного и соответствующего электрического монополей соизмерима или больше энергии заряда атомного ядра, то происходит или резонансное поглощение этого фотона с переводом атома в одно из возбуждённых состояний, или ионизация связанного в атоме электрона, или происходит рождение пар[101]101
  Рождение пар элементарных частиц таких как электрон-позитрон и пары противоположных мюонов – это характерные фотоатомные реакции.


[Закрыть]
элементарных частиц – электронов и позитронов, мюонов. При взаимодействии атомов с «тяжёлыми» СВЧ фотонами возможно их частичное поглощение с возбуждением механических колебательно-вращательных уровней, ионизация частиц внешних оболочек атомов и атомных ядер с выделением ядерной энергии. Частоты таких фотонов находятся в известном ИК-диапазоне. А вот энергия таких «тяжёлых» фотонов определяется уже величиной магнитных зарядов, а не произведением частоты на постоянную Планка.

Длиноволновый гигантский солнечный макровихрон специфически[102]102
  Это замечено в выбросах солнечной плазмы – электромонополь макровихрона захватывает кластер плазмы фотосферы, а через некоторое время «выплёвывает» его из своего фазового объёма, создавая при этом характерную картину – пары тёмных и светлых пятен.


[Закрыть]
взаимодействует с плазмой Солнца – в момент его выхода через поверхность фотосферы его электромонополь захватывает кластер фотосферы, который через мгновение будет выброшен исчезающим электромонополем из его фазового объёма, и образует в фотосфере пару брешь – «чёрное пятно» и белое пятно над ним. Такие заряды замечены (фото 2.2–2.3) на поверхности Солнца – назовём их «сверхтяжёлыми» фотонами.

LENR. Именно такой метод позволяет при относительно небольшой частоте фотонов (ВЧ, СВЧ, КВЧ и ИК диапазон), но очень высокой плотности зёрен-потенциалов на волноводах, инициировать эффекты СВЧ бытовой микроволновой печи – вихревые токи, а также уже широкоизвестные низкоэнергетические[103]103
  Энергия материи, заключённая в кванте магнитного «тяжёлого» заряда, превосходит энергию ионизации частиц с внешних оболочек атомного ядра, поэтому называть такие ядерные реакции низкоэнергетическими можно лишь условно в силу истории их открытия.


[Закрыть]
ядерные реакции (LENR) с производством дополнительной энергии (тепловой или электрической) за счет полной локальной обдирки от электронов (ионизации) и фотоионизации частиц, входящих в состав внешних ядерных оболочек тяжёлых элементов. При этом, необходимо отметить аналогию поведения взаимодействия лёгких фотонов с внешними электронами в атоме с «тяжёлыми» фотонами, которые таким же образом ионизируют частицы с внешних оболочек атомных ядер.

Рассмотренная структура[104]104
  Это совокупность статики и динамики.


[Закрыть]
лёгких и «тяжёлых» фотонов является ключом открытия тайны массы, заряда, спина, гравитации, инертности, электротока, твёрдости, вязкости и других физических свойств различных сред, механизма электросопротивления и других фундаментальных явлений природы в микро– и макромире атомно-молекулярных веществ, в том числе и LENR реакций в атомно-молекулярных агрегатных состояний материи.

2.2 Микровихроны

Пространства вакуума космоса Вселенной заполнены светом и другим весьма широким многообразием потоков частиц, микрочастиц и электромагнитных волн. Однако звуковым волнам нет места в космосе – им для существования нужна вещественная атомно-молекулярная среда. Поэтому они живут и существуют лишь на звёздах и планетах. В этом разделе и рассмотрены электромагнитные, тепловые и звуковые микровихроны, порождающие такие волны и микрочастицы.

2.2.1 Электромагнитные микровихроны

Из открытой литературы со времён Д. К. Максвелла известно, что «магнитный монополь можно представить, как отдельно взятый полюс длинного и тонкого постоянного магнита. Однако у обычного магнита всегда два полюса, то есть он является диполем[105]105
  В данной книге принято для удобства восприятия называть электрический диполь, а магнитный – биполем.


[Закрыть]
. Если разрезать магнит на две части, то у каждой его части по-прежнему будет два полюса. Все известные элементарные частицы, обладающие электромагнитным полем, являются магнитными диполями. Сформулированные Д. К. Максвеллом уравнения классической электродинамики связывают электрическое и магнитное поле с движением заряженных частиц. Эти уравнения почти симметричны относительно электричества и магнетизма. Они могут быть сделаны полностью симметричными, если в дополнение к электрическому заряду и току ввести некий магнитный заряд и магнитный ток. Об этом Максвелл указывал ещё в 1873 г. Таким образом можно создать систему уравнений Максвелла с учетом существования магнитных зарядов.

Существующие классические уравнения отражают тот факт, что обычно магнитные заряды не наблюдаются. Если магнитные заряды существуют, то существование магнитных токов приведёт к поправкам уравнений уравнений Максвелла, которые можно наблюдать на макроскопических масштабах.

После Максвелла (1873 г.), сначала П. Кюри (1894 г.), А. Пуанкаре (1896 г.), а затем и П. Дирак (1931 г) создали квантовую теорию взаимодействия электрического заряда с магнитным зарядом, которая применима при условии знаменитого дираковского квантования. Из него следует, что магнитный заряд частицы должен быть кратен элементарному магнитному заряду.

В 1974 г. Поляков и т*Хоофт теоретически определили значение искомой массы магнитного монополя величиной в М 1016 Гэв.

В настоящее время магнитный монополь стал обязательным приложением всех объединительных теорий. Абелев монополь не имеет строгих ограничений на массу. Вместе с тем, неабелев монополь может иметь массу доступную LHC.

• 2000–2004 гг. – эксперименты, поставленные группой из Oklahoma University, TEVATRON, p¯p-столкновения.

(Al) |n|=1,M> 285ГэВ; |n|=2, M> 355ГэВ

(Be) |n|=3,M> 325ГэВ; |n|=6, M> 420ГэВ

• 2005 г. – прямые поиски магнитных монополей (группа CDF Run2), механизм Дрелла-Яна.

M>360 ГэВ, s=1/2

• 2005 г. – прямые поиски на ускорителе HERA, e + p – столкновения, масса монополя M > 140 ГэВ.

• 2005 г. – группа в составе Ю. Курочкин, И. Сацункевич, Д. Шёлковый, С. Януш определили пределы массы современного статуса магнитных монополей и перспективы их поиска на установке ATLAS, путём образования пары монополь – антимонополь двумя фотонами.

Существование магнитного монополя с определённым зарядом объяснило бы наблюдаемую в природе кратность электрических зарядов частиц заряду электрона. Однако при этом, пришлось бы объяснять, почему в свою очередь магнитные монополи имеют квантованные магнитные заряды.

Законы классической электродинамики допускают существование частиц с одним магнитным полюсом и дают для них определённые уравнения поля и уравнения движения. Эти законы не содержат никаких запретов, в силу которых магнитные монополи не могли бы существовать.

В общем случае, по мнению П. Дирака, магнитный монополь, как результат «динамического взаимодействия» не должен иметь традиционной массы покоя.

«Если магнитные монополи генерируются высокоэнергичными космическими лучами, непрерывно падающими на Землю, то они должны встречаться повсюду на земной поверхности. Их искали, но не нашли. Остаётся открытым вопрос, связано ли это с тем, что магнитные монополи очень редко рождаются, или же они вовсе не существуют».

Наиболее серьёзных результатов в теории фермионных магнитных монополей, развивая идеи вышеуказанных авторов, достиг Ж. Лошак (Франция, работы в период 1987–2005).

Как показано в кратко приведённом обзоре, неуловимый магнитный монополь ищут в состоянии статического существования, в каком существуют электрон и позитрон.

Такой монополь ищут уже более 80 лет, с тех пор как Поль Дирак определил его основные свойства:

– точечный источник радиального магнитного поля

– в нижнем пределе может достигать планковских пределов длины, т. е. 10-28 см

– в теории взаимодействий электрического и магнитного зарядов масса покоя магнитного заряда не предсказывалась

– магнитный монополь является стабильной частицей и не может исчезнуть до тех пор, пока не встретится с другим монополем, имеющим равный по величине и противоположный по знаку магнитный заряд

– любой магнитный заряд квантован[106]106
  Условие квантования П. Дирака не ограничивает верхний предел значений магнитных зарядов. На Солнце, как будет показано дальше, практически зафиксированы пары магнитных макромонополей, соединённых частью спирали электропотенциалов – гигантский магнитный биполь. Эти два противоположных монополя не аннигилируют, а выпускают свой заряд в вихревой ток флоккул.


[Закрыть]

– минимальный магнитный заряд в 137/2 раз больше заряда электрона

– магнитный поток[107]107
  Вопрос. Магнитный поток из чего от таких зарядов? Ответ – из зёрен-потенциалов.


[Закрыть]
от таких зарядов также квантован.

Итак, магнитных зарядов с указанными П. Дираком свойствами нет в природе, а есть магнитная индукция и спин микрочастиц, порождаемый переменным магнитным монополем.

При формировании самодвижущегося фазового пространства фотона, состоящего из волновода электропотенциалов-зёрен, уложенных на поверхности двух соприкасающихся сфер причастна некая пульсирующая магнитным и противодействующим электрическим полевым током самодвижущаяся вихревая переменная частица с лидирующими магнитными свойствами.

В отличие от стационарного магнитного монополя Дирака, обнаруженный в зоне индукции вихревой переменный по знаку и величине магнитный монополь и связанный с ним при формировании фазового объёма фотона свободный вихронбозонный магнитный биполь, несколько отличается от своего знаменитого аналога своими уже зарегистрированными десятью свойствами. Вихрон образован следующим образом:

– в атоме с потенциальным электрическим полем[108]108
  Электростатический диполь ядра и электрона возбуждённого атома.


[Закрыть]
электрон переходит с оболочки, на которой он находится в состоянии возбуждения, на основную оболочку

– во время этого движения электрона его поле начинает изменять потенциальное электрическое поле ядра, в результате локальное поле зоны индукции, состоящее из множества зерен-электропотенциалов, вблизи электрона начинает изменяться, т. е. каждое зерно изменяется по-своему до определённого значения электрического потенциала, а вот скорость изменения у всех одинакова – скорость распространения статического электрического поля от стационарного источника

– такое изменение потенциала-зерна рождает магнитный монополь, который своим ростом противодействует[109]109
  Баланс сил квантования.


[Закрыть]
этому изменению, чем больше скорость перехода, тем меньше средний эффективный радиус магнитного монополя и больше плотность магнитных зёрен (фиг. 2.1)

– затем процесс движения электрона на основную оболочку прекращается – атом переходит из возбуждённого в основное состояние и этим определяет промежуток времени квантования микромонополей

– синфазно множество зерен указанного объёма локального поля[110]110
  Зона индукции.


[Закрыть]
, образовавших такие микромонополи, формируют суммарный локальный вихревой магнитный поток потенциалов; если суммарный[111]111
  Здесь конкурируют два процесса: статическая индукция от создающихся магнитных монополей и вихревая индукция от изменения электрополей вокруг электрона-излучателя, создающих эти монополи.


[Закрыть]
магнитный поток потенциалов достигает минимального порога, то образуется минимальный магнитный самодвижущийся вихревой монополь-вихрон в зоне излучения

– благодаря эффекту Ааронова-Бома введена особая роль электромагнитных потенциалов в физике квантовых явлений

– минимальный магнитный поток, обнаруженный экспериментально через эффект Я. Ааронова – Д. Бома, составляет величину 2,068х10-15 Вб.

– как только электрон в атоме занял основную оболочку, потенциалы перестали изменяться и магнитный монополь[112]112
  Магнитный монополь это не вихрон, а одна из его вихревых компонент, а вот его свободное движение с вихревой индукцией электрического монополя, и «скелет» из электропотенциалов – это и есть вихрон.


[Закрыть]
стал источником движения-изменения, самодвижущимся вихроном – вылетел из зоны излучения, в случае квантовой завершённости его структуры

– далее этот магнитный заряд, разряжаясь в режиме самодвижения, строит волновод трека (фиг.2.2) движения фотона – микровихрон квантует зёрна-потенциалы геометрически фиксированные в пространстве, при этом заряд монополя уменьшается от максимального до минимального[113]113
  Реально он создаёт в процессе зарядки сначала зёрна-потенциалы, соответствующие своему внешнему диаметру, а затем центру сферы, потом начинается процесс разрядки его заряд уменьшается и опять он имеет заряд, соответствующий потенциалам большей сферы.


[Закрыть]

– одновременно с началом движения магнитного монополя рождается противодействующий его разрядке электрический монополь

– монополь[114]114
  Доказательством вращения магнитного монополя вокруг электрического является конус А. Пуанкаре (1896 г.).


[Закрыть]
совершает каноническое спиралевидное движение с переменной частотой, обратно пропорциональной её диаметру и прямо пропорционально величине и скорости изменения первичного потенциала; вращение центра сферы происходит по радиусу-вектору переменного электромонополя.

Создание фазового объёма фотона идёт следующим образом:

– вначале[115]115
  Если начать отсчёт времени в момент разрядки магнитного монополя.


[Закрыть]
фазового объёма фотона уменьшающийся по величине максимальный по заряду магнитный монополь, разряжаясь, индуктирует противодействующий его уменьшению электрический монополь и производит волновод из зёрен-электропотенциалов, вращаясь по спиралям увеличивающегося диаметра с переменной частотой

– синхронно противодействующий ему электрический монополь на ¼ периода индуктирует увеличивающийся по величине вторичный противоположный магнитный монополь

– в точках 1/8 и 3/8 периода полволны фазового объёма фотона, оба магнитных монополя имеют одинаковую величину, но противоположные знаки

– на ¼ периода[116]116
  На окружности минимального радиуса вблизи этой точки находятся максимальные по абсолютному значению электропотенциалы.


[Закрыть]
первичный монополь полностью исчезает, взамен ему в точке ½ периода появляется и начинает разряжаться вторичный монополь той же величины, что и первичный, но противоположный по знаку

– на следующей полволне фотона, происходит то же самое, что и на первой, только противоположный монополь производит зёрна-потенциалы противоположной полярности

– полный период волнового движения магнитного монополя в одну длины волны фотона, характеризующийся спином частицы в одну постоянную Планка, определяет полную квантовую завершённость волнового перехода вихревой материи – это время в четыре раза большее времени перехода электрона из возбуждённого в основное состояние.

Так рождается один период длины волны кванта фазового объёма фотона, в котором свободный первичный микровихрон, превращаясь на полволне в зеркальный, опять трансформируется в изначальный. В бесконечном движении в пространстве Вселенной рождается трек фотона – фиг.2.3.

Отсюда можно определить минимально возможный и неполяризованный свободный вихрон в пространстве, как самодвижущийся элементарный магнитно-электрический[117]117
  Не электромагнитный, в силу причинно-следственной связи.


[Закрыть]
вихревой микрообъём с пульсирующими и взаимосвязанными в нём вихревыми магнитными и электрическими токами, в котором поочередно меняются магнитные монополи[118]118
  Такой вихрон можно назвать и пульсирующим биполем.


[Закрыть]
на противоположные, один из которых производит геометризованные зёрна-потенциалы только на первой ¼ волновода, а второй противоположный ему также производит потенциалы, но только на второй ¼ волновода полволны и противоположного знака.

Численно в системе СИ[119]119
  Эта система в основном используется при проведении экспериментов.


[Закрыть]
значение элементарного атомного микровихрона можно определить постоянной Планка, т. е. произведением минимального электрического заряда на магнитный. Эта величина является фундаментальной атомной константой, а поэтому такой вихронфундаментальный полевой квант движения, пульсирующий свободный магнитный биполь[120]120
  Диполем обычно определяют связанные стационарные электрические заряды.


[Закрыть]
в свободном пространстве. Это пятнадцатое свойство вихрона — фундаментальное свойство этого конкретного кванта, создающего конкретный спин микрочастицы и характеризующего физический смысл постоянной Планка, т. е. кванта наименьшего атомного действия.

Вихрон может находиться в форме свободно существующих квантованных магнитных вихрей, всегда движущихся вращательно-поступательным образом со скоростью света с массой равной нулю. В случае торможения и полной остановки, вся энергия заряда этого вихря переходит в массу его покоящегося аналога – гравитационный монополь. А так как он, в силу своей динамично-вихревой структуре в свободном пространстве, всегда связан с созданием потенциалов[121]121
  То есть геометризованных зерен фиксированных микропространств, относительно стабильное положение которых в гравитационном пространстве защищёно протекторным магнитным полем.


[Закрыть]
электрических волноводов, то квантование П. Дирака однозначно указывает на причастность этих свободных и взаимно-ортогональных вихрей с минимальным размером до 10-28 см в создании микрочастиц с целыми и полуцелыми спинами. Таким образом, микровихрон – это спинообразующее «сердце» элементарных частиц, созданных им.

Собственно полевую форму вихрона зарегистрировать технически невозможно в связи с отсутствием соответствующих по быстродействию детекторов[122]122
  М. И. Солин (2001 г) предложил использовать в качестве детектора магнитных зарядов затвердевающий расплав циркония, который фиксирует все ядерные и электротоковые превращения, вызванные прохождением монополей.


[Закрыть]
. Поэтому, в настоящее время, регистрируют лишь элементарные частицы, им построенные, и в фазовом объёме которых они движутся.

Некоторые внешние и внутренние свойства свободных вихронов уже рассмотрены в предыдущем разделе в следующей причинно-следственной связи:

– параметры[123]123
  Промежуток времени и скорость излучения, поляризация и интенсивность.


[Закрыть]
, отражающие конкретные внутренние свойства вихронов, рождают[124]124
  Этот процесс называется самоструктурированием той или иной микрочастицы в зависимости от окружающих полей, т. е., например, в мантии Земли нейтрон при распаде превращается в протон или антипротон и соответствующие мюоны, а не позитрон и электрон. Аналогично, нейтральные ядра распадаются с образованием положительных или отрицательных ядер.


[Закрыть]
очень конкретную элементарную частицу


– эта частица проявляет при взаимодействии с полями материи окружающей среды очень характерные только ей присущие физические свойства, называемые здесь внешними.

– на основании этих свойств она идентифицируется как, например, фотон или электрон.

Рождение свободного вихрона происходит на границе (1/8 – 1/6 длины волны) зоны индукции с зоной излучения около стационарного источника, вокруг которого меняется[125]125
  Поле можно менять по разному: 1.изменять собственно поле, 2. двигать один из зарядов диполя навстречу другому, 3.обрыв тока путём взрыва проволочек, обрыв тока дуги, 4. подавать на электроразрядный промежуток импульс напряжения с фронтом 10-12 секунды, 5. на излучатель-антенну подавать переменное напряжение, например, СВЧ диапазона.


[Закрыть]
электрическое поле.

Размеры активного объёма микровихрона в четыре раза меньше длины волны фазового пространства оптического фотона или радиоволны, или гамма-кванта. Минимальные размеры его магнитного монополя могут достигать планковских значений длины, а максимальные неограниченны и могут достигать значений энергии, оценённые Поляковым и т٭Хоофтом и даже больше.

Каноническое движение магнитного монополя, создающего конкретный волновод микрочастицы, определяет её спин. У замкнутых частиц типа электрона этот спин полуцелый. У них каждый поляризованный монополь движется в своём индивидуальном «домике» – позитрон или электрон. Полусферы замкнутых волноводов этих частиц охвачены виртуальным протекторным магнитным полем. Кроме того, замкнутый внешний волновод электропотенциалов индуктирует в пространстве электрическое поле (виртуальный заряд и геометрическую пространственную структуру), как если бы это поле было сформировано постоянным точечным и бесструктурным точечным источником в пространстве. Это шестнадцатое свойство замкнутых полярных микровихронов.

Энергия в 1022 Кэв является тем минимальным порогом[126]126
  В природе при определённых условиях могут образовываться и более низкочастотные свободные и замкнутые нестабильные полевые коллективные макровихроны в форме лидеров линейных и шаровых молний.


[Закрыть]
, свыше которого идут фотоатомные реакции, в результате которых образуются замкнутые однополярные вихроны электронов, позитронов или мюонов. До этой энергии, в общем случае, могли образовываться только биполярные свободные микровихроны, т. е. бозонные вихроны в фазовом объёме которых пульсируют два переменных противоположных магнитных и один электрический монополь. При энергиях много больше первого порога стабильные волноводы подобные электрону больше не создаются, это единственная резонансная частота на поверхности Земли.

Вихроны фотонов с существенно более высокой энергией способны создавать при определенных условиях замкнутые нестабильные полусферические (спин ½) микропространства мюонов, а также замкнутые сферы-оболочки (спин 0) ядерных волноводов из заряженных мезонов и других элементарных частиц с помощью поляризованных магнитных зарядов ядерной частоты – мезонные магнитные заряды. Это семнадцатое свойство ядерных замкнутых микровихронов.

Имеются и другие резонансные частоты ядерных фотонов, при которых могут объединятся с помощью различных резонансных микровихронов вложенные друг в друга многооболочечные структуры микрочастиц – это многочисленные ядра химических элементов. Это восемнадцатое свойство мезонных замкнутых ядерных вихронов. Так, например, несколько таких вихронов, образующих фотоны с энергией выше 1 Гэв со строго определенным энергетическим спектром при определенных условиях (аналог поля атомного ядра – мишень коллайдера, поверхность ядра звезды или молодой планеты) способны образовывать вложенные друг в друга фазовые объёмы замкнутых волноводов-оболочек (как внутренние слои луковицы). Такие резонансно замкнутые волноводы, содержащие в себе движущиеся к своим полюсам соответствующие магнитные противоположные заряды, способны стабильно сосуществовать в форме объёмов-микропространств нейтронов, протонов и других ядер химических элементов. Начиная с этой пороговой энергии ядерные микровихроны, получив при определенных взаимодействиях конкретный тип полярности, поляризации и частоту, способны также свободно образовать сферические, эллиптические и полусферические замкнутые пространства, как свободные биполярные вихроны образуют аналогичные волноводы свободного фотона. В ядрах звезд и на их поверхности, а также в мантии молодых планет в подобных условиях идет производство ядер схожих по структуре нейтрону, но и более тяжёлых. При этом, вихроны их образующие, а именно их число, поляризация, полярность и частота, в замкнутом многооболочечном пространстве, определяют такие внешне проявляемые свойства этих ядер как масса, время жизни, заряд, спин и размер сферы, занимаемой этими ядрами. Широкий диапазон частот, начиная от 1023 гц до планковских (1043 гц), большое разнообразие форм и степени поляризации, вплоть до деления и сложения энергии и спина, деление разных и слияние одинаковых монополей, концентрический захват и слияние сферических центров резонансных вихронов, высокая пластичность во взаимодействиях – всё это наделяет микровихроны такими же свойствами при строительстве широкого разнообразия микрочастиц Мироздания, какими обладают молекулы ДНК при выращивании живых клеток флоры и фауны.


Страницы книги >> Предыдущая | 1 2 3 4 5 6 7 8 9 10 | Следующая
  • 0 Оценок: 0

Правообладателям!

Данное произведение размещено по согласованию с ООО "ЛитРес" (20% исходного текста). Если размещение книги нарушает чьи-либо права, то сообщите об этом.

Читателям!

Оплатили, но не знаете что делать дальше?


Популярные книги за неделю


Рекомендации