Текст книги "Ответы на экзаменационные билеты по эконометрике"
Автор книги: Ангелина Яковлева
Жанр: Справочники
сообщить о неприемлемом содержимом
Текущая страница: 6 (всего у книги 17 страниц) [доступный отрывок для чтения: 6 страниц]
30. Частные коэффициенты корреляции для линейной модели регрессии с двумя факторными переменными
Частные коэффициенты корреляции используются для оценки зависимости между результативной переменной и одной из факторных переменных при условии постоянства всех остальных факторных переменных, включённых в модель множественной регрессии. Таким образом, частный коэффициент корреляции позволяет элиминировать влияние на результат всех факторных модельных переменных кроме одной.
Рассчитаем частные коэффициенты корреляции на основе линейной модели регрессии с двумя факторными переменными.
Общий вид модели двухфакторной регрессии:
yi=β0+β1xi+β2zi+εi,
где yi – результативная переменная,
xi – первая факторная переменная;
zi – второй факторная переменная;
β0, β1, β2– неизвестные коэффициенты модели регрессии;
εi – случайная ошибка модели регрессии.
Для определения степени зависимости между результативной переменной yiи факторной переменной xi при постоянном значении факторной переменой zi и результативной переменной yi и факторной переменной zi при постоянном значении факторной переменной xi используются частные коэффициенты корреляции первого порядка, потому что они позволяют элиминировать влияние только одного признака. Порядок частного коэффициента корреляции характеризуется количеством признаков, влияние которых устраняется. Для модели парной регрессии рассчитывается коэффициент корреляции нулевого порядка.
Коэффициент частной корреляции между результативной переменной yi и факторной переменной xiпри постоянном значении факторной переменой ziрассчитывается по формуле:
Коэффициент частной корреляции между результативной переменной yi и факторной переменной ziпри постоянном значении факторной переменной xi рассчитывается по формуле:
Кроме влияния на результативную переменную, частный коэффициент корреляции позволяет рассчитать степень зависимости между факторными переменными.
Коэффициент частной корреляции между факторной переменной xi и факторной переменной ziпри постоянном значении результативной переменной yi рассчитывается по формуле:
Рассмотренные коэффициенты частной корреляции изменяются в пределах от минус единицы до единицы.
Частные коэффициенты корреляции также можно рассчитать через коэффициент множественной детерминации.
Коэффициент частной корреляции между результативной переменной yi и факторной переменной xi при постоянном значении факторной переменой zi:
где
– множественный коэффициент детерминации двухфакторной модели регрессии.
Данный коэффициент корреляции изменяется в пределах от нуля до единицы.
При проверке значимости частных коэффициентов корреляции выдвигается основная гипотеза о незначимости данных коэффициентов, например:
Н0:ryx/z=0.
Тогда конкурирующей или альтернативной гипотезой будет гипотеза вида:
Н1:ryx/z≠0.
Проверка выдвинутых гипотез осуществляется с помощью t-критерия Стьюдента. Критическое значение t-критерия tкрит(а,n-h) определяется по таблице распределения Стьюдента, где а – уровень значимости, (n-h) – число степеней свободы. Для модели двухфакторной регрессии число степеней свободы равно (n-3).
Наблюдаемое значение t-критерия рассчитывается по формуле (на примере частного коэффициента корреляции между результативной переменной yi и факторной переменной xi при постоянном значении факторной переменой zi):
Если |tнабл|≤tкрит, то основная гипотеза не отклоняется, и частный коэффициент корреляции является незначимым. Следовательно, между переменными х и у при постоянном значении переменой z корреляционная связь отсутствует.
Если |tнабл|>tкрит, то основная гипотеза отклоняется в пользу конкурирующей гипотезы с вероятностью совершения ошибки первого рода а. В этом случае можно считать, что между переменными х и у при постоянном значении переменной z существует корреляционная зависимость.
Частные коэффициенты корреляции позволяют сделать вывод об обоснованности включения переменной в модель регрессии. Если значение частного коэффициента корреляции мало или коэффициент незначим, то связь между данной факторной переменной и результативной переменной либо очень слаба, либо вовсе отсутствует, поэтому фактор можно исключить из модели без ущерба для её качества.
31. Частные коэффициенты корреляции для модели множественной регрессии с тремя и более факторными переменными
Частные коэффициенты корреляции для модели множественной регрессии с тремя и более факторными переменными позволяют определить степень зависимости между результативной переменной и одной из факторных переменных при постоянстве остальных факторных переменных, включённых в модель.
Для модели множественной регрессии с тремя факторными переменными рассчитываются частные коэффициенты, как первого, так и второго порядка.
Общий вид модели трёхфакторной регрессии:
yi=β0+β1x1i+β2x2i+β3x3i+εi,
где yi – результативная переменная,
x1i – первая факторная переменная;
x2i – второй факторная переменная;
x3i – третья факторная переменная;
β0,β1,β2,β3 – неизвестные коэффициенты модели регрессии;
εi – случайная ошибка модели регрессии.
Частные коэффициенты корреляции первого порядка для модели трёхфакторной регрессии строятся точно так же, как и для модели двухфакторной регрессии.
Частные коэффициенты корреляции второго порядка для модели трёхфакторной регрессии строятся следующим образом.
Частный коэффициент корреляции между результативной переменной у и факторной переменной х1 при постоянстве факторных переменных х2 и х3:
Частный коэффициент корреляции между результативной переменной у и факторной переменной х2 при постоянстве факторных переменных х1 и х3:
Частный коэффициент корреляции между результативной переменной у и факторной переменной х3 при постоянстве факторных переменных х1 и х1:
Частные коэффициенты корреляции второго порядка построены с использованием частных коэффициентов корреляции первого порядка.
Следовательно, частный коэффициент корреляции порядка t может быть построен через частный коэффициент корреляции (t-1) порядка. Формулы, построенные через указанную взаимосвязь, называются рекуррентными.
При анализе модели множественной регрессии с n факторными переменными, частный коэффициент корреляции (n-1) порядка рассчитывается по общей формуле:
Частные коэффициенты корреляции, вычисленные по рекуррентным формулам, изменяются в пределах от минус единицы до плюс единицы.
32. Построение частных коэффициентов корреляции для модели множественной регрессии через показатель остаточной дисперсии и коэффициент множественной детерминации
Помимо рекуррентных формул, которые используются для построения частных коэффициентов корреляции для моделей множественной регрессии, возможно также построение этих показателей с помощью показателя остаточной дисперсии.
В случае линейной модели парной регрессии показатель остаточной дисперсии определяется по формуле:
где
– это оценка модели парной регрессии с независимой переменной х1.
Если в линейную модель парной регрессии включить новую независимую переменную х2, то можно вычислить показатель остаточной дисперсии для линейной модели регрессии с двумя независимыми переменными:
где
– это оценка модели регрессии с двумя независимыми переменными х1 и х2.
Вне зависимости от качества построенной линейной модели двухфакторной регрессии будет справедливо неравенство вида:
Тогда величину
можно охарактеризовать как долю сокращения остаточной дисперсии за счёт включения в модель регрессии новой независимой переменной х2. Чем больше величина данного показателя, тем сильнее дополнительная переменная х2 влияет на результативную переменную у и на качество модели регрессии в целом.
Для линейной модели двухфакторной регрессии частный коэффициент корреляции между независимой переменной х2 и результативной переменной у при постоянном значении независимой переменной х1 через показатель остаточной дисперсии определяется по формуле:
Для модели множественной регрессии с n независимыми переменными частный коэффициент корреляции (n-1) порядка независимой переменной х1 и результативной переменной у при постоянном значении остальных независимых переменных, включённых в модель, определяется по формуле:
Показатель остаточной дисперсии результативной переменной и коэффициент множественной детерминации связаны отношением:
Если в формуле частного коэффициента корреляции выразить остаточную дисперсию результативной переменной с помощью коэффициента множественной детерминации, то для модели множественной регрессии с n независимыми переменными частный коэффициент корреляции в общем виде можно определить по формуле:
Частные коэффициенты корреляции, вычисленные через показатель остаточной дисперсии или коэффициент множественной детерминации, изменяются в пределах от нуля до единицы.
Частный коэффициент корреляции для модели множественной регрессии в общем случае характеризует степень зависимости между результативной переменной и одной из факторных переменных при постоянном значении остальных независимых переменных, включённых в модель регрессии.
33. Коэффициент множественной корреляции. Коэффициент множественной детерминации
Если частные коэффициенты корреляции модели множественной регрессии оказались значимыми, т. е. между результативной переменной и факторными модельными переменными действительно существует корреляционная взаимосвязь, то в этом случае построение множественного коэффициента корреляции считается целесообразным.
С помощью множественного коэффициента корреляции характеризуется совокупное влияние всех факторных переменных на результативную переменную в модели множественной регрессии.
Коэффициент множественной корреляции для линейной модели множественной регрессии с n факторными переменными рассчитывается через стандартизированные частные коэффициенты регрессии и парные коэффициенты корреляции по формуле:
где r (yxi) – парный (не частный) коэффициент корреляции между результативной переменной у и факторной переменной xi
Коэффициент множественной корреляции изменяется в пределах от нуля до единицы. С его помощью нельзя охарактеризовать направление связи между результативной и факторными переменными. Чем ближе значение множественного коэффициента корреляции к единице, тем сильнее взаимосвязь между результативной и независимыми переменными, и наоборот, чем ближе значение множественного коэффициента корреляции к нулю, тем слабее взаимосвязь между результативной и независимыми переменными.
Коэффициентом множественной детерминации R2 называется квадрат множественного коэффициента корреляции:
Коэффициент множественной детерминации характеризует, на сколько процентов построенная модель регрессии объясняет вариацию значений результативной переменной относительно своего среднего уровня, т. е. показывает долю общей дисперсии результативной переменной, объяснённой вариацией факторных переменных, включённых в модель регрессии.
Коэффициент множественной детерминации также называется количественной характеристикой объяснённой построенной моделью регрессии дисперсии результативной переменной. Чем больше значение коэффициента множественной детерминации, тем лучше построенная модель регрессии характеризует взаимосвязь между переменными.
Для коэффициента множественной детерминации всегда выполняется неравенство вида:
Следовательно, включение в линейную модель регрессии дополнительной факторной переменной xn не снижает значения коэффициента множественной детерминации.
Коэффициент множественной детерминации может быть определён не только как квадрат множественного коэффициента корреляции, но и с помощью теоремы о разложении сумм квадратов по формуле:
где ESS (Error Sum Square) – сумма квадратов остатков модели множественной регрессии с n независимыми переменными:
TSS (TotalSumSquare) – общая сумма квадратов модели множественной регрессии с n независимыми переменными:
Однако классический коэффициент множественной детерминации не всегда способен определить влияние на качество модели регрессии дополнительной факторной переменной. Поэтому наряду с обычным коэффициентом рассчитывают также и скорректированный (adjusted) коэффициент множественной детерминации, в котором учитывается количество факторных переменных, включённых в модель регрессии:
где n – количество наблюдений в выборочной совокупности;
h – число параметров, включённых в модель регрессии.
При большом объёме выборочной совокупности значения обычного и скорректированного коэффициентов множественной детерминации отличаться практически не будут.
34. Проверка гипотезы о значимости частного и множественного коэффициентов корреляции
Предположим, что по данным выборочной совокупности была построена линейная модель множественной регрессии. Задача состоит в проверке значимости частных и множественного коэффициентов корреляции.
Рассмотрим процесс проверки значимости частных коэффициентов корреляции.
Основная гипотеза состоит в предположении о незначимости частных коэффициентов корреляции, т. е.
Н0:r(yxi/x1…xn-1)=0.
Обратная или конкурирующая гипотеза состоит в предположении о значимости частных коэффициентов корреляции, т.е.
Н1:r(yxi/x1…xn-1)≠0.
Данные гипотезы проверяются с помощью t-критерия Стьюдента.
Наблюдаемое значение t-критерия (вычисленное на основе выборочных данных) сравнивают со значением t-критерия, которое определяется по таблице распределения Стьюдента и называется критическим.
При проверке значимости частного коэффициента корреляции критическое значение t-критерия определяется как tкрит( ;n–l–1), где а – уровень значимости, n – объём выборочной совокупности, l – число оцениваемых по выборке параметров, (n–l–1) – число степеней свободы, которое определяется по таблице распределений t-критерия Стьюдента.
При проверке основной гипотезы вида Н0:r(yxi/x1…xn-1)=0 наблюдаемое значение t-критерия Стьюдента рассчитывается по формуле:
При проверке основной гипотезы возможны следующие ситуации.
Если наблюдаемое значение t-критерия (вычисленное по выборочным данным) по модулю больше критического значения t-критерия (определённого по таблице распределения Стьюдента), т. е. |tнабл|›tкрит, то с вероятностью а основная гипотеза о незначимости частного коэффициента корреляции отвергается, и между переменными xi и y существует корреляционная связь при постоянных значениях остальных переменных, включённых в модель регрессии.
Если наблюдаемое значение t-критерия (вычисленное по выборочным данным) по модулю меньше или равно критического значения t-критерия (определённого по таблице распределения Стьюдента), т. е. |tнабл|≤tкрит, то основная гипотеза о незначимости частного коэффициента корреляции принимается, и между переменными xi и y отсутствует корреляционная связь при постоянных значениях остальных переменных, включённых в модель регрессии. Следовательно, включение независимой переменной xi в данную модель регрессии является необоснованным.
Рассмотрим процесс проверки значимости коэффициента множественной корреляции.
Основная гипотеза состоит в предположении о незначимости коэффициента множественной корреляции, т. е.
Обратная или конкурирующая гипотеза состоит в предположении о значимости коэффициента множественной корреляции, т. е.
Н1:R(y,xi)≠0.
Данные гипотезы проверяются с помощью F-критерия Фишера-Снедекора через коэффициент множественной детерминации.
Наблюдаемое значение F-критерия (вычисленное на основе выборочных данных) сравнивают со значением F-критерия, которое определяется по таблице распределения Фишера-Снедекора, и называется критическим.
При проверке значимости коэффициента множественной корреляции критическое значение F-критерия определяется как Fкрит(a;k1;k2), где а – уровень значимости, k1=l–1 и k2=n–l – число степеней свободы, n – объём выборочной совокупности, l – число оцениваемых по выборке параметров.
При проверке основной гипотезы вида Н0:R(y,xi)=0 наблюдаемое значение F-критерия Фишера-Снедекора рассчитывается по формуле:
где R2(y,xi) – коэффициент множественный детерминации.
При проверке основной гипотезы возможны следующие ситуации.
Если наблюдаемое значение F-критерия (вычисленное по выборочным данным) больше критического значения F-критерия (определённого по таблице распределения Фишера-Снедекора), т. е. Fнабл>Fкрит, то с вероятностью а основная гипотеза о незначимости коэффициента множественной корреляции отвергается, и он признаётся значимым. В этой ситуации включение в модель регрессии всех исследуемых переменных считается обоснованным.
Если наблюдаемое значение F-критерия (вычисленное по выборочным данным) меньше или равно критического значения F-критерия (определённого по таблице распределения Фишера-Снедекора), т. е. Fнабл≤Fкрит, то основная гипотеза о незначимости коэффициента множественной корреляции принимается, и он признаётся незначимым. В этой ситуации построение модели регрессии на основе исследуемых переменных считается необоснованным.
35. Проверка гипотезы о значимости коэффициентов регрессии и модели множественной регрессии в целом
Проверка значимости коэффициентов регрессии означает проверку основной гипотезы об их значимом отличии от нуля.
Основная гипотеза состоит в предположении о незначимости коэффициентов модели множественной регрессии, т. е.
Обратная или конкурирующая гипотеза состоит в предположении о значимости коэффициентов модели множественной регрессии, т. е.
Данные гипотезы проверяются с помощью t-критерия Стьюдента, который вычисляется посредством частного F-критерия Фишера-Снедекора.
При проверке основной гипотезы о значимости коэффициентов модели множественной регрессии применяется зависимость, которая существует между t-критерием Стьюдента и частным F-критерием Фишера-Снедекора:
При проверке значимости коэффициентов модели множественной регрессии критическое значение t-критерия определяется как tкрит(а;n-l-1), где а – уровень значимости, n – объём выборочной совокупности, l – число оцениваемых по выборке параметров, (n-l-1) – число степеней свободы, которое определяется по таблице распределений t-критерия Стьюдента.
При проверке основной гипотезы вида
наблюдаемое значение частного F-критерия Фишера-Снедекора рассчитывается по формуле:
При проверке основной гипотезы возможны следующие ситуации.
Если наблюдаемое значение t-критерия больше критического значения t-критерия (определённого по таблице распределения Стьюдента), т. е.
tнабл≥tкрит, то основная гипотеза о незначимости коэффициента βk модели множественной регрессии отвергается, и он является значимым.
Если наблюдаемое значение t-критерия меньше критического значения t-критерия (определённого по таблице распределения Стьюдента), т.е. tнабл<tкрит, то основная гипотеза о незначимости коэффициента βk модели множественной регрессии принимается.
Проверка основной гипотезы о значимости модели множественной регрессии в целом состоит в проверке гипотезы о значимости коэффициента множественной корреляции или значимости параметров модели регрессии.
Если проверка значимости модели множественной регрессии в целом осуществляется через проверку гипотезы о значимости коэффициента множественно корреляции, то выдвигается основная гипотеза вида Н0:R(y,xi)=0, утверждающая, что коэффициент множественной корреляции является незначимым, и, следовательно, модель множественной регрессии в целом также является незначимой.
Обратная или конкурирующая гипотеза вида Н1:R(y,xi)≠0 утверждает, что коэффициент множественной корреляции является значимым, и, следовательно, модель множественной регрессии в целом также является значимой.
Данные гипотезы проверяются с помощью F-критерия Фишера-Снедекора.
Наблюдаемое значение F-критерия (вычисленное на основе выборочных данных) сравнивают со значением F-критерия, которое определяется по таблице распределения Фишера-Снедекора, и называется критическим.
При проверке значимости коэффициента множественной корреляции критическое значение F-критерия определяется как Fкрит(a;k1;k2), где а – уровень значимости, k1=l–1 и k2=n–l – число степеней свободы, n – объём выборочной совокупности, l – число оцениваемых по выборке параметров.
При проверке основной гипотезы вида Н0:R(y,xi наблюдаемое значение F-критерия Фишера-Снедекора рассчитывается по формуле:
где R2(y,xi) – коэффициент множественный детерминации.
При проверке основной гипотезы возможны следующие ситуации.
Если наблюдаемое значение F-критерия (вычисленное по выборочным данным) больше критического значения F-критерия (определённого по таблице распределения Фишера-Снедекора), т. е. Fнабл>Fкрит, то с вероятностью а основная гипотеза о незначимости коэффициента множественной корреляции отвергается, и он признаётся значимым. Следовательно, модель множественной регрессии в целом также является значимой.
Если наблюдаемое значение F-критерия (вычисленное по выборочным данным) меньше или равно критического значения F-критерия (определённого по таблице распределения Фишера-Снедекора), т.е. Fнабл≤Fкрит, то основная гипотеза о незначимости коэффициента множественной корреляции принимается, и он признаётся незначимым. В этом случае модель множественной регрессии признаётся незначимой.
Внимание! Это не конец книги.
Если начало книги вам понравилось, то полную версию можно приобрести у нашего партнёра - распространителя легального контента. Поддержите автора!Правообладателям!
Данное произведение размещено по согласованию с ООО "ЛитРес" (20% исходного текста). Если размещение книги нарушает чьи-либо права, то сообщите об этом.Читателям!
Оплатили, но не знаете что делать дальше?