Текст книги "Магия математики: Как найти x и зачем это нужно"
Автор книги: Артур Бенджамин
Жанр: Зарубежная образовательная литература, Наука и Образование
Возрастные ограничения: +12
сообщить о неприемлемом содержимом
Текущая страница: 4 (всего у книги 18 страниц) [доступный отрывок для чтения: 6 страниц]
Алгебра в графиках
В XVII веке в математике произошел настоящий прорыв: французы Пьер де Ферма и Рене Декарт независимо друг от друга придумали отличный способ визуализации алгебраических уравнений (равно как и алгебраическую запись геометрических объектов).
Начнем, пожалуй, с графика простого уравнения
y = 2x + 3
Оно означает, что любое значение переменной х мы должны удвоить, а потом прибавить к нему 3 – так у нас и получается y. В таблице ниже приведены несколько возможных пар значений для x и y. Рядом с таблицей – график, на котором все эти значения отмечены точками, и можно легко видеть, что все они определенным образом упорядочены. Посмотрите на координаты: (–3, 3), (–2, –1), (–1, 1) и так далее. Соединив эти точки одной линией и уведя ее в бесконечность, мы получим то, что называется графиком. График рядом с таблицей есть отображение уравнения y = 2x + 3.
Добавим немного необходимой терминологии. Горизонтальная линия на нашей картинке называется осью X, вертикальная – осью Y. Сам график составляет линия с наклоном 2, которая пересекает ось Y в точке 3. Наклон – это степень «крутизны» линии. Наклон, равный 2, обозначает, что каждый раз, когда x увеличивается на одну единицу, y всегда будет увеличиваться на две (что очень хорошо видно из таблицы). Алгебраически точка пересечения с осью Y – значение y при x = 0. Геометрически же все очевидно: это точка пересечения графика с вертикальной линией. То есть график уравнения
y = mx+ b
представляет собой линию с наклоном m, которая пересекается с осью Y в точке b (и наоборот). Линия обычно ассоциируется с ее уравнением, Поэтому мы можем просто сказать, что график на предыдущем рисунке – это линия y = 2x + 3.
А вот график линий y = 2x – 2 и y = –x + 7:
Первая линия y = 2x – 2 имеет наклон 2 и пересекается с осью Y в точке –2 (график получается параллельным линии y = 2x + 3 с полным сдвигом вниз по вертикали на 5). Наклон второй линии y = –x + 7 равен –1, поэтому при увеличении x на единицу на ту же единицу уменьшается и y. Призовем на помощь алгебру, чтобы найти точку (x, y) пересечения этих двух линий – именно в ней значения наших двух переменных совпадут, и x мы будем искать исходя из того, что он здесь равен y. Иными словами, нам надо решить
2x – 2 = –x + 7
Добавим к обеим частям сначала x, потом 2 и получим
3x = 9
то есть x = 3. А зная x, мы можем использовать другое уравнение, чтобы найти y. Если y = 2x – 2, значит, y = 2(3) – 2 = 4 (а y = –x + 7 дает нам y = –3 + 7 = 4). Значит, графики пересекаются в точке (3, 4).
Зная две точки, лежащие на одной прямой, нарисовать график в виде целой линии становится делом техники. Немного сложнее иметь дело с квадратичной функцией (и фигурирующим в ней x²). Самое простое для отображения в виде графика – уравнение y = x² (изображен ниже). Подобные графики называются параболами.
А вот график уравнения y = x² + 4x – 12 = (x + 6)(x – 2).
Обратите внимание, что, когда x = –6 или x = 2, y = 0. Это легко заметить на графике – в тех двух его местах, где парабола пересекает ось x. И совсем не случайно, что самая нижняя ее точка располагается точно в центре между ними – при x = –2 и y = –16. Это вершина.
С параболами мы сталкиваемся каждый день. Каждый раз, когда вы видите движущийся по кривой предмет, будь то летящий мяч или струя воды в фонтанчике, вы, в сущности, видите параболу (просто взгляните на картинку чуть ниже). Свойства параболы активно используются в устройстве фар, телескопов, спутниковых тарелок и многих других приборов.
Еще немного терминологии. До этого все наши примеры содержали в себе многочлены – комбинации чисел и одной переменной (скажем, x), которая может быть возведена в положительную целую степень. Наибольшую из степеней входящего в многочлен одночлена называют степенью многочлена. Например, 3x + 7 – это (линейный) многочлен первой степени. Многочлен второй степени, вроде x² + 4x – 12, называется квадратным, многочлен третьей степени (5x³ – 4x³ – √2) – кубическим. Бывают многочлены и других, бóльших, степеней (я, правда, никогда не слышал их специальных названий – главным образом, думаю, потому, что не так уж и часто они встречаются. Интересно, насколько часто используются в профессиональной литературе термины «квартический», «квинтический» и т. п. многочлены? Встречаются, наверное, но я, честно говоря, по этому поводу настроен немного скептически). А еще бывают многочлены, в которых нет переменных (например, 17) – о таких говорят, что они стоят в нулевой степени. Ну и последнее, что вам нужно знать о многочленах – это то, что многочленом не может быть сочетание с бесконечным количеством чисел. Например, 1 + x + x² + x³ +… – не многочлен, а так называемый бесконечный ряд, о которых мы поговорим подробнее в главе 12.
Обратите внимание, что в случае с многочленами степень, в которую возводятся переменные, может быть выражена только положительным целым числом – ни в коем случае не отрицательным и не дробным. То есть если вам попадается уравнение с чем-нибудь вроде y = 1/x или y = √х, это не многочлен, потому что 1/x = x–1, а √х = x½.
Корнями многочлена мы считаем такие значения х, при которых многочлен равняется 0. Например, 3x + 7 имеет один корень, а именно x = –7/3. А вот у x² + 4x – 12 два корня: x = 2 и x = –6. А x² + 9 корня (в смысле, действительного корня) не имеет вообще. Обратите внимание, что каждый многочлен степени 1 (линейный) имеет один корень в силу того, что он пересекает ось X только в одной точке, квадратный – не больше двух. Многочлены x² + 1, x² и x² – 1 имеют соответственно ноль, один и два корня.
А вот графики двух кубических многочленов, на которых вы легко заметите, что в обоих – максимум три корня.
В главе 10 мы рассмотрим основную теорему алгебры, которая гласит, что каждый многочлен, возведенный в степень n, имеет не более n корней. Более того, он может быть разложен на линейную и квадратную части. Например,
имеет три корня (1, 2 и –3). В свою очередь,
x³ – 8 = (x – 2)(x² + 2x + 4)
имеет только один действительный корень – при x = 2 (и еще два комплексных, но им придется подождать до главы 10). Сегодня, кстати, очень легко можно найти график практически любой функции, просто набрав нужное вам уравнение в своем любимом поисковике. Просто напечатайте что-нибудь вроде y = (x^3 – 7x + 6)/2, и получится рисунок наподобие тех, которые представлены в этой книге.
В этой главе мы научились легко находить корни любого линейного или квадратного многочлена. А еще есть формулы для нахождения корней многочленов третьей или четвертой степеней, но они очень-очень сложные. Вывели их еще в XVI веке, а потом еще две сотни лет ведущие математики занимались поиском такого же уравнения для многочлена пятой степени. Лучшие умы бились над этой проблемой и никак не могли найти решения, пока в начале XIX века норвежский математик Нильс Абель не доказал, что создать такую формулу для пятой и более высокой степени просто-напросто невозможно. Это приводит нас к каламбуру, который считают забавным только математики: «Почему Исаак Ньютон не смог доказать теорему невозможности формулы для пятого порядка? – Потому что корни с деревьев не падают!»
Примеры доказательств невозможности чего-либо мы рассмотрим в главе 6.
Отступление
Почему x–1 = 1/x? Конкретнее, почему 5–1 = 1/5? Взгляните на такую закономерность:
5³ = 125, 5² = 25, 5¹ = 5, 50 =? 5–1 =?? 5–2 =???
Обратите внимание, что с каждым уменьшением степени на единицу число делится на 5, что имеет для нас смысл, если над этим задуматься. Ведь тогда 50 = 1, 5–1 = 1/5, 5–2 = 1/25 и так далее. Настоящая же причина этого – правило действий со степенями, согласно которому xaxb = xa+b. Лучше всего он работает, когда a и b – положительные и целые величины. Так, x² = x · x, а x³ = x · x · x. Значит,
x²x³ = (x ∙ x) ∙ (x ∙ x ∙ x) = x5
Если мы хотим, чтобы правило работало при значении степени, равном 0, необходимо, чтобы
xa+0 = xax0
а так как левая часть становится равна xa, этому же значению должна быть равна правая часть, что возможно только при x0 = 1.
Желание же применить закон к отрицательным величинам вынуждает нас признать, что
x¹x–1 = x1+(–1) = x0 = 1
Разделим обе части на x и получим, что x–1 должен равняться 1/x. По той же причине x–2 = 1/x², x–3 = 1/x³ и т. д.
Применение закона к целым величинам дает
x½x½ = x½+½ = x¹ = x
Следовательно, умножая x½ на x½, мы получаем x, а это значит, что x½ = √x (при условии, что x является положительным числом).
Вычисление Y (и Х, само собой!)
Предлагаю закончить главу тем же, с чего мы начинали – с алгебраической магии.
Шаг номер 1. Задумайте два числа от 1 до 10.
Шаг номер 2. Сложите их между собой.
Шаг номер 3. Умножьте сумму на 10.
Шаг номер 4. Прибавьте большее из загаданных чисел.
Шаг номер 5. Теперь вычтите меньшее.
Шаг номер 6. Скажите мне результат, и я назову оба загаданных вами числа.
Хотите – верьте, хотите – нет, но одного этого достаточно, чтобы узнать, с чего все начиналось. Например, если в результате получилось число 126, значит, скорее всего, вы загадали 9 и 3. Даже если повторить этот фокус несколько раз подряд, изумленная аудитория вряд ли догадается, как вы это делаете.
А секрет вот в чем. Чтобы узнать большее число, возьмите последнюю цифру результата (в нашем случае это 6), прибавьте к предшествующему ей числу (то есть 12) и разделите на 2. Так мы узнаем, что первое число – (12 + 6)/2 = 18/2 = 9. Второе число можно найти, вычтя из первого (9) последнюю цифру ответа, то есть 9 – 6 = 3.
Вот еще пара примеров – попрактиковаться. При ответе 82 большее из загаданных чисел – (8 + 2)/2 = 5, меньшее – 5 – 2 = 3. При ответе 137 большее – (13 + 7)/2 = 10, меньшее – 10 – 7 = 3.
Как же все-таки это работает? Допустим, загаданные вами числа – это X и Y, при этом X больше или равен Y. Согласно алгебраическим методам и инструкциям, показанным в таблице, мы увидим, что после пятого шага получается 10(X + Y) + (X – Y).
И какой от этого толк, спросите вы? Обратите внимание, что число, получающееся после 10(X + Y) будет обязательно заканчиваться на 0, а цифра (или цифры) перед этим нолем – сумма X + Y. Так как X и Y у нас находятся в пределах от 1 до 10, а X больше или равен Y, разность X – Y неизбежно будет однозначным числом (от 0 до 9). Это означает, что последней цифрой результата будет число, равное X – Y. Например, если вы загадывали 9 и 3, X = 9, а Y = 3. Значит, результат после пятого шага должен начинаться с X + Y = 9 + 3 = 12, а заканчиваться X – Y = 9 – 3 = 6, дающими вместе 126. А раз уж мы знаем X + Y и X – Y, мы можем взять их среднее арифметическое, чтобы получить ((X + Y) + (X – Y))/2 = X. В поисках Y мы можем посчитать ((X + Y) – (X – Y))/2 (в нашем случае – (12 – 6)/2 = 6/2 = 3), но мне куда более легким способом кажется просто взять большее число и вычесть из него последнюю цифру ответа (то есть 9 – 6 = 3), потому что X – (X – Y) = Y.
Отступление
Если вы хотите еще немного пощекотать нервы себе и своему зрителю, чья рука – гарантирую вам – немедленно потянется за калькулятором, попросите его загадать любые два числа от 1 до 100. И следуйте тем же инструкциям с одним лишь небольшим изменением: в третьем шаге попросите умножить результат не на 10, а на 100. То есть если ваш зритель, например, начал с 42 и 17, после пятого шага у него должно получиться 5925. Ответ вы можете составить, взяв из остатка две последние цифры и подсчитав их среднее арифметическое. Большим числом здесь будет (59 + 25)/2 = 84/2 = 42. А чтобы узнать меньшее, вычтите из большего две последние цифры ответа, в нашем случае – 42 – 25 = 17, искомое число. Объяснение будет по большому счету таким же, что и ранее – единственным исключением станет процедура после пятого шага: ответ будет 100(X + Y) – (X – Y), где X – Y – две последние цифры результата.
Еще один пример: если ответ получился 15 222 (то есть X + Y = 152, а X – Y = 22), большее из загаданных чисел – это (152 + 22)/2 = 174/2 = 87, а меньшее – 87 – 22 = 65.
Глава номер три
Магия 9
Самое магическое число
В детстве любимым моим числом была девятка: ее магия мне казалась бесконечной, неисчерпаемой. Просто следуйте следующим инструкциям и увидите все сами:
1. Задумайте число от 1 до 10 (или выберите большее целое число; если хочется, можете воспользоваться калькулятором).
2. Умножьте его на 3.
3. Прибавьте 6.
4. Снова умножьте на 3.
5. Теперь на 2, если хотите.
6. Сложите между собой цифры своего числа. Если в результате у вас получилось однозначное число, остановитесь.
7. А если двузначное, снова сложите между собой цифры своего результата.
8. Сконцентрируйтесь на ответе.
У меня стойкое ощущение, что у вас получилось 9. Правильно? Если нет – проверьте свои вычисления.
Что такого волшебного в девятке? Именно об этом мы и поговорим в этой главе; а еще мы заглянем в параллельное измерение, в котором числа 12 и 3 функционально друг от друга ничем не отличаются. Первое магическое свойство числа 9 становится явным, когда смотришь на ряд получаемых от него произведений:
9, 18, 27, 36, 45, 54, 63, 72, 81, 90, 99, 108, 117, 126, 135, 144…
Что общего между этими числами? Если вы сложите между собой цифры каждого из них, вы гарантированно получите 9. Давайте проверим: 18 состоит из 1 + 8 = 9, 27 – из 2 + 7 = 9, а, например, 144 – из 1 + 4 + 4 = 9. Постойте-ка, вроде есть одно исключение – 99. Сумма его цифр – 18, но 18 – это произведение 9 и 2. Вывод, который мы сделаем, может быть, и знаком вам по начальной школе. Чуть позже в этой главе мы приведем его объяснение. Так вот:
Если число является произведением 9 и любого другого, сумма составляющих его цифр будет кратна 9 (и наоборот).
Например, если цифры числа 123 456 789 в сумме дают 45 (которое кратно 9), оно также кратно 9. А 314 156, сумма цифр которого равна 23 (которое на 9 не делится), таковым, наоборот, не является.
Чтобы понять, как это правило связано с фокусом, которым мы начали эту главу, и в чем, собственно говоря, его суть, обратимся к алгебре. Вы начали с определенного числа – назовем его N. После его утроения мы получим 3N, которые после следующего шага превращаются в 3N + 6. Повторное утроение дает нам 3(3N + 6) = 9N + 18, что равно 9(N + 2). Если вы это удвоили, у вас будет 18N + 36 = 9(2N + 4), если нет – в результате фигурирует произведение целого числа на 9, и вы в любом случае закончите числом, кратным 9. Сложив между собой его цифры, вы снова получите кратное 9 число (скорее всего, 9, 18, 27 или 36), сумма цифр которого должна опять же быть равна 9.
А вот другая разновидность того же фокуса – не менее мной любимая. Попросите кого-нибудь вооружиться калькулятором и загадать одно из следующих четырехзначных чисел:
3141, 2718, 2358 или 9999
Числа эти взяты не просто так: 3141 – первые четыре цифры числа π (см. главу 8), 2718 – первые четыре цифры числа e (см. главу 10), 2358 – цифры, соответствующие числам из последовательности Фибоначчи (см. главу 5), 9999 – самое большое из четырехзначных чисел. Затем нужно умножить выбранное вами число на любое трехзначное. Результат получится шести– или семизначным – и это все, что вы можете о нем знать. А теперь мысленно обведем кружком любую цифру ответа – любую, кроме ноля (он и без того похож на кружок!). Попросите своего зрителя назвать вам остальные цифры в любом порядке и сконцентрироваться на неназванной, обведенной кружком. Пора оглашать ответ – но для этого нужно приложить немного усилий.
В чем тут секрет? Начнем с того, что каждое из изначальных четырех чисел кратно 9. А раз вы начинаете с числа, кратного 9, и умножаете его на целое число, ответ тоже будет кратен 9. А еще сумма его цифр должна быть кратна 9. Поэтому надо просто сложить между собой числа, которые вам называют. Неназванная цифра – это число, которое необходимо прибавить к результату, чтобы он стал кратным 9. Например, зритель называет вам цифры 5, 0, 2, 2, 6 и 1. Их сумма равна 16 – до ближайшего числа, кратного 9 – а именно, 18 – не хватает 2. Если вы слышите цифры 1, 1, 2, 3, 5, 8, дающие в сумме 20, то зритель не назвал вам 7 – остаток, который необходимо добавить к 20, чтобы получить 27. А что, если сумма названных вам цифр уже равна 18 – что тогда нужно угадать? Правильно, 9: вы же просили не обводить кружком 0.
Почему же цифры, составляющие числа, кратные 9, в сумме всегда дают числа, тоже кратные 9? Посмотрите на такой пример: число 3456, разложенное на элементы с помощью умножения на 10, выглядит как
3456 = (3 × 1000) + (4 × 100) + (5 × 10) + 6 = 3(999 + 1) + 4(99 + 1) + 5(9 + 1) + 6 = 3(999) + 4(99) + 5(9) + 3 + 4 + 5 + 6 = (число, кратное 9) + 18 = число, кратное 9
Следуя той же логике, любое число, сумма цифр которого кратна 9, само должно быть кратно 9 (и наоборот: любое число, кратное 9, при сложении составляющих его цифр даст нам результат, кратный 9).
Вычисление вычета по модулю 9
А что, если сумма цифр нашего числа все-таки не кратна 9? Возьмем, например, число 3457. Следуя алгоритму, означенному чуть выше, мы можем представить 3457 (сумма цифр которого равна 19) как 3(999) + 4(99) + 5(9) + 7 + 12, то есть 3457 – это 7 + 12 = 19, что чуть больше, чем кратное девятке 18. А если 19 = 18 + 1, значит, и 3457 ровно на единицу больше ближайшего кратного 9 числа. К тому же выводу можно прийти, сложив цифры числа 19, потом – цифры числа 10, то есть вот какая последовательность у нас получается:
3457 → 19 → 10 → 1
Процесс сложения между собой цифр числа и повторение этой операции до тех пор, пока не получится однозначное число, называется вычислением вычета по модулю 9, ведь на каждом этапе вы занимаетесь тем, что вычитаете число, кратное 9. Получаемое в итоге однозначное число называется цифровым корнем изначального числа. Например, числовой корень 3457 – 1, а 3456 – 9. Давайте попробуем вкратце суммировать все сказанное. Для каждого натурального n:
Если цифровой корень n равен 9, n кратно 9.
В ином случае цифровой корень будет равен остатку, получаемому от деления n на 9.
Алгебраически, обозначив цифровой корень числа n как r, получаем:
n = 9x + r
где x – целое число. Вычисление вычета по 9 – забавный способ проверить результаты, полученные в результате сложения, вычитания и умножения. Например, сумма верна, если ее цифровой корень равен сумме цифровых корней складываемых чисел. Хотите конкретнее? Давайте посчитаем
Обратите внимание, что цифровые корни слагаемых чисел равны 5 и 6, а цифровой корень их суммы (11) равен 2. И совсем не случайно, что цифровой корень результата (134 651) тоже имеет цифровой корень, равный 2. Причина всего это кроется в следующей алгебраической формуле:
(9x + r1) + (9y + r2) = 9(x + y) + (r1 + r2)
Если числа не совпадают, вы наверняка где-то ошиблись. И вот что важно: даже если числа совпадают, это еще не значит, что ответ верный, хотя в 90 % случаев проверка результата цифровыми корнями работает безотказно и позволяет быстро найти ошибку. Однако, случайно поменяв местами две цифры, вы этого не заметите, ведь сумма цифр от этого не изменится. А вот появление неправильного числа говорит об ошибке, если только ошибка не связана с заменой 0 на 9 или 9 на 0. Этот же метод можно использовать, когда нам нужно сложить друг с другом длинный столбец чисел. Представим, вы зашли в магазин и купили несколько продуктов по следующим ценам:
Складывая цифры результата, мы видим, что его цифровой корень – 5, а сумма цифровых корней равна 32, что подтверждает его правильность, потому что цифровой корень 32 – тоже 5. При проверке результата вычитания метод тоже отлично работает. Возьмем для примера те же числа, что были у нас в позапрошлом примере:
Разность будет равна 48 923, ее цифровой корень – 8. Работая с цифровыми корнями уменьшаемого и вычитаемого, видим, что 5 – 6 = –1. Но страшного в этом ничего нет – мы сделали все абсолютно правильно, потому что –1 + 9 = 8, да и прибавление (или вычитание) числа, кратного 9, к нашему ответу (или из нашего ответа) не меняет значение цифрового корня. По той же логике разница с 0 также верна при цифровом корне, равном 9.
А теперь неплохо было бы собрать вместе полученные нами знания и придумать еще один фокус (вроде того, который мы демонстрировали в предисловии). Просто следуйте инструкциям, хотите – с калькулятором, хотите – без.
1. Задумайте любое дву– или трехзначное число.
2. Сложите между собой его цифры.
3. Вычтите результат из задуманного числа.
4. Сложите между собой цифры полученной разности.
5. Если получилось четное число, умножьте его на 5.
6. Если нечетное – на 10.
7. Вычтите 15.
Получилось 75, да?
Если вы начали, например, с 47, вы сначала посчитали 4 + 7 = 11, а потом – 47 – 11 = 36. Дальше было 3 + 6 = 9 – нечетное число, умножив которое на 10, получаем 90, а 90 – 15 = 75. А может, вы начали с трехзначного числа – 831, например? Тогда 8 + 3 + 1 = 12, потом 831 – 12 = 819, а затем 8 + 1 + 9 = 18 – четное число. Дальше делаем 18 × 5 = 90, вычитаем 15 и получаем те же 75.
Секрет тут в том, что, если цифровая сумма изначального числа равна T, само число должно быть на T больше, чем ближайшее число, кратное 9. Когда мы вычитаем из загаданного числа T, мы гарантированно получаем результат, который можно разделить на 9 без остатка, при этом он меньше 999, а значит, сумма его цифр будет равна либо 9, либо 18 (если вернуться к нашему примеру с 47, цифровая его сумма – 11; мы вычитаем 11 до 36 с цифровой суммой 9). И после следующего шага единственным вариантом остается 90 (как произведение 9 × 10 или 18 × 5) и 75 – точно, как в наших примерах.
Теперь предлагаю посмотреть, как работает вычисление вычета по девятке с умножением. Возьмем те же числа и попробуем посчитать:
При умножении вычисление вычета по девятке работает на основе метода FOIL, о котором мы говорили в главе 2. Так, в нашем последнем примере цифровые корни справа говорят нам, что множители имеют формы 9x + 5 и 9y + 6, где x и y – целые числа. И когда мы их перемножаем, получаем
(9x + 5)(9y + 6) = 81xy + 54x + 45y + 30 = 9(9xy + 6x + 5y) + 30 = (число, кратное 9) + (27 + 3) = (число, кратное 9) + 3
При делении вычисление вычета по модулю 9 обычно не используется, но я не могу не показать вам поистине чудесный метод деления на 9. Иногда его называют «ведическим». Возьмем
12 302 ÷ 9
Представим это в следующем виде:
Продублируем первую цифру над чертой, там же – но уже над последней цифрой – напишем литеру R (для обозначения остатка), вот так:
А дальше будем складывать числа попарно, как это показано чуть ниже, обводя их овалом, и записывать результаты над чертой. Сумма 1 и 2, обведенных овалом, равна 3, поэтому следующим числом нашего частного будет 3.
Потом 3 + 3 = 6.
Затем 6 + 0 = 6.
И завершаем все остатком: 6 + 2 = 8.
И вот наш ответ: 12 302 ÷ 9 = 1366 с остатком 8. Так легко, что даже не верится, правда? Приведем еще один пример:
31 415 ÷ 9
Чтобы сэкономить бумагу, сразу дадим полную картину:
Начиная вверху с 3, мы складываем 3 + 1 = 4, потом 4 + 4 = 8, потом 8 + 1 = 9, и в конце – 9 + 5 = 14. Получается 3489 и 14 в остатке. Но раз 14 = 9 + 5, нам нужно добавить 1 к частному, чтобы получилось 3490 и 5 в остатке.
А вот простой вопрос с чарующим своей стройностью ответом. Проверьте, пожалуйста (на бумаге или в уме), правильно ли, что
111 111 ÷ 9 = 12 345 с остатком 6
Мы уже знаем, что, если остаток равен или больше 9, мы просто вычитаем из него эту девятку, а к частному прибавляем 1. Примерно то же происходит, когда сумма складываемых нами при делении чисел превышает 9. Мы сначала это запоминаем, потом вычитаем из результата 9 и продолжаем считать так же, как и считали. Например, при решении 4821 ÷ 9, мы делаем вот что:
Начинаем мы с 4, но поскольку 4 + 8 = 12, единицу мы пишем над четверкой (чтобы не забыть), а потом вычитаем 9 из 12, чтобы дальше написать 3. Затем идет 3 + 2 = 5, а после этого – 5 + 1 = 6; в результате получаем 535 с остатком 6 – взгляните:
Когда слишком многое «идет на ум», вычислять становится сложнее. Попробуем 98 765 ÷ 9.
Мы начинаем с 9, складываем 9 + 8 = 17, отмечаем запоминаемую единицу и вычитаем 9, чтобы получить вторую цифру – 8. Дальше у нас идет 8 + 7 = 15, мы отмечаем еще одну единицу и пишем 15 – 9 = 6. 6 + 6 = 12 – значит, «на ум идет» уже третья единица, – считаем 12 – 9 = 3. И остаток: 3 + 5 = 8. С учетом запомненных единиц получаем 10 973 с остатком 8.
Отступление
Если вам уже нравится деление на 9, попробуйте делить на 91. Возьмите любое двузначное число и просто делите его на 91 без остановки, множа количество знаков после запятой, пока не надоест. И никаких столбиков, никаких калькуляторов! Нет, кроме шуток! Вот, смотрите:
53 ÷ 91 = 0,582417…
Если говорить конкретнее, ответ тут – , где линия над цифрами 582417 означает, что они повторяются до бесконечности. Откуда эти числа берутся? На самом деле это деление ничуть не сложнее умножения исходного двузначного числа на 11. С помощью метода, о котором мы говорили в главе 1, считаем 53 × 11 = 583. Вычитаем из этого числа единицу и получаем первую половину нашего ответа, а именно – 0,582. Вторая половина – это разность, полученная при вычитании первой половины из 999: 999 – 582 = 417. В результате получаем .
Еще один пример – 78 ÷ 91. Здесь 78 × 11 = 858, то есть ответ будет начинаться с 857. Затем 999 – 857 = 142, поэтому 78 ÷ 91 = . Это число нам уже встречалось в главе 1, потому что 78/91 легко упрощается до 6/7.
Метод этот работает, потому что 91 × 11 = 1001. Поэтому в первом примере А так как 1/1001 = , мы получаем повторяющуюся часть нашего ответа из 583 × 999 = 583 000 – 583 = 582 417.
91 = 13 × 7 дает нам отличный способ делить числа на 13, усложняя их, чтобы получить в знаменателе 91. Например, 1/13 = 7/91, а так как 7 × 11 = 077, у нас получается
Точно так же 2/13 = 14/91 = , потому что 14 × 11 = 154.
Правообладателям!
Данное произведение размещено по согласованию с ООО "ЛитРес" (20% исходного текста). Если размещение книги нарушает чьи-либо права, то сообщите об этом.Читателям!
Оплатили, но не знаете что делать дальше?