Электронная библиотека » Дэвид Минделл » » онлайн чтение - страница 5


  • Текст добавлен: 3 марта 2017, 20:00


Автор книги: Дэвид Минделл


Жанр: Зарубежная образовательная литература, Наука и Образование


Возрастные ограничения: +12

сообщить о неприемлемом содержимом

Текущая страница: 5 (всего у книги 18 страниц) [доступный отрывок для чтения: 5 страниц]

Шрифт:
- 100% +

Неожиданно выявилось одно отличие «Ясона» от «Элвина». Группа «Элвина» являлась эксплуатирующей организацией – они управляли используемым, сертифицированным аппаратом. Примерно каждые восемнадцать месяцев «Элвин» проходил технический осмотр, во время которого в аппарат вносились изменения, хотя чаще инженеры придерживались философии «не трогай то, что работает». Постепенно это привело к серьезному отставанию «Элвина» от современных технологий, особенно в области компьютеров и усовершенствованных сенсоров.

Однако «Ясон» появился в Лаборатории глубоководных погружений – в исследовательской конструкторской группе. Поскольку аппарат не был сертифицирован военно-морскими силами, с ним всегда можно было экспериментировать и вносить какие-то изменения. Он находился в постоянной разработке, и обычно мы завершали переоборудование, только когда аппарат был уже на полпути к месту погружения.

Ученые пребывали в сомнениях. Техника была не апробирована. В некоторых из первых экспедиций возникало столько технических трудностей, что они возвращались только с минимальным набором данных. Во время первых экспедиций случались и угрожающие жизни аварии – однажды, когда мы вытаскивали из воды «Ясона» посреди ночи, на нас упал кран. В другой раз длинный кабель (со смертельно высоким напряжением) размотался на палубе во время шторма в Северной Атлантике. Новые роботы пока не показали себя более дешевыми или безопасными по сравнению с «Элвином». Даже в тех экспедициях, которые прошли хорошо, непродолжительные мгновения феерического успеха были омрачены долгими днями проблем и вынужденного бездействия.

Куда важнее было то, что многие ученые просто не понимали, как такой робот может содействовать успеху в их области науки. «Люди говорят, дистанционно управляемый аппарат? Пфф! А что они будут делать? Это никогда не сработает!» – вспоминал Боуэн. Они выросли, восхищаясь «Элвином», его защищающей экипаж конструкцией, милым названием и десятилетиями безотказной работы (хотя некоторые из более пожилых ученых, конечно, помнили первые десятилетия, когда «Элвин» был ненадежным, уязвимым и часто терпящим поражение). Дистанционная наука выглядела угрожающей для профессионального самоопределения ученого-исследователя. Почему они добровольно должны были отказаться от захватывающих путешествий в глубины?

Еще один член нашей команды вспоминал трудную, гнетущую работу по «преодолению барьеров в глазах потенциальных пользователей, которые не могли увидеть то, что было совершенно очевидно любому инженеру. Я имею в виду, почему вообще нужно объяснять, какая польза от дистанционно управляемого устройства в глубинах океана?» Он считал, что это «социальное явление… целый комплекс явлений». Слоган этого комплекса? «Проект "Элвин"». Два десятилетия шла борьба за поддержание жизнеспособности «Элвина», и со стороны все выглядело так, словно дистанционно управляемые устройства хотят оттяпать у прославленного аппарата кусок пирога.

У Уилла Селларса была интересная точка зрения на эту борьбу. В 1989 году он перешел из пилотов «Элвина» в пилоты «Ясона». Во время экспедиции «Элвина», продолжавшейся примерно три недели, каждый пилот участвовал примерно в пяти погружениях из двадцати. Обычно один и тот же ученый оказывался с пилотом внутри аппарата не более пары раз. Став пилотом «Ясона», Селларс, по его собственному мнению, стал работать в более тесном взаимодействии с учеными, «потому что тут ты контактировал с гораздо бо́льшим их числом».

«Элвин» разрабатывался как поисковый инструмент (и в этом он никогда не был особенно хорош). Поля зрения трех иллюминаторов не перекрывались вообще, чтобы три сидевших внутри человека имели максимальный обзор морского дна в любой момент времени. Но бо́льшую часть времени «Элвин» занимался отбором образцов и манипуляциями, и ученые никак не могли увидеть, что делает пилот, разве что по очереди заглядывали в его иллюминатор, что прерывало работу. Или же они смотрели на экран видеокамеры, как делал Хольгер Яннаш во время галапагосской экспедиции 1979 года. «И вы найдете людей, которые погружались на "Элвине", – вспоминал Селларс, – и наблюдали за происходящим, глядя исключительно в этот четырехдюймовый монитор, расположенный над иллюминатором». Удаленное присутствие оказалось привлекательным даже внутри «Элвина».

Несмотря на это соперничество, в течение нескольких следующих лет мы продолжали сочетать дистанционно управляемые и управляемые человеком аппараты для опытного сравнения впечатлений и качества данных. Я погружался в «Элвине» неподалеку от Сиэтла к гидротермальным источникам хребта Эндевор, чтобы установить вокруг них свои навигационные инструменты. Из кабины мы видели ошеломляющие картины переливающейся воды, бьющей вверх со дна источников. Вода так сверкала, что напоминала гладкие волнующиеся озерца ртути, испещренные короткими черными завитками, которые вились, как повернутые вспять струи сигаретного дыма.

Менее чем через неделю мы вернулись на это место с «Ясоном», который также сделал великолепную видеозапись. Но куда больше мы гордились техническим достижением нашего погружения, когда мы использовали «Ясона», чтобы взять химические пробы из этих плюмажей. Мы заставили аппарат пролететь с помощью автопилота, контролируемого компьютером, через гидротермальный шлейф выходящих газов (аналог дымовой трубы), чтобы провести точные химические измерения. В результате этого исследования удалось создать трехмерную химическую карту плюмажа извергающейся жидкости, которая позволила химику Расселу Макдаффу впервые точно определить, как гидротермальная жидкость смешивается с окружающей морской водой.

Это был первый осторожный намек на технологии, которые реализуются несколько лет спустя, во время картографирования мест древних кораблекрушений в районе банки Скерки – утверждение супервизорного управления в понимании Даны Йоргера. Сочетание навигации, датчиков, камер и точного управления посредством компьютера превратило робота в нечто, полностью отличающееся от так называемого движущегося глаза или управляемого людьми аппарата.

«Ясон» оцифровывал морское дно, создавал виртуальные трехмерные модели, которые могли существовать только внутри компьютера. Интеллект, или автономность, значились в конце списка его характеристик; вся конструкторская мысль была направлена на то, чтобы обеспечить движение аппарата в заданном направлении, и исключительно в нем. Интеллектом должен был обладать исследовательский штаб, который теперь вместо того, чтобы сидеть внутри «Элвина», занимал место на борту судна в пункте управления «Ясоном» и еще активнее погружался в совокупность данных через недели или месяцы после экспедиции.

Тем не менее споры становились все более яростными, потому что были немаловажными. Какой способ присутствия человека является предпочтительным на дне моря? Этот вопрос затрагивал научную политику государства и вопросы финансирования. Официально Вудс-Хоул придерживался позиции «оба направления одинаково ценны»; это означало, что океанографический институт делает большие вклады, как финансовые, так и культурные, и в «Элвина», и в «Ясона». Но океанографы – маленькое сообщество с ограниченными ресурсами, и оно не может позволить себе дважды выделять ресурсы только ради того, чтобы избежать споров.

«Элвину» было почти сорок лет. Хотя бо́льшую часть оборудования аппарата заменили в ходе многочисленных технических осмотров, основная конструкция была произведена в 1960-е годы, и титановая сфера уже доживала свои дни из-за усталости металла. Нужно ли заменить «Элвина» новой, полностью модернизированной моделью? Как будет выглядеть новый «Элвин»? Какие миссии он сможет выполнять?

Пользующаяся влиянием группа ученых утверждала, что новый «Элвин» должен быть сконструирован так, чтобы погружаться на 10 000 м, по сравнению с возможностью погружения на 4500 м у существующего аппарата. Приводя красочную историю с гидротермальными источниками, они доказывали, что есть убедительные причины погрузиться глубже, хотя бы для того, чтобы все осмотреть. Они апеллировали к чувству национальной гордости, так как японцы построили батискаф под названием «Синкай», который мог погружаться на 6500 м, и некоторых задевало, что «Элвин» больше не является самым глубоководным аппаратом.

Конечно, если посмотреть, на какую глубину в действительности чаще всего погружался «Элвин», то она колеблется от 2400 до 4000 м, где ученые изучали гидротермальные источники. Заявленная величина 10 000 м была просто астрономической, и эта идея вскоре забуксовала, так как стало очевидно, что дистанционно управляемые или автономные аппараты могут исследовать эти глубины с меньшими затратами и без всякого риска для жизни.

Вторым аргументом в пользу нового «Элвина» было качество изображения. «Мы все знаем, насколько лучше видно из "Элвина" по сравнению с дистанционно управляемым устройством», – настаивали ученые. В то время «Ясон II», улучшенный и увеличенный аппарат, только входил в эксплуатацию, но не поддерживал запись видеоизображения высокого разрешения. Я спросил его конструкторов (моих бывших коллег), почему они не добавили HD-видео, и они ответили: «Это не было обязательным требованием ученых».

К тому времени я перешел из института Вудс-Хоул в Массачусетский технологический институт и следующие шесть лет провел в комиссиях, которые осуществляли контроль над «Элвином» и «Ясоном» от лица правительственных спонсоров. При этом я выступал в роли, совмещающей адвоката дьявола и социолога. Я видел, что ученые мыслят достаточно путано, поэтому начинал задавать вопросы, чтобы помочь прояснить разногласия. Если управляемый человеком аппарат должен сохраниться из-за качества изображения, не значит ли это, что перед погружением надо пройти обследование у офтальмолога? Нет, все не так, настаивали они. «Дело в концентрации внимания, – сказал один из них. – Всем известно, сколько народа собирается в пункте управления "Ясоном", а в "Элвине" находятся только двое ученых и пилот, и они могут по-настоящему сосредоточиться».

Но должна ли именно способность сосредотачиваться оправдывать строительство нового глубоководного аппарата? Ученые пытались сослаться на личный опыт.

Как и в случае с другими типами дистанционно управляемых роботов, обоснование уникальных человеческих способностей, требующих непосредственного присутствия людей на дне моря, изменялось вместе с развитием техники. В конце концов один ученый встал и сказал: «Мы все знаем, что возможность погрузиться на глубину в "Элвине" была одним из факторов, который подтолкнул нас к изучению этой области науки, когда мы окончили колледж. Мне не хочется думать, что у наших выпускников не будет такой возможности».

«Наконец-то мы сдвинулись с мертвой точки», – подумал я. Этот аргумент относился к области профессионального самоопределения: мы – полевые ученые, мы отправляемся в поле, а наше поле – это глубины океана. Нам нужно вдохновлять и обучать следующее поколение. Затем был приведен культурный аргумент: «Элвин» – это символ, люди связывают его с институтом, он привлекает людей к науке об океане и к науке в целом. Очень хороший аргумент – сродни «вдохновляющей роли космических полетов», которую озвучивали, чтобы поддержать пилотируемые полеты в NASA.

На кону были реальные ресурсы: весь океанографический бюджет Соединенных Штатов составлял примерно 100 млн долларов, а создание нового «Элвина» оценивалось по меньшей мере в 40 млн, то есть почти в половину. Более того, стоимость роботизированных аппаратов колебалась от нескольких сотен тысяч до нескольких миллионов долларов, а значит, новый «Элвин» стоил бы как сорок или даже сто новых роботов. С помощью такого количества роботов можно охватить большую площадь океанского дна. Но такая математика имеет смысл только в том случае, если финансирование строительства аппарата – это игра, из которой победителем выходит только один участник. Если «Элвин» может обеспечить финансирование от конгресса на уровне, недоступном никакому другому аппарату, тогда, конечно, почему бы не построить новый – зачем упускать доступные средства? В свою очередь, если деньги на финансирование нового «Элвина» будут взяты из средств других проектов, то по его поводу разгорятся серьезные споры. Но, конечно, это был вопрос научной политики Вашингтона, а не технической осуществимости.

Как и в космической отрасли, военном деле, авиации и многих других областях, столкнувшихся с новым способом работы с помощью роботов, самые острые аргументы были связаны не с особыми техническими возможностями, а с гордостью, культурой и профессиональным самоопределением. В конечном итоге комиссия, большинство которой составляли ученые, использующие «Элвина», рекомендовала построить новый «Элвин», и институт Вудс-Хоул решил сделать новую прочную сферическую капсулу с иллюминаторами бо́льшего размера, а почти все остальное оставить от старого аппарата. Теперь «Элвин» мог погружаться на 6000 м, но не на 10 000 м, как вначале требовали ученые.

После капитального ремонта получился скромно модернизированный «Элвин». Теперь поля зрения иллюминаторов перекрывались, а мониторы стали больше. Также новый «Элвин» оснастили набором электроники и программного обеспечения, первоначально разработанным для «Ясона» и автономных роботов.

Таким образом, удаленный способ исследований вовсе не вытеснял прямое присутствие людей. Эти способы дополняли друг друга. Поначалу у «Ясона» был примитивный манипулятор, поэтому «Элвин» представлял собой аппарат, отличающийся изяществом и силой. Когда у «Ясона II» появились такие же руки, как у «Элвина», ученые выделяли «Элвина» за качество изображения, хотя сами же не требовали сделать HD-видео на новом «Ясоне». Постепенно роботизированные части проникли под корпус «Элвина». Теперь у него была доплеровская гидроакустическая система, такая же, как та, которая использовалась при навигации дистанционно управляемых и автономных аппаратов, и управляющее программное обеспечение «Ясона», позволяющее большому аппарату двигаться по точным маршрутам и придерживаться выбранных участков.

Чем же стал современный «Элвин», как не роботом, внутри которого сидят люди? Волоконно-оптические кабели теперь были толщиной в волос и могли передавать на поверхность гигабайты информации. Почему бы не присоединить один из них к «Элвину» и не позволить научной группе на поверхности присоединиться к участникам погружения в реальном времени? Эта идея предлагалась годами, но так и не была осуществлена. Уничтожила бы она «автономность» погружения «Элвина»? Как бы то ни было, пилоты глубоководного аппарата и их научные партнеры ревностно хранили дух товарищества и сосредоточенное уединение своей титановой сферы.

На пороге XXI века появились целые классы новых аппаратов. Эти автономные подводные аппараты могли двигаться с помощью энергии собственной батареи, без всяких тяжелых кабелей, соединяющих их с судном. Они могли быть меньше, легче и проворнее, чем аппараты типа «Ясона», и передвигаться с большей точностью, чем прежде, поскольку никак не зависели от судна. В то же время они редко плавали полностью сами по себе – при любой возможности поддерживали связь с судном посредством гидроакустических сообщений. Даже при низкой пропускной способности такие системы могли каждые несколько минут посылать эквиваленты текстовых сообщений с информацией о состоянии аппарата и его положении. Как и «Ясон», они работали эффективнее всего, когда придерживались поставленной задачи, а их реальный вклад в развитие науки включал в себя, как и в случае с «Ясоном», оцифровку морского дна. Мы подробнее расскажем об «автономности» этих аппаратов в главе 6.

Тем временем появляются еще более современные аппараты, благодаря которым границы между системами, управляемыми человеком, дистанционно и автономно, размываются. В 2009 году аппарат института Вудс-Хоул побил рекорд самого глубокого погружения, опустившись более чем на 11 000 м в Марианскую впадину. Это был не воспроизведенный «Элвин» и не традиционный дистанционно управляемый аппарат, а скорее гибридный дистанционный аппарат под названием «Нерей», который мог управляться дистанционно (через кабель) или действовать автономно (без каких-либо ограничений). Как и «Ясон», «Нерей» работал с плавучей базой, то есть не отходил от своих операторов дальше, чем на несколько километров. Как ни печально, в 2014 году «Нерея» потеряли в желобе Кермадек у берегов Новой Зеландии. Возможно, он был раздавлен колоссальным давлением на своей рабочей глубине 10 000 м. Ни один человек при этом не пострадал.

Дистанционное присутствие на дне океана вдохновляет и фанатиков науки, и заядлых путешественников, при этом тело исследователя, который сидит перед монитором, не испытывает никакого напряжения. Вначале поступающие данные кажутся неосязаемыми, разочаровывающими. Требуется немного воображения, чтобы погрузиться в мозаику цифровых фотографий или батиметрических карт. Но любая из них – это двери в новый мир, который едва ли можно представить себе внутри сферы «Элвина». Здесь каждый волен в течение многих месяцев заниматься исследованиями в часы досуга и обсуждать их с коллегами по всему миру. Здесь каждый может проплыть над обломками древнего кораблекрушения и посмотреть на них с выбранного ракурса.

С одной стороны, все, что мы сделали, – это изменили место нахождения людей и время, за которое они выполняют свою работу. Тем не менее, сделав это, мы трансформировали сущность самой работы, и таким образом поменялось представление о том, что значит быть океанографом, археологом, исследователем.

Глава 3
В воздухе

Когда пилоты рейса 447 авиакомпании Air Francе пытались восстановить контроль над самолетом, который падал в черном небе, теряя по 3000 м высоты в минуту, пилот Давид Робер в отчаянии воскликнул: «Мы утратили контроль над самолетом, мы ничего не понимаем, мы перепробовали всё!» В этот самый момент, по трагической иронии судьбы, они летели на полностью исправном самолете. Проблема с обледеневшими трубками Пито, которая стала причиной отключения автопилота и системы дистанционного управления рулями, устранилась сама собой примерно через минуту.

Тем не менее испуг, замешательство, по меньшей мере 19 предупреждений и тревожных сообщений, противоречивая информация в сочетании с недостатком опыта ручного управления полетом привели экипаж к тому, что самолет вошел в опасное сваливание. Спасение было бы возможно, если бы пилоты использовали старый метод при сомнительных показаниях скорости – уменьшили угол тангажа, поддерживали горизонтальный полет без крена, и тогда самолет полетел бы как надо, – но команда не смогла разобраться в ситуации и найти из нее выход. В отчете об аварии это было описано как «полная потеря когнитивного контроля над ситуацией».

Записи последних минут полета рейса 447 производят ужасающее впечатление. Пилоты чувствуют, как утрачивают понимание происходящего вокруг них, падают с неба и обрекают на гибель себя и пассажиров, за жизни которых несут ответственность. Эти четыре с половиной минуты представили в унылом сжатом микрокосме дилемму автоматизированных систем, с которой сталкиваемся мы все: когда компьютеризированное управление отделяет нас от реальной сущности задач, мы можем потерять способность работать без компьютеров и стать совершенно другими людьми. Если эти системы откажут или утратят связь, как это неизбежно, хотя и редко, происходит, мы, возможно, не сумеем снова включиться в процесс и вновь стать такими же людьми, какими были раньше.

Небеса всегда были жестоки к беспомощным людям: как обнаружил Икар, стоит только потерять крылья, и ты обрушишься на землю. Сегодняшние авиалайнеры летают на многокилометровой высоте и высокой скорости в разреженной атмосфере, где даже хорошо обученный пилот с трудом может управлять самолетом вручную. Кажется, что потеряешь свой компьютер и тут же рухнешь вниз, как Икар.

В отличие от океанографического аппарата или робота в глубинах океана, кабина экипажа коммерческого авиалайнера, являясь сложной технической системой, работающей в экстремальных условиях, напрямую связана с нашими жизнями. Поднимаясь на борт самолета, как это каждый день делают миллионы людей на десятках тысяч авиарейсов, мы доверяем нашу физическую безопасность находящимся в кабине людям и машинам, которые должны благополучно поднять нас в воздух и вернуть обратно на землю. Какую роль в этом играют пилоты? Приняв тот факт, что они иногда совершают ошибки, не должны ли мы полностью исключить их из процесса?


У пилота авиакомпании Qantas Airlines Ришара де Креспиньи классический послужной список. В детстве он восхищался авиацией и военной службой, затем вступил в мир коммерческих авиалиний и прошел свой путь от небольших реактивных самолетов до «Боинга-747». И в конце концов стал командиром экипажей больших лайнеров «Аэробус». Но в свободное время он, по его собственным словам, – зануда, который программирует компьютеры и даже управляет маленьким бизнесом, связанным с базами данных. Также он заядлый мотоциклист, человек, который чувствует себя «комфортно, испытывая технику, чтобы посмотреть, что она умеет».

В 2004 году де Креспиньи прошел переподготовку и, покинув пилотскую кабину «Боинга» классической серии со старомодными круглыми циферблатами, пересел на более автоматизированный компании Airbus. «Я должен был избавиться от философии Boeing, которую изучал предыдущие 18 лет, – писал де Креспиньи, – и заменить ее полностью новой философией Airbus. Это почти то же самое, что заново учиться летать». Ему нравился автоматизированный «Аэробус», но новый самолет заставлял пилота чувствовать себя несколько неуютно. «Мне не нравилось управлять машинами, которые я не полностью понимаю. Эта привычка сформировалась у меня, когда я подростком копался в потрохах мотоциклов и автомобилей. Мне необходимо было разобраться в том, как машина сконструирована и собрана». В его словах звучат знакомые интонации, когда он приходит к заключению: «Пилоты "Аэробуса" являются системными операторами в той же мере, что и авиаторами», – но по-прежнему ощущает желание «вникнуть в суть вопроса глубже, чем позволяет система "Аэробуса"».

Четвертого ноября 2010 года де Креспиньи был вынужден вникнуть в систему, поскольку столкнулся с критической ситуацией сродни той, которая произошла с командой рейса Air France, но в какой-то мере намного более угрожающей. Он летел на самолете «Аэробус A-380» – гигантском двухпалубном лайнере с четырьмя двигателями – из Сингапура в Австралию. Через четыре минуты после взлета один из двигателей взорвался. Осколки от разрушившейся турбины повредили множество топливных, гидравлических и электрических магистралей в крыле воздушного судна, выведя из строя контуры управления. Из пробоин в топливных баках фонтаном начало бить топливо.

Электронный централизованный бортовой монитор – выдаваемые компьютером сигналы тревоги отвлекли внимание экипажа самолета Air France – начал выстреливать в де Креспиньи очередями сообщений, каждое из которых требовало от пилотов выполнения перечня проверочных операций, но едва они успевали пройти один из них, как появлялся следующий. «Мы выполняли один перечень за другим, а они все прибывали – серьезные перечни, просто ужасные». В целом на пилотов за два часа свалилось 130 аварийных сообщений о незначительной неисправности и 120 основных предупреждающих сигналов.

Де Креспиньи был настолько перегружен, реагируя на предупреждения компьютера, что не мог распознать причину этого постоянного потока поломок. «Это было как участие в военном эксперименте по стрессоустойчивости. …Мы пытались угнаться за компьютерной программой, – писал де Креспиньи, – а возможно, должны были просто взять управление самолетом на себя и приземлиться».

В конце концов, де Креспиньи вспомнил действия ведущего руководителя полетом Джина Кранца во время аварии на «Аполлоне-13»: не зацикливаться на поломках, выяснить, что работает, и действовать с работающей аппаратурой так, чтобы благополучно вернуться. Де Креспиньи привел в порядок оставшиеся у него ресурсы, сосредоточился, и команда благополучно приземлила борт рейса QF32 в Сингапуре, при этом никто даже не получил травм.

Каждый раз, когда из-за человеческой ошибки гибнут люди, мы можем вспомнить случаи, когда жизни были спасены благодаря здравому смыслу и умениям людей. Рейс QF32 и «чудесное» приземление самолета US Airlines в реку Гудзон в 2009 году, выполненное капитаном Чесли Салленбергером, показывают, что опытные, хорошо подготовленные, сметливые люди – критически важные составляющие безопасности этих систем, от которых зависят наши жизни. Это последняя линия обороны, когда машины отказывают.

Случай с рейсом 447 авиакомпании Air France и другие подобные истории разрушают эти надежды. Летом 2013 года пилоты рейса 214 авиакомпании Asiana Airlines не смогли посадить современный «Боинг-777» в аэропорту Сан-Франциско в идеально ясный день. При аварийной посадке погибли три человека и многие получили травмы. Обозреватели задавались вопросом: не атрофировались ли из-за автоматизации их летные навыки, необходимые теперь только в критической ситуации?

Технические изменения по своей природе вызывают такие проблемы. Новые поколения авиалайнеров, кажется, изобилуют возросшим количеством предохранительных систем, и сложность всех этих систем увеличивается. Цифровое бортовое оборудование и программное обеспечение, конечно, сделали шаг вперед в плане упрощения и улучшения интерфейсов. У них образцовые показатели безопасности, и благодаря им самолеты стали безопаснее в целом. Но они же делают пилотирование самолетов сложнее. Яркий пример: системы управления полетом – компьютеры, контролирующие все плановые полетные задания, – имеют громоздкий интерфейс клавиатуры в стиле 1980-х, который вовлекает пилотов в процесс «синтаксических конструкций, последовательностей и процедур, а не образного мышления».

Авиации свойственен парадокс: по мере увеличения автоматизации возрастает безопасность во многих аспектах, но на пилотов в то же время ложится больший груз. Каждая техническая система может в какой-то момент отказать, а люди в эти критические минуты будут вынуждены вмешаться. Но, слишком отдалившись от своей машины, они, вероятнее всего, растеряли свои навыки, и тогда их вмешательство может привести к беде. Именно это случилось с рейсом 447 авиакомпании Air France. Но просто обвинить пилотов и объяснить все эти аварии и несчастные случаи «человеческими ошибками» не значит понять суть проблемы.

Несколько десятилетий ученые изучают этот вопрос, и полученные ими ответы нельзя назвать простыми. Джон Лаубер, авторитетный инженер по авиационной безопасности, который долгое время работал в Национальном управлении безопасности перевозок США, с иронией подводит итоги этих исследований следующим образом:

Автоматизация кабины пилотов увеличивает, уменьшает и перераспределяет загрузку. Она улучшает осведомленность летчика об обстановке в полете, выводит пилотов из схемы управления, увеличивает продолжительность полета по приборам, освобождает пилота от наблюдения за обстановкой, смягчает требования к тренировке, повышает требования к тренировке, делает работу летчика легче, повышает усталость, изменяет роль пилота, не изменяет роли пилота, делает оборудование дешевле, дороже, имеет высокую надежность, минимизирует возможность человеческой ошибки, ведет к ошибкам, изменяет саму природу человеческой ошибки, устраняет мелкие ошибки, повышает вероятность крупных ошибок, пилоты хотят, чтобы она была, пилоты считают, что ей нельзя доверять, ведет к скуке, избавляет пилотов от рутины и, наконец, повышает авиационную безопасность и оказывает на нее неблагоприятный эффект.

«Сюрпризы автоматизации», «зависимость от автоматизации» и «предубежденность по поводу автоматизации» были изучены учеными. Один пилот, у которого я брал интервью, отзывался о компьютерах своего самолета как «о кобре, замершей перед прыжком… Пока у меня есть хорошая длинная палка и я могу в нее тыкать, – добавлял он, – со мной, возможно, все будет хорошо, но я не могу быть уверен, что она не набросится на меня и не укусит».

На видео, записанном в 1990-е годы, мы можем увидеть учебный семинар авиакомпании American Airlines, где опытный пилот-инструктор сокрушается по поводу «детей пурпура» – пилотов, которые стали столь зависимы от автоматизации, что просто откидываются на спинку кресла и позволяют компьютеру вести самолет по курсу, который на мониторе показывается пурпурной линией.

Тем не менее большинство современных пилотов, как де Креспиньи, проходили обучение и начинали работать в традиционных кабинах с круглыми циферблатами и только потом переходили на компьютеризированные самолеты. Но современные молодые пилоты, которые делают карьеру сегодня, никогда не летали на воздушном судне с традиционным альтиметром или указателем воздушной скорости. Являются ли они другими людьми? Как признался мне один молодой пилот: «Кажется, сейчас все изменилось… это обычная работа. Ты садишься, включаешь компьютер, потом возвращаешься на землю, выключаешь компьютер и едешь домой».

Каким же стал новый опыт этой профессии, появившейся сто лет назад?

«Что он сейчас делает?» – это вопрос, который все пилоты задают по поводу своих компьютеров в тот или иной момент (исследователи называют это явление «режимом узнавания»). «Каждый раз, когда я говорю это, я ощущаю досаду, – рассказывает один пилот, – потому что я очень хорошо знаю, что 99 % времени он делает именно то, что я велел делать, а я велю ему делать то, чего сам не понимаю». Существует мнение, что только неопытные пилоты задают вопрос «Что он сейчас делает?». Опытный пилот просто пожмет плечами и скажет: «Ну, он так иногда делает». В этом ответе скрыто покорное смирение перед новой реальностью. Третьи вообще сердито заявляют: «Почему он это делает? – неправильный вопрос. Если ты хочешь задать вопрос, ты должен спросить: "Почему я позволил ему контролировать меня?" Избавься от него. Верни себе самолет».

На карту поставлены основополагающие идеи о человеческом факторе, контроле за чьей-то работой, существовании и работе внутри системы. Кризис самоопределения пилотов авиалиний схож с состоянием ученых, изучающих глубины, пилотов дронов, исследователей космоса и представителей многих других профессий, чьи познавательные способности под давлением компьютеров и автоматизации перенесены в цифровой виртуальный мир, но при этом они по-прежнему ощущают последствия и тяготы мира физического. В автоматических автомобилях будущего вождение может стать скорее чем-то похожим на внимательное отслеживание процесса пилотами самолетов, а не на спокойную расслабленность пассажиров во время поездки.

Внимание! Это не конец книги.

Если начало книги вам понравилось, то полную версию можно приобрести у нашего партнёра - распространителя легального контента. Поддержите автора!

Страницы книги >> Предыдущая | 1 2 3 4 5
  • 0 Оценок: 0

Правообладателям!

Данное произведение размещено по согласованию с ООО "ЛитРес" (20% исходного текста). Если размещение книги нарушает чьи-либо права, то сообщите об этом.

Читателям!

Оплатили, но не знаете что делать дальше?


Популярные книги за неделю


Рекомендации