Текст книги "Автономное электроснабжение частного дома своими руками"
Автор книги: Андрей Кашкаров
Жанр: Хобби и Ремесла, Дом и Семья
Возрастные ограничения: +12
сообщить о неприемлемом содержимом
Текущая страница: 1 (всего у книги 9 страниц) [доступный отрывок для чтения: 2 страниц]
Андрей Петрович Кашкаров
Автономное электроснабжение частного дома своими руками
Глава 1
Элементы и устройства для автономного электропитания
1.1. Старое-новое изобретение А.С. Попова
О первенстве изобретения Александра Степановича Попова, которому 7 мая 2014 года исполнилось бы 155 лет, возникло гораздо меньше споров, чем о первенстве изобретения радиотелеграфа.
Речь пойдет о детектировании. Детекторный приемник происходит от слова детектор, выпрямитель. Однако, в истории известны несколько способов детектирования сигналов или, иначе говоря, несколько разных устройств, осуществляющих детектирование – трубка Бранли, радиокондуктор Попова, «кошачий ус» Г. Пикарда (США, 1906), «карборунд» Г. Данвуди (США, март 1906), двухэлектродная лампа Флеминга, детектор Д. Боше (Индия, патиент США 1904 года), ртутный когерер Маркони – все они, созданные в разное время и разными исследователями считаются детекторами по своим свойствам.
Каждый из перечисленных по-своему ценен для международной науки, и каждый добавил в нее что-то свое. К примеру, именно Боше ввел понятие «детектор».
Оказывается, над темой детектирующих ток устройств, в свое время работали не только Попов и Маркони. Но А.С. Попов прославился изобретением нового типа когерера, свойства которого связаны с реакцией платины и окисных пленок, что позволило слышать сигнал даже с помощью наушника от телефонов, которые ранее использовали в опытах Минного класса в Кронштадте. Таким образом, доподлинно известно, что в Минном классе «лаборатории Попова» телефон уже употреблялся для изучения электрических колебаний.
Попов запатентовал свое изобретение детекторного приемника в нескольких странах (Российская Империя, Радиокондуктор, 1900, Англия, 1900, Декогер (декогерирующий прибор), США, 1903, Испания, 1900, а также в Швейцарии, и Франции). «Неразбериха» не только с датами, а значит и с первенством, но и с названиями, ведь каждое запатентованное изобретение А.С. Попова в области детектирования и радио имело разное уточняющее название. Более того, в американском патенте 1903 года фамилия автора записана как Popoff, а в английском патенте, признанном научным сообществом на три года ранее – Popov. Описания его патентов по смыслу отличаются от патентов американских исследователей. К слову, об американском патенте Попова до последнего времени знали лишь единицы.
В одном из двух вариантов, запатентованного (март 1903 года) А.С. Поповым в США детекторного приемника, предложена схема с простым – как сказали бы сегодня – согласующим трансформатором, первичная обмотка которого включена в цепь детектирующего элемента – радиокондуктора. Вторичная обмотка трансформатора (который в патенте Попова 1903 года называется индукционной бобиной) подключена непосредственно к катушке телефона. При экспериментах с этой схемой отмечается «повышенная» слышимость в телефоне за счет резонансного усиления сигнала. Во время Попова
В данном ключе понятия когерер (в некоторых источниках – кохерер) и радиокондуктор, декогерер и детектор по смыслу аналогичны.
По общему правилу первенство научного открытия остается за исследователем, зафиксировавшим его в соответствующем патенте. К примеру, если заявка поступила в 1900 году, а патент выдан в 1903, то и его действие начинается с 1903 года.
Но мы не лишены возможности знать историю радио, в связи с великой датой вновь вспомнить подробности, в части того, что 155 лет назад 7 мая 1895 года А.С. Попов реально продемонстрировал первый приемник радиоволн. Случилось это на заседании Русского физико-химического общества.
За Поповым в части изобретения первого детекторного приемника в научном мире прочно закрепилось первенство изобретения и описания эффект детекторного действия когерера с металлическим окисленным порошком.
Радиокондуктор Попова в одном из наиболее известных его опытов представлял собой хорошо просушенную, герметичную стеклянную трубку, внутри которой с помощью клея установлены две ленточки из платины, опыленные крупинками стали, и «обладающие многочисленными участками с окисленной поверхностью» – в кавычках фраза из описания запатентованного Поповым изобретения. Мельчайшие частицы угля, помещенные в корпус с вставленными туда двумя электродами-стержнями (в разных опытах – из металла и графита), при подключении этой конструкции в электрическую цепь, показывали интересное явление: при акустическом воздействии на угольный порошок ток в цепи менялся. Так появился угольный микрофон, принцип действия которого на протяжении всего ХХ века оставался неизменным.
Плоские катушки из «пластиковых» карт-меток (другое их название – транспондеры) – как необычный способ тоже можно использовать в современной радиоэлектронике.
На рис. 1.1 представлена катушка к магнитной карте, которая выполняла функцию антенны для трансляции (изменения) информации в чипе, его инициализации в устройствах кодового доступа. Сопротивление постоянному току представленной на рис. 1.1 «антенны» (при замере омметром) составило 18 кОм.
Рис. 1.1. «Плоская» катушка из пластиковой карты-метки
При подключении такой катушки в приемник, построенный по принципу прямого усиления – вместо «магнитной» антенны и использовании вместо выносной антенны телескопического штыря, вытянутого на максимальное расстояние 45 см, обеспечило прием радиосигнала в диапазоне КВ на частотах 182…450 кГц. Этого локального опыта оказалось достаточно для того, чтобы предположить, что «плоская» антенна из карты доступа может быть применена и в других радиоприемниках.
Такое решение – по форме – катушки, на мой взгляд, вполне оправдано в ряде случае, к примеру, когда требуется создать компактную антенну, дроссель или трансформатор плоской формы. Это еще одна область применения.
В качестве магнитной основы для подобного трансформатора или дросселя могут применяться магнитные пластины соответствующей формы из трансформаторной стали или магнитострикционные сердечники плоской формы, или, в подходящих под определенные задачи, даже фольга, уложенная в «корпус карты» в несколько слоев.
Эта идея для последующей разработки еще ждет своего Попова или Маркони, но уже сегодня по результатам практического опыта очевидно, что плоская катушка из карты доступа может быть и альтернативной антенной для радиоприемника, в том числе и такого, что создан по типу детекторного (классическая схема детекторного приемника) и не имеет отдельного элемента (источника) питания.
1.2. Выявление зоны неблагоприятного электромагнитного излучения автономным способом
В разделе рассматриваются аспекты безопасности и сохранения здоровья при длительной работе человека в зоне локальных электромагнитных излучений, на примере рабочего места оператора ПК и радиомонтажника. Автор проводит анализ неблагоприятных последствий для здоровья человека и обосновывает необходимость ограничения работы в зоне электромагнитных излучений, дают практические рекомендации по диагностике таких зон в пределах жилого помещения.
Электромагнитное излучение связано с современными технологиями, прочно вошедшими в нашу жизнь, именно поэтому риск оказаться в зоне, где плотность потока энергии превышает нормы, сегодня достаточно высок.
К примеру, не рекомендуется долго работать на ПК не только потому, что такая работа опасна для глаз, но и потому, что электромагнитное излучение от ПК вблизи него столь высоко, что диагностируется даже простейшими бытовыми приборами – индикаторами ЭМ излучения, и это излучение пагубно сказывается на здоровье человека и его общем самочувствии, что проявляется в результатах клинических анализов и является фактором, способствующим онкологическим заболеваниям.
С точки зрения ученых влияние магнитных полей на живые организмы формулируется так: «длительное воздействие слабых магнитных полей промышленной частоты при определенных условиях может способствовать возникновению онкологических заболеваний крови и мозга». Сегодня в такие «группы риска», на которых постоянно воздействует электромагнитное излучение разной частоты, проживают не только вблизи линий электропередач, но и в обычных квартирах.
Имеются нормативные документы, которые регламентируют уровень допустимого облучения для работников, занятых на производстве (работающих в условиях электромагнитного излучения – далее ЭМИ – на рабочем месте) и обычных граждан, которые могут находиться в зоне действия ЭМИ по доброй воле (дома, на отдыхе, в путешествии и т. д.).
В Российской Федерации предельно допустимые уровни (далее – ПДУ) воздействия электромагнитного излучения закреплены в нормативном документе СанПиН 2.1.8/ 2.2.4.1383-03 («Гигиенические требования к размещению и эксплуатации передающих радиотехнических объектов»).
У автора нет научно обоснованных сведений и (по их результатам) однозначных выводов об опасности или безопасности длительного влияния ЭМИ радиочастоты, однако в СанПиН 2.1.8/2.2.4.1190-03 «Гигиенические требования к размещению и эксплуатации средств сухопутной подвижной радиосвязи» в п.6.9 – указано, что «необходимо ограничить возможность использования мобильных радиостанций (телефонов) лицами, не достигшими 18 лет, женщинами в период беременности». Поэтому такую фразу, закрепленную в нормативном документе, я трактую, как подтверждающую опасность.
Поэтому уместно задумываться о том, что если воздействия компьютера на человека не видно, то, это не означает, что ПК не влияет на организм человека вообще. Это общепринятая теория, которая помогает многим людям не задумываться о сути вещей глубже, чем конец сегодняшнего дня.
Между тем в документах представлены нормы, параметры и единицы измерения уровней электромагнитного излучения, оценки воздействия электромагнитных полей на организм, определяются гигиенические требования к передающим радиотехническим объектам (ПРТО), требования к контролю уровня электромагнитных полей. Приведу две выдержки из него.
Для персонала на рабочих местах ПДУ электромагнитных полей диапазона частот 30 кГц – 300 ГГц представлен в табл. 1.1.
Таблица 1.1. Предельно допустимые уровни электромагнитных полей диапазона частот 30 кГц – 300 ГГц для персонала на рабочих местах
Примечание к табл. 1: «расшифровка» некоторых аббревиатур
ЭЭ-е – энергетическая экспозиция электрического поля (Вольт на метр)
ЭЭ-н – энергетическая экспозиция электромагнитного поля (Ампер на метр)
ЭЭ-ппэ – плотность потока энергии
Для граждан действуют другие предельно допустимые уровни электромагнитных полей диапазона частот 30 кГц – 300 ГГц, они представлены в табл. 1.2.
Таблица 1.2. Предельно допустимые уровни электромагнитных полей диапазона частот 30 кГц – 300 ГГц для граждан, подвергающимся ЭМИ по доброй воле вне рабочих мест
Примечание к табл. 1.2.
*Воздействие ППЭ 25мкВт/см² м.б. допустимо только на ограниченный период времени, до 8 часов непрерывной работы. В этом ключе надо заметить, что если человек работает в зоне ППЭ ежедневно в течение многих лет даже с ограничением во времени (ежедневной работы), то у многих выявляется так называемый «накопительный» эффект, который в конечном итоге все равно сказывается на здоровье и общем самочувствии человека. Это замечание важно для тех, кто, так или иначе, связан с работой на ПК (в офисах или дома), работает в лабораториях с электрическими приборами и радиоэлектронными устройствами.
С другой стороны в соответствии с требованиями СанПиН 2.2.2.1340 – 03 работа оператора ПК относится к категории – «1а», производимые сидя и не требующие физического напряжения, при которых расход энергии составляет до 120 ккал/ч.
В производственных помещениях, в которых работа на ПК является основной, обеспечиваются оптимальные параметры микроклимата (температура воздуха – в среднем 23°…24 °C, относительная влажность воздуха в пределах 40…60 %, скорость движения воздуха в помещении без кондиционеров 0,1 м/с и др.).
По определенным критериям – требованиям делается и расчет искусственного освещения. Это все то, что есть на производстве (где соблюдают нормы и требования СанПин), и нет в частном секторе.
Чувствительность к ЭМИ конкретного индивидуума может значительно увеличиваться под воздействием разных факторов среды. К примеру, принятые внутрь в процессе лечения фармакологические и химические препараты, из-за которых при длительном воздействии электромагнитного излучения провоцируются побочные химические реакции в организме, могут повлиять на ход реакции, изменять состояние человека.
Разумеется, исследования о воздействии ЭМИ на человека и его члены, изменения при этом свойств электронных оболочек атомов организма человека проводятся постоянно.
Особо опасна ситуация, когда в зоне действия ЭМИ оказывается вся квартира. Сегодня эта ситуация актуально почти для всех, живущих в многоквартирных домах и даже в деревне.
Электромагнитное излучение в обычных бытовых условиях можно замерить (установить) даже простыми приборами, к примеру, отверткой-индикатором типа ОИ-1 или ОИ-2э, предназначенных для тестирования электрических цепей. Вид такого устройства представлен на рис. 1.2.
Рис. 1.2. Внешний вид отвертки-индикатора модели ОИ-1
Это устройство, конструктивно предназначенное для тестирования путем звуковой и световой индикации элементов цепей переменного и постоянного тока в бытовых электроприборах, а также в автотранспорте.
По своим функциональным особенностям и электрическим (техническим) характеристикам устройство позволяет проверять наличие переменного напряжение в диапазоне 70-600 В (ОИ-2э: 70-10000 В) бесконтактным способом. При частоте электрической сети переменного тока в диапазоне 50-500 Гц.
В данном разделе я рассматриваю именно бесконтактный (дистанционный) метод диагностики, выявляющий локальные зоны ЭМИ, хотя описываемые устройства индицируют напряженность поля и контактным методом.
Персональный компьютер (и некоторые другие электронные устройства) в рабочем состоянии излучают ЭМИ в высокочастотном спектре.
Индикация высокочастотных электромагнитных полей с помощью ОИ-1 и ОИ-2э происходит при их наличии свыше 2 мВт/см². Поэтому, из за их относительно высокой чувствительности (и небольшой цены, что делает прибор доступным любому человеку) с помощью такого устройства удобно находить зоны ЭМИ.
На практике я столкнулся с этим следующим образом.
Свою домашнюю мастерскую я организовал на лоджии жилой квартиры (см. фото рис. 2), на пол установил стабилизатор напряжения, системный блок ПК.
Рис. 1.3. Мастерская (рабочее место) на лоджии
Спустя примерно год активной многочасовой (в день) работы я стал чувствовать слабость в ногах. По фото совершенно очевидно, что именно ноги – ниже коленного сустава – попадают в зону активного ЭМИ. Диагностировав устройством ОИ-2э уровень высокочастотного электромагнитного поля, я получил потрясающие результаты: оказывается ЭМИ свыше 2 мВт/см² распространяется от системного блок ПК примерно на 1 метр.
Этот пример из моей практики подтверждается исследованиями (публикациями), имеющимися и в открытом доступе.
Оказывается, ЭМИ могут создавать даже трубы сантехнических коммуникации многоквартирного дома (в таком доме – сеть труб). Если проводить замеры излучения электромагнитного поля в доме с металлическими трубами и с более современными – пластиковыми (полипропиленовыми) трубами, при прочих равных условиях, показатели излучения после проведения работ – замены труб – оказались гораздо более низкими.
На рис. 1.4 видна индикация устройства ОИ-2Э.
Рис. 1.4. Иллюстрация индикации устройства ОИ-2Э
В данном случае индикатором фиксируются радиоволны, для которых свойственны частоты от 3 кГц до 300 ГГц (Герц – это единица измерения частоты колебаний, 1 Гц равен одному полному колебанию в секунду) и длина волн, соответственно от сотых долей миллиметра до сотен километров.
Кроме того, существуют оптическое, инфракрасное, ультрафиолетовое, ионизирующее излучение, которые в свою очередь имеют особенности.
Вообще же источники электромагнитного излучения могут быть как естественными (атмосферные явления), так и искусственными (переменный ток, возникающий в проводниках, телевизионные и радиостанции, линии электропередач и т. д.).
Существуют и профессиональные измерители параметров электрических и магнитных полей, которые используется на производствах, к примеру, устройство ПЗ-70 (и (или) другие аналогичные). Однако, обычный гражданин в частном порядке хоть и имеет возможность приобрести такой прибор, но не делает этого, поскольку измерение электрических и магнитных полей на рабочих местах с ПК, измерение электрических и магнитных полей промышленной частоты 50 Гц с его помощью нерентабельно в связи с относительно большой стоимостью профессионального устройства.
Важно и то, что при измерениях полей ЭМИ предпочтение следует отдавать приборам, принцип действия которых основан на одновременном измерении всех пространственных координат поля и приборам с непрерывной визуальной индикацией измеряемого в каждый момент времени значения.
Получается, что почти все диапазоны электромагнитного излучения оказывают негативное влияние на человека: на иммунную, нервную, половую и сердечно-сосудистую системы. Не исключено также информационное влияние электромагнитных полей на организм человека, реакция при этом зависит в большей степени непосредственно от факта контакта, а не от интенсивности поля. Примерно, такая же по критичности ситуация в сфере сотовой связи, высокочастотное ЭМИ воздействует на голову (мозг) человека, незначительно нагревая его, при длительном телефонном разговоре (когда корреспондент держит трубку у головы). Система «свободные руки» несколько снижает значение этой проблемы.
Одним из средств защиты от электромагнитных излучений является их своевременное выявление, диагностирование и уточнение мест локальных электромагнитных полей с тем, чтобы ограничить время их воздействия на человека или его члены.
Для этого используется специальное оборудование – измерители электромагнитных полей, их напряженности. Кроме описанного, существует несколько типов приборов, которыми – в определенных условиях среды (условия производства или жилого помещения) выявляют наличие и зоны действующего электромагнитного излучения.
Исходя из сказанного, измерение электромагнитного излучения в помещении – первый шаг на пути к личной безопасности и здоровью.
Интересно, что если анализировать ситуацию – почему проблематика с ЭМИ стала активно влиять на здоровье людей в последние две декады лет, я бы обратился к … истории возникновения старых домов (1960–1970 гг. постройки).
В то время еще не было большого количества мощных и излучающих бытовых приборов; электроплиты и электрообогреватели не в счет. И в те годы дома строили с заземляющими контурами, но не выводили их к розетками (розетки без заземления). А любой электроприбор требует заземления, как в части безопасности – против поражения электрическим током, так и в части купирования проблемы с ЭМИ.
Если нет заземления – появляется электромагнитное поле. Один из способов уменьшить вредное ЭМИ заземлять не только электрические и радиоэлектронные устройства, находящиеся в квартире (в моем случае металлический корпус ПК), но заменить старую электропроводку на новую в металлической оплетке, которую также заземлить.
После заземления корпуса ПК, уровень ЭМИ, замеренный тем же прибор уменьшился.
Интересно, что до сих пор в России безвредным признан уровень до 100000 нТл (Тесла – единица измерения электромагнитной индукции), а, к примеру, в Швеции – 200 нТл.
Для гражданина, проживающего в квартире (в частном секторе), предельно допустимый уровень 5000 нТл.
Кроме частного сектора в городских квартирах, люди жует еще и на природе – в деревнях. Принято считать, что там экологический фон, в том числе в части вредного воздействия ЭМИ, крайне низкий. Отчасти это так. Однако, с вездесущим распространением высокотехнологичной радиоэлектронной техники, такой, к примеру, как Wi-Fi роутеры, ПК, усилители сотовой связи (и др. устройства) и сельское население сегодня уже нельзя считать полностью «спасенным» от вредного воздействия ЭМИ различного формата.
На рис. 1.5 представлен внешний вид монтажной мастерской в моей загородной резиденции (Вологодская область).
Рис. 1.5. Вид мастерской в деревенском доме
Как видно на фото, в мастерской (среди прочих устройств) установлены несколько радиостанций и источников питания.
Вредное ЭМИ незаметно для человека проявляет себя и здесь. Поэтому я настоятельно рекомендую защищаться в ЭМИ. Этого можно достичь путем заземления всех металлических корпусов радиоэлектронных устройств, создание «общей» заземляющей «шины» для ПК и компьютерной периферии, а также для радиостанций, которыми пользуется владелец дома. Для производственных помещений и рабочих мест на производстве, там, где ценят здоровье своих сотрудников, и «страховые» фонды, где нет ротации кадров, характерно применение металлической мебели, где системный блок ПУ установлен в тумбе, которая сама по себе является «экраном» и заземлена.
На таком рабочем месте риск потери здоровья сведен к минимуму, в отличие от всех тех рабочих мест (их подавляющее большинство), где «системники» стоят у ног пользователя.
К важности заземления надо особо добавить и аспекты электробезопасности. До 80 % всех случаев поражения электрическим током со смертельным исходом приходится на электроустановки напряжением до 1000 В (работающих под напряжением 220–380 В), к которым относятся и вся компьютерная техника.
Сопротивление заземляющего устройства является основным показателем, характеризующим пригодность его в качестве защитного устройства. Сопротивление не превышает 4 Ом. (ГОСТ 12.1.030-81). Сопротивление изоляции токоведущих проводов не менее 0,5 МОм, что вполне соответствует требованиям.
Второй простой путь (и он может быть вполне эффективным дополнением первому) – устанавливать мощные излучающие устройства (к примеру, корпус ПК, дисплей) на максимально возможное расстояние от человека. Этот же путь хорош и для ситуации, когда радиоэлектронное устройство, такое, к примеру, как мощный стабилизатор преобразователь (в моем варианте мощность 5 кВт) находится (реализован) в непроводящем ток, пластиковом корпусе.
Поскольку аналогичными замерами установлено, что ЭМИ имеется вблизи СВЧ-печей и даже вокруг электрических удлинителей с несколькими розетками (в том числе, содержащими в едином корпусе фильтр по питанию) в нашей семье уже много лет выключают на ночь все электроприборы, в том числе и Wi-Fi.
Несколько простых правил для защиты от электромагнитного излучения
1. Системный блок и монитор должен находиться как можно дальше от вас.
2. Не оставляйте ПК включенным на длительное время если его не используете, хотя это ускорит износ компьютера, но здоровье полезней. Так же, не забудьте использовать «спящий режим» для монитора.
3. В связи с тем, что электромагнитное излучение от стенок монитора намного больше, постарайтесь поставить монитор в угол, так что бы излучение поглощалось стенами. Особое внимание стоит обратить на расстановку мониторов в офисах.
4. По возможности сократите время работы за компьютером, и почаще прерывайте работу. На мой взгляд, оптимальное время работы на ПК – 20 минут в день.
5. Корпус компьютера должен быть заземлен. Если используете защитный экран (для рабочего места у системного блока), то его тоже следует заземлить.
Правообладателям!
Данное произведение размещено по согласованию с ООО "ЛитРес" (20% исходного текста). Если размещение книги нарушает чьи-либо права, то сообщите об этом.Читателям!
Оплатили, но не знаете что делать дальше?