Электронная библиотека » Аркадий Курамшин » » онлайн чтение - страница 8


  • Текст добавлен: 17 декабря 2023, 16:00


Автор книги: Аркадий Курамшин


Жанр: Прочая образовательная литература, Наука и Образование


Возрастные ограничения: +12

сообщить о неприемлемом содержимом

Текущая страница: 8 (всего у книги 27 страниц) [доступный отрывок для чтения: 8 страниц]

Шрифт:
- 100% +

25. Марганец

Школьникам, которые изучают химию, приходится свыкаться с марганцем и его химией дважды – на первых шагах знакомства с химией они должны научиться не путать марганец с магнием.


Те же из них, кто продолжает изучение науки о веществах и материалах, затем, готовясь к ЕГЭ, запоминают, в какие реакции окисления-восстановления вступает перманганат калия (известный большему числу людей как «марганцовка») в воде, кислой и щелочной средах (да, задания, в которых так или иначе фигурирует марганец, составители ЕГЭ очень часто включают в комплект). Естественно, информация о марганце не ограничивается этими знаниями.



Марганец – единственный, кроме железа, металл, который относят к чёрным металлам. Человечество начало применять соединения марганца довольно рано: первобытные люди обнаружили, что, если посыпать на дрова черный порошок, полученный из растертых темных камней, огонь разгорается легче. При раскопках стоянок неандертальцев археологи нашли куски минерала с повышенным содержанием диоксида марганца, которые явно терли обо что-то. Сейчас мы знаем вероятную причину этой находки: добавление MnO2 к дровам и сухой лучине снижает температуру воспламенения примерно на 100 ºС. В Древнем Египте стеклодувы обнаружили, что, если в смесь, предназначенную для изготовления стекла, добавить минералы, которые, как мы сейчас знаем, являются смесью оксидов марганца, получится стекло гораздо более высокого качества – не зелёное и мутное, как при получении стекла из диоксида кремния и соды, а прозрачное и практически бесцветное.



Химические свойства соединений марганца разнообразны. Марганец может существовать в шести различных степенях окисления, однако в природе, где известно о существовании где-то трех сотен различных минералов марганца, он встречается либо в виде растворимых в воде производных со степенью окисления +2, либо нерастворимых соединений (чаще всего оксидов) со степенью окисления +4. Марганец в степени окисления +3 приспособили для своих целей грибки, вызывающие сухую гниль древесины. Древесина помимо целлюлозы содержит биополимер лигнин, который большинство биологических систем не в состоянии разрушить. Однако грибы научились разрушать лигнин – находящийся в их организме фермент марганецпероксидаза окисляет соединения марганца в степени окисления +2 до марганца +3, которые затем проникают в поры древесины. Высокая активность марганца в степени окисления +3 позволяет разрушать химические связи в лигнине, разрушает полимер на низкомолекулярные соединения, которые становятся пищей для грибков. Эти грибки – не единственные организмы, которые смогли приручить марганец, он представляет собой жизненно важный элемент для всех форм жизни.



Наиболее важная реакция для жизни на Земле – фотосинтез – зависит не только от магния, который содержится в хлорофилле, но и от марганца, который играет первую скрипку в фотосистеме II фотосинтеза, обеспечивающей превращение молекул воды в кислород.



Неудивительна причина путаницы, преследующей марганец и магний. В конечном итоге оба металла получили название в честь одного и того же города – фессалийской Магнесии, где с античности шла добыча руд, как содержащих магний, так и содержащих марганец, и первоначально по названию города все руды называли просто магнезией. В 1600-е годы магнийсодержащие минералы стали называть белой магнезией (magnesia alba), а руды марганца – чёрной магнезией (magnesia nigra). Какое-то время марганец и магний путали учёные мужи (ну не то чтобы путали, а считали, что это один и тот же элемент). Только в конце XIX века шведский химик Торберн Бергман предположил, что марганец представляет собой отдельный элемент, не имеющий ничего общего с магнием. В 1774 году Карл Шееле, поддерживавший идею Бергмана, представил их на заседании Королевской Академии наук, а чуть позже в этом же году ещё один представитель шведской химической школы – Юхан Ганн получил чистый образец марганца и доказал, что это действительно отдельный химический элемент. Название «марганец» было принято только в 1807 году.



В наши дни марганец и его соединения применяются во многих областях – перманганаты и диоксид марганца применяются как окислители в органическом синтезе, диоксид марганца использовался и используется в источниках постоянного тока. Тем не менее основное направление применения марганца – изготовление стали. В 1856 году Генри Бессемер изобрёл способ превращения чугуна в сталь, но при нагревании бессемеровская сталь становилась хрупкой. В том же году Роберт Фостер Муше решил проблему хрупкости – оказалось, что добавка небольших количеств марганца к плавящейся стали делает её прочнее. Химизм этого процесса следующий: марганец отличается более сильным сродством с серой, нежели железо, в результате его взаимодействия с серой или легкоплавкими сульфидами железа образуется тугоплавкий сульфид марганца, который может быть отделён от плавящейся стали как шлак. С 1856 года сталь содержит марганец, а 90% всего производящегося марганца отправляется на выплавку стали.



Временами название марганца заставляет школьников не только путать его с магнием, но и приписывать ему магнитные свойства. Однако чистый марганец не проявляет магнитных свойств, хотя постоянные магниты можно получить из сплава марганца с алюминием, сурьмой и медью.

26. Железо

На средневековых гобеленах, в фильмах и современных реконструкциях рыцарских сражений мы можем увидеть, как железная броня защищает тело бойца. Но человек не единственный биологический вид, который научился применять железо для защиты. В 2001 году экспедиция ученых исследователей отправилась исследовать гидротермальные источники, выбрасывающие высокоминерализованную горячую воду («черные курильщики») в Индийском океане.


Самым необычным из них была улитка Crysomallon squamiferum, раковина которой содержала железо. Раковина улитки разделена на три слоя. Внутренний слой состоит из карбоната кальция, который встречается в раковинах других моллюсков и в экзоскелетах кораллов. Средний слой, самый толстый из двух, – органический, наружный же слой раковины состоит из сульфидов железа. Сегодня неизвестно ни одного другого животного, экзоскелет или скелет которого состоял бы из сульфида железа. Однако, несмотря на то что эта особенность делает Crysomallon squamiferum уникальным среди современных животных, она была характерна для многих древних животных кембрийского периода.



Хладное железо властвует над всем. Железо является одним из самых распространённых элементов. Оно составляет около 5,6% земной коры и почти всю массу земного ядра. Для Земли характерны формы железа в двух степенях окисления – Fe2+ и Fe3+. Слой трёхвалентного железа очень тонок – он простирается в глубь земной коры всего лишь на несколько метров от её поверхности. Так произошло в результате большого кислородного события, обогатившего нашу атмосферу кислородом, который и окислил верхний слой железа до его трёхвалентных форм, практически не растворимых в воде. Снижение концентрации относительно доступного и растворимого Fe2+ во времена большой кислородной катастрофы стало проблемой практически для всех живых организмов того времени.



Выжившие во время большого кислородного события наземные и океанские микроорганизмы эволюционировали, научившись вырабатывать растворимые молекулы-сидерофоры, позволяющие восстановить контроль над элементом, важным для их выживания. Сидерофоры содержали хелатирующие железо функциональные группы, которые позволяли снова перевести Fe3+ в раствор. Позднее появились более сложные организмы, включая животных, которые стали использовать энергию окисления углеводов для движения. Железо оказалось важным и для этого процесса. Однако тут возникла другая проблема – в процессе дальнейшей эволюции животным пришлось приспосабливать свой организм не только к тому, что столь нужный для обмена веществ Fe3+ нерастворим в нейтральной воде, но и с тем, что набирать его избыточное количество тоже нельзя – железо токсично.



Максимальное значение для живых систем имеют углерод, азот, кислород, сера, кальций, магний, натрий и, может быть, ещё около десятка элементов, однако ни один из этих элементов не в состоянии принести столь значительный вред живому – свободные ионы железа в крови могут реагировать с её компонентами, образуя пероксиды и свободные радикалы, которые повреждают ДНК, белки, липиды и другие клеточные компоненты, что приводит к болезни, а иногда и к смерти. Смертельно опасны 60 миллиграммов железа на килограмм организма человека. Биологические системы эволюционировали, чтобы поддерживать безопасное содержание железа в организме, а также «закупорить» его в безопасных и полезных формах – этим занимаются ферменты трансферрины и гемосидерины. Однако эффективность этих ферментов не 100%-на, и в ряде случаев железо может осаждаться в клетке в опасной для неё форме.



В ряде биологических тканей клетки, содержащие избыточное количество железа, могут быть уничтожены организмом, однако этот процесс не работает для перегруженных железом нейронов. За время свой жизни в организме нейроны управляют тысячами процессов – для этого необходимо формирование нейронных сетей. В процессе развития взрослого человеческого мозга большой процент клеток полностью обновляется, но это происходит постепенно – одновременное прекращение работы большого числа клеток в работающем мозге по какой-то причине невозможно без последствий.



Чаще всего такой причиной, нарушающей работу мозга, является медленное осаждение железа в тканях, которое может продолжаться в течение десятилетий. В менее сложных тканях, таких как клетки печени, заместить повреждённые клетки можно, запуская выработку новых стволовых клеток, однако для продуктивной работы мозга необходимы тренированные, взаимосвязанные друг с другом нейроны, которые накапливаются в течение всей жизни. Таким образом, результат осаждения железа в клетках мозга – медленно прогрессирующие нейродегенеративные заболевания. Тем не менее природа разработала механизм, защищающий клетки от избытка железа. Существует два или три десятка белков, решающих проблему железа в клетках мозга, – эти белки связывают железо и перемещают его из одного участка организма в другой, направляя его в безопасные «контейнеры» – гемоглобин, гемоферритин и трансферрин, однако мутации генов, отвечающих за выработку этих белков, могут попадать в клетки уже в виде свободных ионов и формировать внутриклеточные отложения оксидов и гидроксидов железа, попутно образуя реакционноспособные кислородсодержащие частицы. Оба процесса – и осаждение железа в клетках, и формирование кислородных радикалов – лежат в основе процессов старения организма.



Ну и напоследок – в интернете гуляет легенда о «французском химике Мери», который в 19-м веке обнаружил железо в крови, решил подарить возлюбленной кольцо из железа своей собственной крови и, естественно, умер. Это легенда. Во-первых, если и существовал такой французский химик, то он умудрился прославиться, не оставив после себя ни одной статьи и ни одного воспоминания коллег по цеху. Первым предположение о наличии железа в крови сделал итальянский врач Доменико Галеати в 1746 году, доказал это предположение в 1747 году итальянский же химик Винченцо Антонио Менгини.



Ну и небольшой расчет. Содержание железа в крови (в составе гемоглобина) у взрослого мужчины составляет 11-30 мкмоль/литр, то есть в одном литре крови содержится 0.6138–1.674 миллиграмма железа. Даже если мы возьмём максимальное содержание железа и разработаем процесс, который будет «выпаривать железо из крови» без потерь, для того чтобы добыть хотя бы 1 грамм железа, потребуется около 600 литров крови. Допустимо сдавать разово 450 мл цельной крови, в год – 5 раз. Следовательно, на получение одного грамма железа должно уйти где-то 270 лет.

27. Кобальт

Я впервые познакомился с соединениями кобальта, а заодно и познакомил одноклассников, когда я был в седьмом классе. Раздобыв в мамином кабинете по химии образец кристаллогидрата хлорида трехвалентного кобальта (CoCl3×6H2O), я начал показывать криптофокусы в области тайнописи: палочкой или даже стальным пером на бумагу наносился бледно-розовый разбавленный раствор соли кобальта, который, высыхая, оставался практически невидимым. Затем бумага аккуратно нагревалась на электрической плитке или даже над пламенем спиртовки, бледно-розовый кристаллогидрат терял кристаллизационную воду, и на бумаге появлялись ярко-синие письмена. Позже я узнал, что цветные соединения кобальта применяют для производства синего и зелёного стекла.


Как и многие другие металлы, кобальт не присутствует в земной коре в свободном виде. Чаще всего в природе его можно встретить в виде сульфидных минералов, чаще всего сопутствующих минералам меди или железа. Из-за того, что кобальт залегает в месторождениях с другими металлическими рудами, зачастую для добычи и производства кобальта ведётся переработка отходов производства меди или железа. Однако, железные и медные месторождения – не единственные потенциальные источники кобальта и других переходных металлов – оксидные минералы кобальта и марганца в значительном количестве можно найти на дне мирового океана.



Тот факт, что кобальтовые руды обычно сопутствуют рудам других металлов, привело к тому, что кобальт был открыт достаточно поздно – в 1735 году его выделил в металлическом виде и очистил шведский химик Георг Брандт. Кобальт встречается и в смешанных рудах, содержащих мышьяк, именно такую руду разрабатывал Брандт, что, возможно, и обусловило причины выбора названия этого элемента. Название «кобальт» происходит от слова «кобольд». Для тех, кто не играет в компьютерные игры и не читает сказки для взрослых, поясню, что кобольды – мелкие и при этом враждебные человеку персонажи германского фольклора (те кобольды, которые на судах Вильгельма Завоевателя доплыли до Англии, впоследствии сменили фамилию и теперь известны как гоблины). Кобальт стал «гоблинским металлом» из-за того, что мышьяк-кобальтовые руды практически было невозможно обрабатывать, не надышавшись при этом парами соединений мышьяка. Многие металлурги, работавшие с рудой, которую изучал Брандт, теряли здоровье и умирали, что воспринималось как месть кобольдов за добычу руды в горах, принадлежащих этому малому народцу, служившему Неблагому Двору Фей.



Кобальт нельзя назвать распространённым в земной коре элементом. Несмотря на то, что это лёгкий переходный металл, который так же, как и железо, образуется во время вспышек «сверхновых», содержание кобальта в земной коре примерно в 2500 ниже, чем железа. Тем не менее этот металл важен для жизни и в следовых количествах. Кобальт входит в состав ряда биологически активных веществ, чаще упоминаемых под общим названием «кобаламины» или витамин В12. Кобаламины способствуют протеканию ряда биохимических процессов, связанных с реакциями окисления или переноса групп атомов. Одним из недавно обнаруженных следствий дефицита кобаламина является появление клинических депрессий у людей пожилого возраста.



Окрашенные соединения кобальта были известны и применялись уже в третьем тысячелетии до нашей эры – людей древности, как и меня в седьмом классе, привлекла их яркая и насыщенная окраска. В египетских гробницах находят надписи, сделанные кобальтовыми пигментами, и содержащие кобальт синие ожерелья. Первое синее кобальтовое стекло, найденное на территории Греции, датируется сотым веком до нашей эры. В Китае во времена династии Тан также применяли кобальт для окраски стекла. Строго говоря, до начала ХХ века единственное для чего применялся кобальт – изготовление пигментов, однако с развитием металлургии ситуация поменялась.



Кобальт – очень твёрдый металл серебристо-блестящего цвета, один из трёх переходных металлов, проявляющих ферромагнитные свойства в чистом виде (кроме кобальта в эту троицу входят железо и никель). Металл отличается высокой механической прочностью и высокой температурой плавления, он сохраняет магнитные свойства при температуре, самой высокой для всех ферромагнитных элементов. Высокая прочность и температура плавления позволяют использовать кобальт в том, что называется «суперсплавы», – сплавы, сохраняющие прочность при высоких температурах. Суперсплавы и покрытия из кобальта применяют для изготовления таких конструкций, как цепи электропил или турбины реактивных двигателей самолетов.



Магнитные свойства кобальта были использованы японскими металлургами: в тридцатые годы они изобрели сплав, материал для постоянных магнитов альнико (alnico magnets), в которые кроме алюминия (Al), никеля (Ni) и кобальта (Co), входило железо. Во второй половине ХХ века редкоземельные металлы стали основой для более прочных и более сильных постоянных магнитов. Один из таких материалов, сплав самария с кобальтом, сохраняет магнетизм при нагревании до 800 °C, не теряя при этом прочности, – его применяют в высокоскоростных моторах. Кобальт также применяется в источниках питания для записи информации на магнитные ленты или жёсткие диски.



Однако элементом кобольдов кобальт быть не перестал. В 1960-е годы некоторые пивоваренные заводы добавляли в свое пиво хлорид кобальта, потому что он помогал стабилизировать пивную пену. К 1967 году более 100 потребителей «пива с кобальтом» начали страдать от сердечной недостаточности, и почти половина из них умерла. Исследования показали, что в описанных случаях вред кобальта наложился на плохое здоровье потребителей пенного напитка. Вскоре после диагностики патологий, получивших название «кардиомиопатия кобальта-пива», применение хлорида кобальта в качестве пищевой добавки было запрещено.

28. Никель

С никелем крепкими узами связан учёный по фамилии Монд, хотя и не он открыл этот элемент, но он, как минимум, обнаружил производное этого элемента, давшее начало целому классу интересных химических веществ – с тремя представителями этого класса работаем я и моя исследовательская группа. То самое обнаруженное Мондом производное никеля когда-то, во времена позднего СССР, когда ветеринарные клиники не были распространены, как сейчас, один из моих старших коллег использовал для избавления от мучений страдавшего терминальной стадией рака кота.


Никель был открыт в XVIII веке двумя шведскими химиками – Акселем Фредериком Кронштедтом и Торберном Улафом Бергманом. В 1751 году Кронштедт изучил красный никелевый колчедан (NiAs), получил оксид зелёного цвета, из которого выделил новый металл, названный никелем. Своим названием никель, как и его сосед кобальт, обязан злым горным духам. Шахтёры в Саксонии хорошо знали руду, похожую на медную, – именно её и изучал Кронштедт. Эта руда даже находила применение – ею окрашивали стёкла в зелёный цвет. Но вот незадача, все попытки получить из этой руды медь оказались неудачными, в связи с чем в конце XVII в. руду назвали «купферникель» (Kupfernickel) – «медь Никкела». Никкел был еще одним персонажем фольклора немецких горняков – по одной версии, разновидностью кобольда, по другой – неупокоенным духом шахтера Николаса, которого коллеги бросили в обваливающейся шахте. В любом случае Никкел не желал добра рудокопам, подкидывал им неправильную руду, из которой нельзя было выделить медь, опять же дававшую при обжиге ядовитые пары, содержащие мышьяк. В 1775 году Бергман, получив более чистый образец никеля, сделал вывод о том, что этот металл гораздо ближе по свойствам железу, нежели меди.



После разработки промышленного способа выплавки никеля этот металл стал использоваться для изготовления сплавов и нанесения металлических покрытий – никелирование придавало блеска металлическим изделиям, никелевое покрытие защищало металлы от коррозии, и какое-то время даже делались попытки использовать никель в ювелирном деле. Но тут старый Никкел показал, что это все же его металл – оказалось, что не корродирующее даже во влажном воздухе никелевое покрытие совсем незначительно растворяется в поте человека, надевающего такое ювелирное изделие, но этого «чуть-чуть растворяется» было достаточно для раздражения кожи, в некоторых случаях переходившего в сильную экзему.



Людвигу Монду – немецкому химику, эмигрировавшему в Великобританию в 1862 году – удалось обнаружить новый класс химических соединений, попутно разработав способ получения высокочистого никеля. Открытие, как это часто бывает, началось с проблемы: в ходе эксперимента Монд пропускал моноксид углерода (СО, угарный газ) через краны и клапаны из никеля, и, хотя эти же краны обеспечивали герметичное соединение при работе с кислородом и другими активными газами, СО они не могли удержать. Раз за разом наблюдая, как из-за недостаточно герметичной системы газовых коммуникаций срывается эксперимент, Монд решил выяснить, что же не так с этими никелевыми кранами, и обнаружил нечто неожиданное: никель корродировал в токе моноксида углерода, образуя тетракарбонилникель (Ni(CO)4). Так были открыты карбонильные комплексы, полученные затем и для других металлов. Ещё одной неожиданностью для Монда и его коллег было то, что в отличие от соединений металлов, известных в XIX веке и представлявших собой при комнатной температуре либо твердые тела, либо жидкости с достаточно высокой температурой кипения, тетракарбонилникель был легколетучей жидкостью, кипящей при температуре 44 °С. Низкая температура кипения и высокая летучесть тетракарбонилникеля требует особых мер предосторожности при работе: если вдохнуть это вещество, в организме оно разлагается с выделением токсичного ударного газа, попутно формируя отложения никеля на легких. Тетракарбонилникель очень ядовит: его предельно допустимая концентрация составляет 0,0005 мг/м³ (если сравнивать, для хлора она в 60 раз выше – 0,03 мг/м³). Однако Монда привлекла не токсичность обнаруженного соединения, а то, что при нагревании Ni(CO)4 легко разрушается на никель и СО, – это давало возможность просто выделять никель из смеси с другими металлами и очищать его (моноксид углерода при этом можно было бы применять повторно).



Монд был не только наблюдательным химиком, но и человеком с коммерческой жилкой. Он запатентовал процесс очистки никеля и организовал компанию, которая могла себе позволить продавать сверхчистый никель дешевле конкурентов. Доходы от продаж шли в развитие, и в 1926 году компания Mond Nickel Company стала одной из четырех крупных химических компаний Британии, слияние которых породило промышленного гиганта Imperial Chemical Industries (в 2008 году ICI вошла в состав промышленного конгломерата AkzoNobel).



В 1960-е годы началось применение никеля в нефтехимической промышленности: немецкий химик Гюнтер Вильке нашёл и внедрил в производство реакции органических соединений, катализируемые никелевыми комплексами. В ХХ веке появились новые никелевые сплавы особого назначения: инвар (сплав железа с никелем), который практически не расширяется и не сжимается при изменении температуры; монель (сплав никеля с медью), который настолько устойчив к коррозии, что его не берёт даже фтор; нитинол (сплав титана с никелем) – ещё один коррозионно устойчивый сплав, который ещё и обладает памятью формы. Это свойство заключается в том, что если деталь из нитинола сложной формы подвергнуть нагреву до красного каления, то она «запомнит» эту форму. После остывания до комнатной температуры форму детали можно изменить, но при нагреве выше 40 °C она восстановит первоначальную форму. Ну и, наконец, во многих странах никель стал монетным металлом – из него чеканят металлические деньги, а в США до сих пор имеющая хождение монета достоинством в 5 центов носит разговорное название «никель».

Внимание! Это не конец книги.

Если начало книги вам понравилось, то полную версию можно приобрести у нашего партнёра - распространителя легального контента. Поддержите автора!

Страницы книги >> Предыдущая | 1 2 3 4 5 6 7 8
  • 0 Оценок: 0

Правообладателям!

Данное произведение размещено по согласованию с ООО "ЛитРес" (20% исходного текста). Если размещение книги нарушает чьи-либо права, то сообщите об этом.

Читателям!

Оплатили, но не знаете что делать дальше?


Популярные книги за неделю


Рекомендации