Электронная библиотека » Билл Брайсон » » онлайн чтение - страница 10


  • Текст добавлен: 26 февраля 2018, 11:20


Автор книги: Билл Брайсон


Жанр: Зарубежная публицистика, Публицистика


Возрастные ограничения: +12

сообщить о неприемлемом содержимом

Текущая страница: 10 (всего у книги 36 страниц) [доступный отрывок для чтения: 10 страниц]

Шрифт:
- 100% +

Кельвин умер в 1907 году. Этот год был также свидетелем кончины Дмитрия Менделеева. Как и у Кельвина, его плодотворные труды остались далеко в прошлом, но преклонные годы были заметно менее спокойными. С возрастом Менделеев все больше отличался упрямством и эксцентричностью, например, он отказывался признавать существование радиации[115]115
  Первоначально Менделеев действительно очень скептически отнесся к сообщениям об открытии радиоактивности, и у него были все основания не доверять этой сенсации. Однако в 1902 г. он посетил лабораторию Беккереля и убедился в существовании явления радиоактивности. Для его объяснения он пытался построить собственную теорию, основанную на гипотетическом элементе эфире, который должен быть легче водорода, но это оказалось ошибочным ходом.


[Закрыть]
, электронов и многие другие новые вещи. Последние десятилетия он большей частью сердито хлопал дверьми в лабораториях и лекционных залах по всей Европе. В 1955 году элемент 101 был назван в его честь менделевием. «Подходящее название, – отмечает Пол Стразерн[116]116
  Пол Стразерн (Paul Strathern, р. 1940) – британский лектор, популяризатор науки и философии, автор книги «Мечта Менделеева», профессор университета Кингстона (Лондон).


[Закрыть]
, – это нестабильный элемент».

Радиоактивное излучение, разумеется, продолжало существовать и давало о себе знать такими явлениями, каких никто не ожидал. В начале 1900-х годов у Пьера Кюри стали проявляться первые признаки лучевой болезни – в частности, тупые боли в костях и постоянное недомогание, – которые, несомненно, привели бы к большим неприятностям. Но мы никогда определенно этого не узнаем, потому что в 1906 году он погиб, переходя улицу в Париже, под колесами наехавшего на него экипажа.

Мария Кюри всю оставшуюся жизнь посвятила работе в этой области и весьма преуспела, в 1914 году она принимала участие в создании знаменитого Радиевого института при Парижском университете. Несмотря на две Нобелевские премии, ее так и не избрали в Академию наук, в значительной мере из-за того, что после смерти Пьера она вступила в любовную связь с женатым физиком, настолько нескромную, что шокировала даже французов – или по крайней мере возглавлявших академию стариков, что, пожалуй, не одно и то же.

Долгое время считалось, что все обладавшее такой чудесной энергией, как радиоактивность, должно быть целительным. Производители зубной пасты и слабительных средств много лет добавляли в свои продукты радиоактивный торий, и по крайней мере до конца 1920-х годов санаторий «Глен-Спрингс» на озере Сенека-лейк в штате Нью-Йорк (как, несомненно, и многие другие) с гордостью рекламировал лечебные свойства своих «радиоактивных минеральных источников». Радиоактивные вещества было запрещено применять в потребительских товарах лишь в 1938 году. Но было уже слишком поздно для Марии Кюри, скончавшейся в 1934 году от лейкемии. Радиоактивность оказалась настолько пагубной и долгоживущей, что и теперь ее бумагами, относящимися к 1890-м годам – даже поваренными книгами, – слишком опасно пользоваться. Ее тетради с лабораторными записями хранятся в выстланных свинцом коробках, а желающие их увидеть должны облачиться в защитную одежду.

Благодаря самоотверженной и неосознанно опасной работе первых ученых-атомщиков в начале XIX века стало ясно, что у Земли, несомненно, весьма почтенный возраст, хотя исследователям потребовалось еще полвека, чтобы уверенно и точно сказать, насколько он почтенен. Тем временем наука вступала в свой новый век – атомный.

Часть III. На заре нового века

Физика – это способ атомов думать об атомах.

Неизвестный автор

Глава 8. Вселенная Эйнштейна

По мере того как XIX век подходил к концу, ученые могли все более удовлетворенно думать о том, что они разгадали большинство тайн физического мира – назвать хотя бы электричество, магнетизм, газы, оптику, акустику, кинетику и статистическую механику, – все это выстроилось перед ними в образцовом порядке. Ученые открыли рентгеновские и катодные лучи, электрон и радиоактивность, придумали ом, ватт, кельвин, джоуль, ампер и крошечный эрг[117]117
  Не все из этих физических единиц появились в XIX веке. Джоулем и ампером стали пользоваться только в середине XX века. При жизни лорда Кельвина единицу измерения абсолютной температуры, конечно, тоже не называли кельвином.


[Закрыть]
.

Если что-то можно колебать, ускорять, возмущать, дистиллировать, соединять, взвешивать или превращать в газ, то всего этого они достигли и попутно произвели на свет массу универсальных законов, таких весомых и величественных, что их так и хочется писать с заглавных букв[118]118
  Это справедливо в отношении английского языка.


[Закрыть]
. Электромагнитная полевая теория света, Закон эквивалентов Рихтера, Закон Шарля для идеального газа, Закон сообщающихся сосудов, Нулевое Начало Термодинамики, Концепция валентности, законы Действующих масс и бесчисленное множество других. Во всем мире лязгали и пыхтели машины и орудия, плоды изобретательности ученых. Многие умные люди считали тогда, что науке уже почти нечего больше делать.

Когда в 1875 году молодой немец из Киля Макс Планк решал, посвятить ли себя математике или физике, его горячо убеждали не браться за физику, потому что в этой области все решающие открытия уже сделаны. Предстоящее столетие, заверяли его, будет веком закрепления и совершенствования достигнутого, а никак не революций. Планк не послушал. Он взялся за изучение теоретической физики и целиком отдался работе над понятием энтропии, концепцией, лежащей в самой основе термодинамики, которая представлялась весьма многообещающей честолюбивому молодому ученому[119]119
  Если быть конкретнее, энтропия – это мера хаотичности или разупорядоченности в системе. Даррелл Эббинг в учебнике «Общая химия» очень удачно поясняет это на примере колоды карт. В новой упаковке, только что вынутой из коробки, карты сложены по мастям и по старшинству – от тузов к королям, – можно сказать, что карты в ней находятся в упорядоченном состоянии. Перетасуйте карты, и вы создадите беспорядок. Энтропия – численно характеризует, насколько беспорядочно это состояние, и помогает определить вероятности различных результатов дальнейшей перетасовки. Чтобы полностью постичь энтропию, необходимо также иметь представление о таких понятиях, как тепловые неоднородности, кристаллические решетки, стехиометрические отношения, но здесь была представлена самая общая идея.


[Закрыть]
. В 1891 году он представил результаты своих трудов и, к своему крайнему замешательству, узнал, что вся важная работа по энтропии фактически уже была сделана скромным ученым из Йельского университета по имени Дж. Уиллард Гиббс.

Гиббс, пожалуй, самая блестящая личность из тех, о ком большинство людей никогда не слышали. Застенчивый, почти незаметный, он, по существу, прожил всю жизнь, за исключением трех лет учебы в Европе, в пределах трех кварталов, ограниченных его домом и территорией Йельского университета в Нью-Хейвене, штат Коннектикут. Первые десять лет работы в Йеле он даже не позаботился о получении жалованья. (У него был независимый источник доходов.) С 1871 года, когда он занял в университете должность профессора, и до смерти в 1903 году его курс привлекал в среднем чуть больше одного студента в семестр. Написанная им книга была трудна для понимания, а используемые им собственные обозначения многие считали непонятными. Но в этих его непонятных формулировках скрывались поразительно яркие догадки.


В 1875–1878 годах Гиббс выпустил серию работ под общим названием «О равновесии гетерогенных субстанций», где блестяще излагались принципы термодинамики, можно сказать, почти всего – «газов, смесей, поверхностей, твердых тел, фазовых переходов… химических реакций, электрохимических ячеек, осмоса и выпадения в осадок», – перечисляет Уильям Кроппер[120]120
  Уильям Кроппер (William H. Cropper) – почетный профессор химии университета Сент-Лоуренс в Нью-Йорке. Автор книги «Великие физики: от Галилея до Ньютона».


[Закрыть]
. По сути, Гиббс показал, что термодинамика имеет отношение к теплу и энергии не только в масштабах больших и шумных паровых машин, но также оказывает существенное влияние на атомарном уровне химических реакций. «Равновесие» Гиббса назвали «Началами термодинамики»[121]121
  Тем самым подчеркивалась сопоставимость труда с «Началами» Ньютона.


[Закрыть]
, однако по не поддающимся объяснению соображениям Гиббс предпочел опубликовать сыгравшие такую важную роль результаты своих исследований в «Трудах Коннектикутской Академии искусств и наук» – журнале, которому удавалось быть почти неизвестным даже в Коннектикуте, потому-то Планк и узнал о Гиббсе, когда было уже поздно.

Не утратив присутствия духа – но, скажем, слегка обескураженный, – Планк обратился к другим предметам[122]122
  Планку в жизни часто не везло. Любимая первая жена умерла рано, в 1909 году, а младший из двух сыновей погиб в Первую мировую войну. У него также было двое дочерей-близнецов, которых он обожал. Одна умерла при родах. Другая взялась присматривать за маленькой девочкой и влюбилась в мужа ее сестры. Они поженились, и два года спустя она тоже умерла во время родов. В 1944 году, когда Планку было восемьдесят пять лет, в его дом попала бомба союзников [по антигитлеровской коалиции], и он потерял все – бумаги, дневники, все, что было собрано за целую жизнь. В следующем году его оставшийся в живых сын был уличен в заговоре с целью убийства Гитлера и казнен.


[Закрыть]
. Мы вскоре вернемся к ним, но сначала ненадолго (но по делу!) заглянем в Кливленд, штат Огайо, в учреждение, называвшееся тогда Школой прикладных наук Кейза. Там в 1880-х годах сравнительно молодой физик Альберт Майкельсон и помогавший ему приятель-химик Эдвард Морли предприняли серию экспериментов, получив любопытные и вызвавшие озабоченность результаты, которые окажут огромное влияние на последующее развитие событий.

По существу, Майкельсон и Морли непреднамеренно подорвали давно сложившуюся веру в существование некой субстанции, называемой светоносным эфиром, – стабильной, невидимой, невесо мой, неощутимой и, к сожалению, всецело воображаемой среды, которая, как считалось, пропитывает всю Вселенную. Порожденный Декартом, с готовностью принятый Ньютоном и почитаемый с тех пор почти всеми эфир занимал самое центральное место в физике XIX века, позволяя объяснить, как свет перемещается сквозь пустоту пространства. В нем особенно нуждались, потому что свет стали рассматривать как электромагнитные волны, то есть своего рода вибрации. А вибрации должны происходить в чем-то; отсюда потребность в эфире и долгая к нему приверженность. Еще в 1909 году выдающийся английский физик Дж. Дж. Томсон[123]123
  Дж. Дж. Томсон (Joseph John Thomson, 1856–1940) – английский физик, первооткрыватель электрона.


[Закрыть]
категорически утверждал: «Эфир – это не порождение фантазии спекулятивного философа; он так же необходим нам, как необходим воздух, которым мы дышим». И это спустя более чем четыре года после того, как было совершенно неоспоримо доказано, что его не существует. Словом, люди очень сильно привязались к эфиру.

Если бы вам потребовалось проиллюстрировать представление об Америке XIX века как о стране открытых возможностей, вряд ли вы нашли бы лучший пример, нежели карьера Альберта Майкельсона. Он родился в 1852 году на польско-германской границе в семье бедных еврейских торговцев, в раннем детстве переехал с семьей в Соединенные Штаты и вырос в Калифорнии, в лагере на приисках во время «золотой лихорадки», где его отец торговал одеждой. Не имея возможности по бедности платить за учебу в колледже, Альберт отправился в Вашингтон, округ Колумбия, и стал околачиваться у дверей Белого дома, чтобы во время ежедневного президентского моциона попадаться на глаза Улиссу С. Гранту. (То был куда более наивный век.) В ходе этих прогулок Майкельсон настолько снискал расположение президента, что тот согласился предоставить ему бесплатное место в Военно-морской академии США. Именно там Майкельсон освоил физику.

Десять лет спустя, уже будучи профессором в кливлендской Школе прикладных наук, Майкельсон заинтересовался возможностью измерить движение эфира – нечто вроде встречного ветра, который испытывают объекты, прокладывающие себе путь сквозь пространство. Одно из предсказаний ньютоновской физики заключалось в том, что скорость света, движущегося в эфире, должна меняться в зависимости от того, приближается наблюдатель к источнику света или удаляется от него, но никто еще не придумал способа измерить это. Майкельсону пришло в голову, что за полгода направление движения Земли вокруг Солнца меняется на противоположное. Поэтому, если выполнить тщательные измерения при помощи очень точного прибора и сравнить скорость движения света в противоположные времена года, то можно получить ответ.

Майкельсон уговорил недавно разбогатевшего изобретателя телефона Александра Грэма Белла предоставить средства на создание оригинального и точного прибора собственной конструкции, названного интерферометром, который мог с большой точностью измерять скорость света. Затем с помощью талантливого, но державшегося в тени Морли Майкельсон принялся за многолетние скрупулезные измерения. Работа была тонкой и изнурительной и на время приостанавливалась из-за серьезного нервного переутомления ученого, но к 1887 году были получены результаты. Они оказались совсем не такими, каких ожидали двое экспериментаторов.

Как написал астрофизик из Калифорнийского технологического института Кип Торн[124]124
  Кип Торн (Kip Stephen Thorne, р. 1940) – американский физик-теоретик, один из ведущих мировых экспертов по астрофизическим приложениям общей теории относительности, занимает позицию фейнмановского профессора теоретической физики в Калифорнийском технологическом институте.


[Закрыть]
: «Скорость света оказалась одинаковой во всех направлениях и во все времена года». Это был первый за двести лет – действительно ровно за двести лет – намек на то, что законы Ньютона, возможно, применимы не всегда и не везде. Результат опыта Майкельсона – Морли стал, по словам Уильяма Кроппера, «возможно, самым известным отрицательным результатом за всю историю физики». За эту работу Майкельсон удостоился Нобелевской премии по физике – причем он стал первым американцем, удостоенным этой награды, – правда, спустя двадцать лет. А до того опыты Майкельсона – Морли неприятно, словно дурной запах, витали на задворках научной мысли.

Удивительно, что, несмотря на свои открытия, Майкельсон на заре XX века причислял себя к тем, кто считал, что здание науки почти закончено и остается, по словам одного из авторов журнала Nature, «добавить лишь несколько башенок и шпилей да вырезать несколько украшений на крыше».

На деле же, разумеется, мир должен был вот-вот вступить в век такой науки, в которой многие люди вообще ничего не поймут и никто не будет в состоянии охватить все. Ученые вскоре обнаружат, что запутались в беспорядочном царстве частиц и античастиц, где вещи возникают и исчезают за отрезки времени, в сравнении с которыми наносекунды кажутся излишне затянутыми и бедными на события, где все незнакомо. Наука перемещалась из мира макрофизики, где предметы можно увидеть, подержать, измерить, в мир микрофизики, в котором явления происходят с непостижимой быстротой и в масштабах, не поддающихся воображению. Мы должны были вот-вот вступить в квантовый век, и первым, кто толкнул дверь, был до тех пор неудачливый Макс Планк.

В 1900 году, в зрелом возрасте сорока двух лет, теперь уже физик-теоретик в Берлинском университете, Планк обнародовал новую «квантовую теорию», утверждавшую, что энергия не непрерывный поток вроде текущей воды, а поступает обособленными частями, которые он назвал квантами. Это была действительно новая концепция, к тому же очень удачная. Вскоре она поможет решить загадку экспериментов Майкельсона – Морли, поскольку покажет, что свету вообще-то не обязательно быть волной. А в более отдаленной перспективе она станет фундаментом всей современной физики. Во всяком случае, это был первый сигнал, что мир скоро изменится.

Но поворотным пунктом – зарей нового века – стал 1905 год, когда в немецком физическом журнале Annalen der Physik появился ряд статей молодого швейцарского чиновника, не связанного с университетами, не имевшего доступа к лабораториям и не являвшегося постоянным читателем библиотек крупнее национального патентного бюро в Берне, где он работал техническим экспертом третьего класса. (Незадолго до этого заявление о повышении в должности до второго класса было отклонено.)

Его звали Альберт Эйнштейн, и за один этот богатый событиями год он представил в Annalen der Physik пять работ, из них три, по словам Ч. П. Сноу, «относились к числу величайших трудов в истории физики» – в одной посредством новой квантовой теории Планка исследовался фотоэлектрический эффект, другая была посвящена поведению мелких частиц во взвешенном состоянии (известному как броуновское движение), и еще в одной излагались основы специальной теории относительности.

В первой, за которую ее автор удостоился Нобелевской премии, объяснялась природа света (что, среди прочего, способствовало появлению телевидения)[125]125
  Эйнштейн был удостоен премии за несколько неопределенные «заслуги в области теоретической физики». Ему пришлось ждать награды шестнадцать лет, до 1921 года, – довольно долгий срок по любым меркам, однако пустяк по сравнению с присуждением премии Фредерику Рейнсу, который открыл нейтрино в 1957 году, а удостоился Нобелевской премии лишь в 1995-м, тридцать восемь лет спустя, или немцу Эрнсту Руске, изобретшему электронный микроскоп в 1932 году, а получившему Нобелевскую премию в 1986-м, почти через полстолетия. Поскольку Нобелевская премия не присуждается посмертно, важным условием ее получения наряду с изобретательностью является долголетие.


[Закрыть]
. Вторая содержала доказательство того, что атомы действительно существуют – факт, который, как ни странно, продолжал тогда оспариваться. А третья просто изменила мир.

Эйнштейн родился в 1879 году в Ульме, на юге Германии, но вырос в Мюнхене. В ранний период жизни мало что говорило о грядущих масштабах его личности. В 1890-х годах электротехнический бизнес отца стал приходить в упадок, и семья переехала в Милан, но Альберт, к тому времени уже подросток, уехал в Швейцарию продолжать образование – хотя с первой попытки не смог сдать вступительный экзамен. В 1896 году, чтобы избежать призыва в армию, он отказался от немецкого гражданства и поступил в Цюрихский политехнический институт на четырехгодичный курс, выпускавший преподавателей естественных наук для средних школ. Он был способным, но не особо выдающимся студентом.

В 1900 году он окончил институт и через несколько месяцев стал публиковаться в Annalen der Physik. Самая первая его работа о физике жидкостей в соломинках для питья (надо же!) появилась в одном номере с работой Планка о квантовой теории. С 1902 по 1904 год он опубликовал ряд работ по статистической механике, только потом узнав, что в Коннектикуте скромный плодовитый Дж. Уиллард Гиббс проделал то же самое в 1901 году, опубликовав результаты в своих «Элементарных основах статистической механики».

Альберт полюбил венгерскую студентку-однокурсницу Милеву Марич. В 1901 году у них родился внебрачный ребенок, дочь, которую они потихоньку отдали на удочерение. Эйнштейн своего ребенка никогда не видел[126]126
  Нельзя с уверенностью говорить об удочерении первого ребенка Эйнштейна – Лизерль. Никаких официальных данных о ее рождении и дальнейшей судьбе не сохранилось. Предположительно Милева Марич родила дочь по имени Лизерль, находясь у своих родителей, поскольку внебрачный ребенок помешал бы едва начавшейся карьере Эйнштейна на государственной службе. Из писем Эйнштейна известно, что в возрасте 1,5 лет Лизерль тяжело болела скарлатиной. Не исключено, что она просто не дожила до того времени, когда родители вступили в брак и могли забрать ее к себе.


[Закрыть]
. Два года спустя они с Милевой поженились.


Между двумя этими событиями Эйнштейн поступил на работу в швейцарское патентное бюро, где проработал следующие семь лет. Работа ему нравилась: она была достаточно интересной, чтобы дать работу уму, но не настолько напряженной, чтобы помешать занятиям физикой. Вот в таких условиях он в 1905 году и создал специальную теорию относительности.

«К электродинамике движущихся тел» – одна из самых удивительных научных публикаций, когда-либо выходивших в свет, как по изложению, так и по содержанию. В ней не было ссылок или сносок, почти никаких математических выкладок[127]127
  Это не вполне верное описание. Упомянутая статья Эйнштейна содержала довольно обширные, хотя и не очень сложные математические выкладки, были в ней и подстраничные сноски, но вот библиографических ссылок действительно не было.


[Закрыть]
, не было и упоминаний о предшествующих или оказавших влияние работах и говорилось лишь о помощи одного человека – коллеги по патентному бюро Мишеля Бессо. Выходило, писал Ч. П. Сноу[128]128
  Чарлз Перси Сноу (Charles Percy Snow, 1905–1980) – британский ученый и литератор. Наиболее известна его статья «Две культуры» (1959), в которой он отмечает, что разрыв между гуманитарной и естественно-научной культурами является главным препятствием для решения мировых проблем.


[Закрыть]
, что «Эйнштейн пришел к этим умозаключениям лишь благодаря отвлеченным размышлениям, без посторонней помощи, не слушая мнений других. Удивительно, но в значительной мере именно так оно и было».

Его знаменитое уравнение Е = mс² в данной работе отсутствовало, но появилось в кратком дополнении несколько месяцев спустя. Как вы, возможно, помните со школьных времен, Е в уравнении означает энергию, m – массу, а с² – квадрат скорости света.

В самых простых словах это уравнение означает, что масса и энергия обладают эквивалентностью. Это две формы одной вещи: энергия – это освобожденная материя; материя – это энергия, ожидающая своего часа. Поскольку с² (скорость света, умноженная сама на себя) – это на самом деле громадное число, формула показывает, что в любом материальном предмете связано чудовищное – действительно чудовищное – количество энергии[129]129
  Как с стало символом скорости света – своего рода загадка, но вот Дэвид Боданис предполагает, что оно происходит от латинского celentias, означающего скорость. В соответствующем томе «Оксфордского словаря английского языка», подготовленном лет за десять до появления теории Эйнштейна, для символа с указывается множество значений – от углерода (carbon) до крикета (cricket), но нет никакого упоминания о символе света или скорости.


[Закрыть]
.

Вы можете не считать себя дюжим малым, но если вы просто взрослый человек обычной комплекции, то внутри вашей ничем не приметной фигуры будет заключено не менее 7 × 1018 джоулей энергии. Этого достаточно, чтобы взорваться с силой тридцати очень больших водородных бомб, при условии, что вы знаете, как освобо дить эту энергию и действительно захотите это сделать. Во всем, что нас окружает, заключена такого рода энергия. Мы просто не очень сильны в деле ее высвобождения. Даже водородная бомба – самая энергичная штука, какую мы сумели на сегодня создать, – освобождает менее 1 процента энергии, которую она могла бы выделить, будь мы более умелыми.

Среди множества других вещей теория Эйнштейна объясняла механизм радиоактивности: как кусок урана может непрерывно испускать высокоэнергичные лучи и не таять от этого подобно кубику льда. (Это возможно благодаря высочайшей эффективности превращения массы в энергию в соответствии с формулой Е = тс².) Этим же объяснялось, каким образом звезды могут гореть миллиарды лет, не исчерпывая свое топливо. Одним росчерком пера, простой формулой Эйнштейн одарил геологов и астрономов роскошью оперировать миллиардами лет. Но самое главное – специальная теория относительности показала, что скорость света является постоянной и предельной. Ничто не может ее превысить. Теория относительности помогла нам увидеть свет (это не каламбур) в роли самого центрального понятия в наших представлениях о природе Вселенной. И, что также далеко не случайно, она решала проблему светоносного эфира, окончательно проясняя, что его не существует. Эйнштейн дал нам Вселенную, которая в нем не нуждалась.

Физики обычно не склонны уделять излишнее внимание утверждениям служащих швейцарского патентного бюро, поэтому, несмотря на обилие содержащихся в них полезных новшеств, статьи Эйнштейна мало кто заметил. Решив несколько величайших загадок Вселенной, Эйнштейн попробовал устроиться лектором в университет, но получил отказ, затем хотел стать учителем в средней школе, но и здесь ему было отказано. Так что он вернулся на свое место технического эксперта третьего класса – но, разумеется, продолжал думать. Конца еще даже не было видно.

* * *

Когда поэт Поль Валери[130]130
  Поль Валери (Paul Valery, 1871–1945) – французский писатель и поэт. Имел широкий круг интересов, в частности, переписывался с Луи де Бройлем и Альбертом Эйнштейном.


[Закрыть]
спросил однажды Эйнштейна, есть ли у него записная книжка, где он записывает свои идеи, Эйнштейн поглядел на него с неподдельным удивлением. «О, в этом нет необходимости, – ответил он. – Они не так уж часто у меня появляются». Вряд ли стоит говорить, что когда они у него появлялись, то, как правило, были хороши. Следующая идея Эйнштейна была величайшей среди когда-либо приходивших кому-то в голову – поистине величайшей из великих, как отмечают Бурс, Мотц и Уивер в своей объемистой истории атомной физики. «Как порождение одного ума, – писали они, – это, несомненно, высшее интеллектуальное достижение человечества»[131]131
  Речь идет о книге «Ученые-атомщики» (Boorse et al. The Atomic Scientists) – которая содержит более ста биографий ученых: от Тита Лукреция Кара до Ричарда Фейнмана.


[Закрыть]
. И это вполне заслуженная похвала.

Иногда пишут, что где-то около 1907 года Альберт Эйнштейн увидел, как с крыши свалился рабочий, и стал размышлять о проблеме гравитации. Увы, подобно многим забавным историям эта тоже представляется сомнительной. По словам самого Эйнштейна, он задумался о проблеме гравитации, просто сидя в кресле.

На самом деле то, до чего додумался Эйнштейн, было чем-то большим, нежели началом решения проблемы гравитации, поскольку ему с самого начала было очевидно, что гравитация – это единственное, что отсутствует в его специальной теории. «Специальным» в этой теории было то, что она имела дело в основном с предметами, движущимися свободно[132]132
  Широко распространено заблуждение, будто специальная теория относительности (СТО) не годится для описания ускоренного движения и вызывающих его сил. На самом деле СТО позволяет описывать движение под действием сил, но она не раскрывает природу гравитации и не объясняет процессы в очень сильных полях тяготения.


[Закрыть]
. Но что произойдет, если движущийся предмет – прежде всего свет – встретит такую помеху, как гравитация? Этот вопрос занимал его мысли большую часть следующего десятилетия и привел к опубликованию в начале 1917 года труда, озаглавленного «Космологические соображения об общей теории относительности»[133]133
  Сама общая теория относительности была обнародована в 1915 г.


[Закрыть]
. Специальная теория относительности 1905 года была, разумеется, глубоким и значительным трудом; но, как однажды заметил Ч. П. Сноу, если бы Эйнштейн в свое время не подумал о ней, это сделал бы кто-нибудь еще, возможно, в ближайшие пять лет; эта идея носилась в воздухе. Однако общая теория – совершенно другое дело. «Не появись она, – писал Сноу в 1979 году, – мы, возможно, ждали бы ее по сей день».

С его трубкой, неброской привлекательностью и словно наэлектризованной шевелюрой, Эйнштейн был слишком талантлив, чтобы вечно оставаться в тени, и в 1919 году, когда война была позади, мир внезапно открыл его. Почти сразу его теории относительности приобрели репутацию непостижимости для простых смертных. Исправлению этого впечатления не способствовали и казусы вроде того, что случился с газетой The New York Times, решившей дать материал о теории относительности. Как пишет об этом Дэвид Боданис[134]134
  Дэвид Боданис (David Bodanis) – автор ряда научно-популярных книг. Лауреат британской премии «Авентис» 2006 года за научно-популярную книгу «Электрическая вселенная: Как электричество включило современный мир» (русский перевод: М.: Колибри, 2009).


[Закрыть]
в своей превосходной книге «Е=mс²», по причинам, не вызывавшим ничего, кроме удивления, газета отправила брать интервью у ученого своего спортивного корреспондента, специалиста по гольфу, некоего Генри Крауча.

Материал был явно ему не по зубам, и он почти все переврал. Среди содержавшихся в материале живучих ляпов было утверждение о том, что Эйнштейну удалось найти издателя, достаточно смелого, чтобы взяться за выпуск книги, которую «во всем мире может уразуметь» лишь дюжина мудрецов. Не было такой книги, такого издателя, такого круга ученых, но слава осталась. Скоро число людей, способных постичь смысл относительности, сократилось в людской фантазии еще сильнее – и, надо сказать, в научной среде мало что делалось, чтобы помешать хождению сей выдумки.

Когда какой-то журналист спросил британского астронома сэра Артура Эддингтона, верно ли, что он один из трех людей во всем мире, кому понятны теории относительности Эйнштейна, Эддингтон на мгновение сделал вид, что глубоко задумался, а затем ответил: «Я пытаюсь вспомнить, кто третий». В действительности трудность в отношении относительности состояла не в том, что она содержала множество дифференциальных уравнений, преобразования Лоренца и другие сложные математические выкладки (хотя так оно и было – даже Эйнштейну требовалась помощь математиков при работе с ними), а в том, что она шла вразрез с привычными представлениями.

Суть относительности состоит в том, что пространство и время не абсолютны, а относятся к конкретному наблюдателю и наблюдаемому предмету, и чем быстрее они движутся, тем более выраженным становится эффект. Мы никогда не сможем разогнаться до скорости света, но чем больше мы стараемся (и чем быстрее движемся), тем сильнее мы деформируемся на взгляд стороннего наблюдателя.

Почти сразу популяризаторы науки принялись искать способы сделать эти представления доступными для широкого круга людей. Одной из наиболее успешных попыток – по крайней мере в коммерческом отношении – была «Азбука относительности» математика и философа Бертрана Рассела. Рассел приводит в книге образ, к которому с тех пор прибегали множество раз. Он просит читателя представить себе поезд длиною 100 метров, двигающийся со скоростью 60 процентов от скорости света. Человеку, стоящему на платформе, поезд показался бы длиной всего лишь 80 метров, а все находящееся внутри его будет подобным же образом сжатым. Если бы были слышны голоса пассажиров, то они звучали бы невнятно и растянуто, как на пластинке, вращающейся слишком медленно, а движения пассажиров казались бы в такой же степени замедленными. Даже часы в поезде, казалось бы, шли лишь на четыре пятых своей обычной скорости.

Однако – и в этом все дело – люди внутри поезда не ощущали бы этих искажений. Для них все в поезде выглядело бы совершенно нормальным. А вот мы на платформе казались бы им неестественно сплющенными и медлительными в движениях. Все, как видите, определяется вашим положением относительно движущегося предмета.

На самом деле этот эффект наблюдается всякий раз, когда вы двигаетесь. Перелетев Соединенные Штаты из конца в конец, вы выйдете из самолета примерно на одну стомиллионную долю секунды моложе тех, кого вы покинули. Даже расхаживая по комнате, вы чуть-чуть меняете свое восприятие времени и пространства. Подсчитано, что бейсбольный мяч, пущенный со скоростью 160 километров в час, по пути к базе увеличивает свою массу на 0,000000000002 грамма[135]135
  Если быть точнее, такой массе эквивалентна кинетическая энергия летящего мяча.


[Закрыть]
. Так что эффекты теории относительности реальны и были измерены. Трудность в том, что такие изменения слишком малы, чтобы оказывать на нас хоть сколько-нибудь ощутимое влияние. Но для других вещей во Вселенной – света, тяготения, самой Вселенной – они приводят к серьезным последствиям.

Так что если представления теории относительности кажутся нам непонятными, то это лишь потому, что мы не сталкиваемся с такого рода взаимодействиями в повседневной жизни. Однако, если снова обратиться к Боданису, все мы обычно сталкиваемся с проявлениями относительности другого рода, например, в том, что касается звука. Если вы гуляете в парке и где-то звучит надоедливая музыка, то, как вы знаете, если отойти куда-нибудь подальше, музыку станет не так слышно. Разумеется, это не из-за того, что сама музыка становится тише, просто изменится ваше положение относительно ее источника. Для кого-нибудь слишком маленького или медлительного, чтобы произвести этот опыт – скажем, для улитки, – мысль о том, что для двух разных слушателей барабан одновременно звучит с разной громкостью, может показаться невероятной.

Самой вызывающей и непостижимой из всех концепций общей теории относительности является мысль о том, что время – это часть пространства[136]136
  На самом деле объединение пространства и времени появилось уже в специальной теории относительности. Однако искривление пространства-времени, о котором идет речь дальше, действительно вводится только в общей теории относительности.


[Закрыть]
. Мы изначально рассматриваем время как бесконечное, абсолютное, неизменное; мы привыкли, что его неуклонный ход ничем не может быть нарушен. На деле же, согласно Эйнштейну, время постоянно меняется. Оно даже имеет форму. По выражению Стивена Хокинга[137]137
  Стивен Уильям Хокинг (Stephen William Hawking, р. 1942) – британский физик-теоретик, профессор математики Кембриджского университета. Основные направления исследований – космология и квантовая теория гравитации. В 1974 г. доказал, что черные дыры должны испускать излучение. Книга Хокинга «Краткая история времени», опубликованная в 1988 г., 4,5 года продержалась в списке бестселлеров лондонской газеты Sunday Times и разошлась суммарным тиражом около 10 млн экземпляров (русский перевод: СПб.: Амфора, 2010).


[Закрыть]
, оно «неразрывно взаимосвязано» с тремя измерениями пространства, образуя удивительную структуру, известную как пространство-время.

Что такое пространство-время, обычно объясняют, предлагая представить что-нибудь плоское, но пластичное – скажем, матрац или лист резины, – на котором лежит тяжелый круглый предмет, например железный шар. Под тяжестью шара материал, на котором он лежит, слегка растягивается и прогибается. Это отдаленно напоминает воздействие на пространство-время (материал) массивного объекта, такого как Солнце (металлический шар): оно растягивает, изгибает и искривляет пространство-время. Теперь, если вы покатите по листу шарик поменьше, то, согласно Ньютоновым законам движения, он будет стремиться двигаться по прямой, но, приближаясь к массивному объекту и уклону прогибающегося материала, он катится вниз, неотвратимо влекомый к более массивному предмету. Это гравитация – результат искривления пространства-времени.

Каждый обладающий массой объект оставляет небольшую вмятину в структуре космоса. Так что Вселенная – это, как выразился Деннис Овербай, «бесконечно проминающийся матрац». Гравитация с такой точки зрения не столько самостоятельная сущность, сколько свойство пространства, это «не “сила”, а побочный продукт искривления пространства-времени», пишет физик Митио Каку[138]138
  Митио Каку (Michio Kaku) – американский физик-теоретик японского происхождения, автор ряда монографий и нескольких научно-популярных бестселлеров, в частности «Физика невозможного» (русский перевод: М.: Альпина нон-фикшн, 2009). В 2006 году Каку подготовил на BBC серию программ, посвященных природе времени, он ведет большое научное ток-шоу на радио.


[Закрыть]
и продолжает: «В некотором смысле гравитации не существует; что движет планетами и звездами, так это искривление пространства и времени».

Разумеется, аналогия с проминающимся матрацем верна только в известных пределах, потому что не включает эффекты, связанные со временем. Но в данном случае наш мозг способен лишь на нее, ибо практически невозможно представить структуру, состоящую на три четверти из пространства и на одну четверть из времени, причем все в нем переплетено, как нити шотландского пледа. Во всяком случае, я думаю, можно согласиться, что это была потрясающая по масштабу идея для молодого человека, глазевшего из окна патентного бюро в столице Швейцарии.

* * *

Среди многого другого общая теория относительности Эйнштейна говорила о том, что Вселенная должна либо расширяться, либо сжиматься. Но Эйнштейн не был космологом и разделял общепринятое мнение о том, что Вселенная вечна и неизменна. Во многом для того, чтобы отразить это представление, он ввел в свои уравнения элемент, получивший название космологической постоянной, которая играла роль произвольно выбираемого противовеса действию гравитации, своего рода математической кнопки «пауза». Авторы книг по истории науки всегда прощают Эйнштейну этот ляпсус, но, по существу, это было громадным научным промахом. Он это знал и называл «самой большой ошибкой в своей жизни»[139]139
  Введение космологической постоянной в уравнения общей теории относительности было математически совершенно корректным шагом. В последние годы новые астрофизические данные вновь поставили перед учеными вопрос о том, что космологическая постоянная (или нечто наподобие нее) может потребоваться в уравнениях, описывающих эволюцию Вселенной. Так что «величайшая ошибка Эйнштейна» вполне может оказаться одним из его пророчеств. Но нельзя не признать, что из-за веры в статичность Вселенной и введения в уравнения космологической постоянной Эйнштейн не смог на основе собственной теории предсказать расширение Вселенной. Это действительно было очень досадным упущением для Эйнштейна, но его не замедлили восполнить другие космологи, в первую очередь де Ситтер, Леметр и Фридман.


[Закрыть]
.

Так уж совпало, что приблизительно в то же время, когда Эйнштейн добавлял к своей теории космологическую постоянную, в Лоуэлловской обсерватории в Аризоне один астроном по имени Весто Слайфер (вообще-то он был из Индианы), снимая спектры отдаленных галактик, обнаружил, что они выглядят удаляющимися от нас[140]140
  Свои наблюдения Слайфер произвел на 5 лет раньше – в 1912 г., однако опубликовал результаты только в 1917 г.


[Закрыть]
. Вселенная не была неподвижной. Галактики, которые разглядывал Слайфер, обнаруживали явные признаки доплеровского смещения – тот же механизм стоит за характерным звуком: и-и-иж-жу-у-у, который производят пролетающие мимо нас по треку гоночные машины[141]141
  Эффект назван по имени австрийского физика Иоганна Кристиана Доплера, который первым теоретически предсказал этот эффект в 1842 году. Если коротко, происходит следующее: когда движущийся источник приближается к неподвижному объекту, звуковые волны уплотняются, толпясь перед приемником (скажем, вашими ушами). Это подобно тому, как любые предметы, подпираемые сзади, нагромождаются на неподвижный объект. Это нагромождение воспринимается слушающим как более высокий звук (и-и-иж). Когда же источник звука проходит мимо и начинает удаляться, звуковые волны растягиваются и удлиняются и высота звука внезапно падает (жу-у-у).


[Закрыть]
. Это явление также характерно и для света, и в случае удаляющихся галактик оно известно как красное смещение (потому что удаляющийся от нас источник света выглядит покрасневшим, а приближающийся – голубеет).

Внимание! Это не конец книги.

Если начало книги вам понравилось, то полную версию можно приобрести у нашего партнёра - распространителя легального контента. Поддержите автора!

Страницы книги >> Предыдущая | 1 2 3 4 5 6 7 8 9 10
  • 0 Оценок: 0

Правообладателям!

Данное произведение размещено по согласованию с ООО "ЛитРес" (20% исходного текста). Если размещение книги нарушает чьи-либо права, то сообщите об этом.

Читателям!

Оплатили, но не знаете что делать дальше?


Популярные книги за неделю


Рекомендации