Автор книги: Алексей Молчанов
Жанр: Программирование, Компьютеры
сообщить о неприемлемом содержимом
Текущая страница: 5 (всего у книги 21 страниц) [доступный отрывок для чтения: 7 страниц]
Пример выполнения работы
Задание для примераВ качестве задания для примера возьмем входной язык, который содержит набор условных операторов условия типа if… then… else и if… then, разделенных символом; (точка с запятой). Эти операторы в качестве условия содержат логические выражения, построенные с помощью операций or, xor и and, операндами которых являются идентификаторы и целые десятичные константы без знака. В исполнительной части эти операторы содержат или оператор присваивания переменной логического выражения (:=), или другой условный оператор.
Комментарий будет организован в виде последовательности символов, начинающейся с открывающей фигурной скобки ({) и заканчивающейся закрывающей фигурной скобкой (}). Комментарий может содержать любые алфавитно-цифровые символы, в том числе и символы национальных алфавитов.
Грамматика входного языкаОписанный выше входной язык может быть построен с помощью КС-грамматики G({if,then,else,a,=,or,xor,and,(,),},{S,F,E,D,C},P,S) с правилами Р:
S → F;
F → if E then T else F | if E then F | a:= E
T → if E then T else T | a:= E
E → E or D | E xor D | D
D → D and С | С
С → a | (E)
Описание грамматики построено в форме Бэкуса—Наура. Жирным шрифтом в грамматике и в правилах выделены терминальные символы.
Выбранный в качестве примера язык и задающая его грамматика не совпадают ни с одним из предложенных выше вариантов. С другой стороны, на этом примере можно проиллюстрировать многие особенности построения лексического, а впоследствии – и синтаксического распознавателя, присущие различным вариантам. Он содержит как условные операторы, связанные с передачей управления в то или иное место исходной программы, так и линейные операции в форме вычисления логических выражений. Поэтому данный пример выбран в качестве иллюстрации для лабораторной работы № 2, а позже будет использоваться также в лабораторных работах № 3 и 4.
Описание конечного автомата для распознавания лексем входного языкаЗадача лексического анализатора для описанного выше языка заключается в том, чтобы распознавать и выделять в исходном тексте программы все лексемы этого языка. Лексемами данного языка являются:
• шесть ключевых слов языка (if, then, else, or, xor и and);
• разделители: открывающая и закрывающая круглые скобки, точка с запятой;
• знак операции присваивания;
• идентификаторы;
• целые десятичные константы без знака.
Кроме перечисленных лексем распознаватель должен уметь определять и исключать из входного текста комментарии, принцип построения которых описан выше. Для выделения комментариев ключевыми символами должны быть открывающая и закрывающая фигурные скобки.
Для перечисленных типов лексем и комментария можно построить регулярную грамматику, а затем на ее основе создать КА. Однако построенная таким образом грамматика, с одной стороны, будет элементарно простой, с другой стороны – громоздкой и малоинформативной. Поэтому можно пойти путем построения КА непосредственно по описанию лексем. Для этого не хватает только описания идентификаторов и целых десятичных констант без знака:
• идентификатор – это произвольная последовательность малых и прописных букв латинского алфавита (от А до Z и от а до z), цифр (от 0 до 9) и знака подчеркивания (_), начинающаяся с буквы или со знака подчеркивания;
• целое десятичное число без знака – это произвольная последовательность цифр (от 0 до 9), начинающаяся с любой цифры.
Границами лексем для данного распознавателя будут служить пробел, знак табуляции, знаки перевода строки и возврата каретки, а также круглые скобки, открывающая фигурная скобка, точка с запятой и знак двоеточия. При этом следует помнить, что круглые скобки и точка с запятой сами по себе являются лексемами, открывающая фигурная скобка начинает комментарий, а знак двоеточия, являясь границей лексемы, в то же время является и началом другой лексемы – операции присваивания.
В данном языке лексический анализатор всегда может однозначно определить границы лексемы, поэтому нет необходимости в его взаимодействии с синтаксическим анализатором и другими элементами компилятора.
Рис. 2.1. Фрагмент графа переходов КА для распознавания всех лексем, кроме ключевых слов.
Полный граф переходов КА будет очень громоздким и неудобным для просмотра, поэтому проиллюстрируем его несколькими фрагментами. На рис. 2.1 изображен фрагмент графа переходов КА, отвечающий за распознавание разделителей, комментариев, знака присваивания, переменных и констант (всех лексем входного языка, кроме ключевых слов).
На рис. 2.2 изображен фрагмент графа переходов КА, отвечающий за распознавание ключевых слов if и then (этот фрагмент имеет ссылки на состояния, изображенные на рис. 2.1). Аналогичные фрагменты можно построить и для других ключевых слов.
Рис. 2.2. Фрагмент графа переходов КА для ключевых слов if и then.
На фрагментах графа переходов КА, изображенных на рис. 2.1 и 2.2, приняты следующие обозначения:
• А– любой алфавитно-цифровой символ;
• А(*) – любой алфавитно-цифровой символ, кроме перечисленных в скобках;
• П– любой незначащий символ (пробел, знак табуляции, перевод строки, возврат каретки);
• Б– любая буква английского алфавита (прописная или строчная) или символ подчеркивания (_);
• Б(*) – любая буква английского алфавита (прописная или строчная) или символ подчеркивания (_), кроме перечисленных в скобках;
• Ц– любая цифра от 0 до 9;
• F – функция обработки таблицы лексем, вызываемая при переходе КА из одного состояния в другое. Обозначения ее аргументов:
– v – переменная, запомненная при работе КА;
– d – константа, запомненная при работе КА;
– a – текущий входной символ КА.
С учетом этих обозначений, полностью КА можно описать следующим образом:
M(Q,Σ,δ,q0,F):
Q = {H, C, G, V, D, I1, I2, T1, T2, T3, T4, E1, E2, E3, E4, O1, O2, X1, X2, X3, A1, A2, A3, F}
Σ = А (все допустимые алфавитно-цифровые символы);
q 0 = H;
F = {F}.
Функция переходов (δ) для этого КА приведена в приложении 2.
Из начального состояния КА литеры «i», «t», «e», «o», «x» и «a» ведут в начало цепочек состояний, каждая из которых соответствует ключевому слову:
• состояния I1, I2 – ключевому слову if;
• состояния T1, T2, T3, T4 – ключевому слову then;
• состояния E1, E2, E3, E4 – ключевому слову else;
• состояния O1, O2 – ключевому слову or;
• состояния X1, X2, X3 – ключевому слову xor;
• состояния A1, A2, A3 – ключевому слову and.
Остальные литеры ведут к состоянию, соответствующему переменной (идентификатору), – V. Если в какой-то из цепочек встречается литера, не соответствующая ключевому слову, или цифра, то КА также переходит в состояние V, а если встречается граница лексемы – запоминает уже прочитанную часть ключевого слова как переменную (чтобы правильно выделять такие идентификаторы, как «i» или «els», которые совпадают с началом ключевых слов).
Цифры ведут в состояние, соответствующее входной константе, – D. Открывающая фигурная скобка ведет в состояние C, которое соответствует обнаружению комментария – из этого состояния КА выходит, только если получит на вход закрывающую фигурную скобку. Еще одно состояние – G – соответствует лексеме «знак присваивания». В него КА переходит, получив на вход двоеточие, и ожидает в этом состоянии символа «равенство».
Состояние H – начальное состояние КА, а состояние F – его конечное состояние. Поскольку КА работает с непрерывным потоком лексем, перейдя в конечное состояние, он тут же должен возвращаться в начальное, чтобы распознавать очередную лексему. Поэтому в моделирующей программе эти два состояния можно объединить.
На графе и при описании функции переходов не обозначено состояние «ошибка», чтобы не загромождать и без того сложный граф и функцию. В это состояние КА переходит всегда, когда получает на вход символ, по которому нет переходов из текущего состояния.
Функция F, которой помечены дуги КА на графе и переходы в функции переходов, соответствует выполнению записи данных в таблицу лексем. Аргументы функции зависят от текущего состояния КА. В реализации программы, моделирующей функционирование КА, этой функции должны соответствовать несколько функций, вызываемые в зависимости от текущего состояния и входного символа.
Надо отметить, что для корректной записи переменных и констант в таблицу лексем КА должен запоминать соответствующие им цепочки символов. Проще всего это делать, запоминая позицию считывающей головки КА всякий раз, когда он находится в состоянии H.
Можно заметить, что функция переходов КА получилась довольно громоздкой, хотя и простой по своей сути (для всех ключевых слов она работает однотипно). В реализации функционирования КА проще было бы не выделять отдельные состояния для ключевых слов, а переходить всегда по обнаружению буквы на входе КА в состояние V. Тогда проверку того, является ли считанная строка ключевым словом или же идентификатором, можно было бы выполнять на момент ее записи в таблицу лексем с помощью стандартных операций сравнения строк. Граф переходов КА в таком варианте был бы намного компактнее – он выглядел бы точно так же, как фрагмент, представленный на рис. 2.1. Его можно назвать «сокращенным» графом переходов КА (или «сокращенным КА»).
Но следует отметить, что, несмотря на большую наглядность и простоту реализации, сокращенный КА будет менее эффективным, поскольку в момент записи лексемы в таблицу он должен будет выполнять ее сравнение со всеми известными ключевыми словами (в данном случае надо определять шесть ключевых слов – следовательно, будет выполняться шесть сравнений строк). То есть такой КА будет повторно просматривать уже прочитанную часть входной цепочки, да еще и несколько раз! И хотя в явном виде в реализации сокращенного КА эта операция не присутствует, она все равно будет выполняться в вызове библиотечной функции сравнения строк.
Итак, хотя сокращенный КА меньше по количеству состояний и проще в реализации, он является менее эффективным, чем полный КА, построенный на анализе всех входных лексем. Тем не менее оба варианта реализации КА обеспечивают построение требуемого лексического анализатора. Какой из них выбрать, решает разработчик компилятора.
Реализация лексического анализатораРазбиение на модули
Модули, реализующие лексический анализатор, разделены на две группы:
• модули, программный код которых не зависит от входного языка;
• модули, программный код которых зависит от входного языка.
В первую группу входят модули:
• LexElem – описывает структуру данных элемента таблицы лексем;
• FormLab2 – описывает интерфейс с пользователем.
Во вторую группу входят модули:
• LexType – описывает типы входных лексем, связанные с ними наименования и текстовую информацию;
• LexAuto – реализует функционирование КА.
Такое разбиение на модули позволяет использовать те же самые структуры данных для организации лексического распознавателя при изменении входного языка.
Кроме этих модулей для реализации лабораторной работы № 2 используются также программные модули (TblElem и FncTree), позволяющие работать с комбинированной таблицей идентификаторов, которые были созданы при выполнении лабораторной работы № 1. Эти два модуля, очевидно, также не зависят от входного языка.
Кратко опишем содержание программных модулей, используемых для организации лексического анализатора.
Модуль типов лексем
Модуль LexType в детальных комментариях не нуждается. В нем перечислены все допустимые типы лексем (тип данных TLexType), каждой из которых соответствует наименование и обозначение лексемы. Вывод наименований лексем обеспечивает функция LexTypeName, а вывод обозначений – функция LexTypeInfo. Следует отметить, что кроме перечисленных в задании лексем используется еще одна дополнительная информационная лексема (LEXSTART), обозначающая конец строки.
Модуль LexElem описывает структуры данных элемента таблицы лексем (TLexem) и самой таблицы лексем (TLexList), а также все, что с ними связано.
Модуль структур данных таблицы идентификаторов
Структура данных таблицы лексем содержит информацию о лексеме (поле LexInfo). В этом поле содержится тип лексемы (LexType), а также следующие данные:
• VarInfo – ссылку на элемент таблицы идентификаторов для лексем типа «переменная»;
• ConstVal – целочисленное значение для лексем типа «константа»;
• szInfo – произвольная строка для информационной лексемы.
Для лексем других типов не требуется никакой дополнительной информации.
Следует отметить, что для лексем типа «переменная» хранится именно ссылка на таблицу идентификаторов, а не имя переменной. Именно для этого в данной лабораторной работе используются модули из лабораторной работы № 1. Для самого лексического анализатора не имеет значения, что хранить в таблице лексем – ссылку на таблицу идентификаторов со всей информацией о переменной или же только имя переменной. Но реализация лексического анализатора, при которой хранится именно ссылка на таблицу идентификаторов, чрезвычайно удобна для дальнейшей обработки данных, что будет очевидно в последующих работах (лабораторных работах № 3 и № 4). Поскольку лексический анализатор интересен не сам по себе, а в составе компилятора, такой подход принципиально важен.
Кроме этого в структуре данных элемента таблицы лексем хранится информация о позиции лексемы в тексте входной программы:
• iStr – номер строки, где встретилась лексема;
• iPos – позиция лексемы в строке;
• iAllP – позиция лексемы относительно начала входного файла.
Эта информация будет полезна, в частности, при информировании пользователя об ошибках.
Кроме этих данных структура содержит также:
• четыре конструктора для создания лексем четырех разных типов:
– CreateVar – для создания лексем типа «переменная»;
– CreateConst – для создания лексем типа «константа»;
– CreateInfo – для создания информационных лексем;
– CreateKey – для создания лексем других типов;
• деструктор Destroy для освобождения памяти, занятой лексемой (важен для информационных лексем);
• свойства и функции для доступа к информации о лексеме.
Хранить в структуре строку самой лексемы нет никакой необходимости (для переменных строка хранится в таблице идентификаторов, для других типов лексем она просто не нужна).
Сама таблица лексем (тип данных TLexList) построена на основе динамического массива TList из библиотеки VCL (модуль Classes) системы программирования Delphi 5.
Динамический массив типа TList обеспечивает все функции и данные, необходимые для хранения в памяти произвольного количества лексем (максимальное количество лексем ограничено только объемом доступной оперативной памяти). Для таблицы лексем TLexList дополнительно реализованы функции очистки таблицы, которые освобождают память, занятую лексемами, при их удалении из таблицы (функция Clear и деструктор Destroy), а также функция GetLexem и свойство Lexem, обеспечивающие удобный доступ к любой лексеме в таблице по ее индексу (порядковому номеру).
Модуль моделирования работы КА
Модуль LexAuto, моделирующий работу КА, на основе которого построен лексический распознаватель, – самый значительный по объему программного кода. Однако по содержанию программного кода он предельно прост. Этот модуль обеспечивает функционирование полного КА, фрагменты графа переходов которого были изображены на рис. 2.1 и 2.2, а функция переходов была построена выше.
Главной составляющей этого программного модуля является функция МакеLexList, которая непосредственно моделирует работу КА. На вход функции подается входная программа в виде списка строк (формальный параметр listFile) и таблица лексем, куда должны помещаться найденные лексемы (формальный параметр listLex). Результатом работы функции является 0, если лексический анализ выполнен без ошибок, а если ошибка обнаружена – номер строки в исходном файле, в которой она присутствует. Для более подробной информации об обнаруженной ошибке функция создает информационную лексему и помещает ее в конец таблицы лексем. Сама информационная лексема кроме текстовой информации об ошибке содержит еще дополнительную информацию о ее местонахождении в исходной программе (смещение от начала файла и длина ошибочной лексемы).
В типе данных TAutoPos перечислены все возможные состояния КА. Перечень состояний полностью соответствует функции переходов КА.
Реализация функции MakeLexList, несмотря на большой объем программного кода, предельно проста. Она построена на основе двух вложенных циклов (первый – по строкам входного списка, второй – по символам в текущей строке), внутри которых находятся два уровня вложенных оператора выбора типа case – типичный подход к моделированию функционирования КА. Внешний оператор case выполняется по всем возможным состояниям автомата, а case второго уровня – по допустимым входным символам в каждом состоянии.
Можно обратить внимание на шесть вспомогательных функций:
• AddVarToList – добавление лексемы типа «переменная» в таблицу лексем;
• AddVarKeyToList – добавление лексем типа «переменная» и типа «разделитель» в таблицу лексем;
• AddConstToList – добавление лексемы типа «константа» в таблицу лексем;
• AddConstKeyToList – добавление лексем типа «константа» и типа «разделитель» в таблицу лексем;
• AddKeyToList – добавление лексемы типа «ключевое слово» или «разделитель» в таблицу лексем;
• Add2KeysToList – добавление лексем типа «ключевое слово» и «разделитель» в таблицу лексем подряд.
Эти функции, по сути, являются реализацией функции, которая на графе переходов КА была обозначена F.
Еще две вспомогательные функции служат для упрощения кода. Они выполняют часто повторяющиеся действия в состояниях автомата, которые связаны со средними символами ключевых слов (в функции переходов эти состояния обозначены T2, T3, E2, E3, X2 и A2) и завершающими символами ключевых слов (в функции переходов эти состояния обозначены I2, T4, E4, O2, X3 и A3).
Построенный лексический анализатор обнаруживает три типа ошибок:
• неверный символ в лексеме (например, сочетания «2a» или «:6» будут признаны неверными символами в лексемах);
• незакрытый комментарий (присутствует открывающая фигурная скобка, но отсутствует соответствующая ей закрывающая);
• незавершенная лексема (в данном входном языке это может быть только символ «:» в конце входной программы, который будет воспринят как начало незавершенной лексемы «:=»).
Остальные ошибки входного языка должен обнаруживать синтаксический анализатор.
В качестве еще одной особенности реализации можно отметить, что переход с одной строки входного списка на другую должен восприниматься как граница текущей лексемы, так как одна лексема не может быть разбита на две строки – именно это и реализовано в конце цикла по символам текущей строки.
Текст программы распознавателяКроме перечисленных выше модулей необходим еще модуль, обеспечивающий интерфейс с пользователем. Как и в лабораторной работе № 1, этот модуль (FormLab2) реализует графическое окно TLab2Form на основе класса TForm библиотеки VCL и включает в себя две составляющие:
• файл программного кода (файл FormLab2.pas);
• файл описания ресурсов пользовательского интерфейса (файл FormLab2.dfm).
Кроме описания интерфейсной формы и ее органов управления модуль FormLab2 содержит переменную (listLex), в которую записывается ссылка на таблицу лексем.
Интерфейсная форма, описанная в модуле, содержит следующие основные органы управления:
• многостраничную вкладку (PageControll) с двумя закладками (SheetFile и SheetLexems) под названиями «Исходный файл» и «Таблица лексем» соответственно;
• на закладке SheetFilе:
– поле ввода имени файла (EditFile), кнопка выбора имени файла из каталогов файловой системы (BtnFile), кнопка чтения файла (BtnLoad);
– многострочное поле для отображения прочитанного файла (Listldents);
• на закладке SheetLexems:
– сетка (GridLex) с тремя колонками для отображения данных о прочитанных лексемах;
• кнопка завершения работы с программой (BtnExit).
Внешний вид двух закладок этой формы приведен на рис. 2.3 и 2.4.
Рис. 2.3. Внешний вид первой закладки интерфейсной формы для лабораторной работы № 2.
Рис. 2.4. Внешний вид второй закладки интерфейсной формы для лабораторной работы № 2.
Чтение содержимого входного файла организовано точно так же, как в лабораторной работе № 1.
После чтения файла создается таблица лексем (ссылка на нее запоминается в переменной listLex) и вызывается функция MakeLexList, результат работы которой помещается во временную переменную iErr.
Если обнаружена ошибка, пользователю выдается сообщение об этом и указатель в списке строк позиционируется на место, где обнаружена ошибка.
Если ошибок не обнаружено, то на основании считанной таблицы лексем listLex заполняется сетка GridLex, которая очень удобна для наглядного представления таблицы лексем:
• первая колонка – порядковый номер лексемы;
• вторая колонка – тип лексемы (ее внешний вид);
• третья колонка – информация о лексеме.
Полный текст программного кода модуля интерфейса с пользователем приведен в листинге П2.4 в приложении 2, а описание ресурсов пользовательского интерфейса – в листинге П2.5 в приложении 2.
Полный текст всех программных модулей, реализующих рассмотренный пример для лабораторной работы № 2, приведен в приложении 2.
Правообладателям!
Данное произведение размещено по согласованию с ООО "ЛитРес" (20% исходного текста). Если размещение книги нарушает чьи-либо права, то сообщите об этом.Читателям!
Оплатили, но не знаете что делать дальше?