Электронная библиотека » Дэйв Голдберг » » онлайн чтение - страница 7


  • Текст добавлен: 11 июля 2015, 12:30


Автор книги: Дэйв Голдберг


Жанр: Зарубежная образовательная литература, Наука и Образование


Возрастные ограничения: +12

сообщить о неприемлемом содержимом

Текущая страница: 7 (всего у книги 24 страниц) [доступный отрывок для чтения: 7 страниц]

Шрифт:
- 100% +

Почему же каждая из этих звезд не может иметь такую же пышную свиту, как наше Солнце – свиту из планет, которым прислуживают луны?

И с ним не приключилось ничего плохого – по крайней мере церковь с ним ничего не сделала.

Когда куда-нибудь идешь, то все равно куда-нибудь придешь

Коперник одним из первых осознал великую истину: наше место во вселенной ничем не примечательно. Этот урок человечеству надо усваивать раз за разом. Наша посредственность простирается далеко за пределы Солнечной системы. Галилео отметил, что во вселенной бесчисленное множество звезд, и у всех равное право претендовать на звание центра вселенной.

Система шаровых скоплений в проекции на плоскость галактики. Галактическая долгота отмечена через каждые тридцать градусов. «Локальная система» целиком лежит в пределах самого маленького кружка, обведенного сплошной линией, имеющего радиус в тысячу парсеков. Более крупные кружки, обведенные сплошной линией, также гелиоцентричны, но их радиусы возрастают с интервалом по 10 000 парсеков. Пунктиром отмечена предполагаемая большая ось системы, пунктирные круги концентричны относительно ее центра. Точки примерно в четыре раза больше настоящих диаметров скоплений в таком масштабе. Девять скоплений отстоят от плоскости галактики более чем на 15 000 парсеков и не включены в эту схему.



В 1918 году астроном Харлоу Шепли составил карту 69 шаровых скоплений на Млечном Пути. Это очень тесные кучки по сто тысяч звезд, а то и больше, и резонно было предположить, что шаровые скопления распределены симметрично относительно центра галактики. Шепли обнаружил, что наше место нельзя считать привилегированным даже в пределах собственной галактики. Мы всего лишь одна из примерно 10 миллиардов звездных систем из глухой провинции.

Об этом же пишет и Дуглас Адамс:

Где-то в закоулках одного нефешенебельного района западной спиральной ветви Галактики, которого даже нет на карте, находится маленькое неприметное желтое солнце. На расстоянии около девяноста двух[44]44
  Адамс – не астроном и, если уж на то пошло, англичанин, так что простим ему ошибку в переводе метрических мер. На самом деле эта величина ближе к 93 миллионам миль.


[Закрыть]
миллионов миль вокруг него вращается совершенно невзрачная зелено-голубая планета, произошедшие от обезьян жители которой настолько примитивны, что до сих пор считают электронные часы чем-то выдающимся.

(Пер. Ю. Ариновича)

Но это еще далеко не конец. В 1920 годы Эдвин Хаббл показал, что наша галактика – всего лишь одна из колоссального количества островных вселенных, летящих в пространстве. Как мы уже видели, обзор SDSS позволил нанести на карту свыше ста миллионов галактик, однако по самым скромным оценкам общее их число в наблюдаемой вселенной – несколько триллионов. В среднем эти триллионы галактик, судя по всему, распределены в пространстве с поразительной равномерностью. На языке симметрии это означает, что вселенная гомогенна. Подобным же образом северное полушарие вселенной, похоже, более или менее такое же, как южное. Опять же, если выражаться научно, вселенная, судя по всему, изотропна.

Эти наблюдения легли в основу так называемого космологического принципа. В сущности, он гласит, что вселенная везде и по всем направлениям более или менее одинакова. Наблюдения это подтверждают, однако на самом деле космологический принцип – это аксиома. Примерно как предположение, что неизменность физических законов позволяют нам интерпретировать прошлое и предсказывать будущее, космологический принцип дает нам возможность в разумных пределах интерпретировать данные, полученные из других частей вселенной.

Первыми проблесками понимания, какова вселенная вне нашей галактики, мы обязаны Эдвину Хабблу. Как мы уже видели, он не просто показал нам масштабы вселенной, но и открыл, что почти все галактики во вселенной, похоже, от нас отдаляются.

Идея о расширении вселенной, вероятно, заронило в вас ошибочную мысль, что у вселенной будто бы есть центр. Нет, центра у вселенной нет. Чтобы понять, почему, нужно немного поговорить об относительности. Мы уже убедились, что специальная теория относительности предполагает тесные взаимоотношения между временем и пространством. А гениальность общей теории относительности заключается в том, что согласно ей гравитация способна искривлять и пространство, и время, а также и то, и другое одновременно.


Расширяющаяся Вселенная как лист резины


Если у вас нет интуитивного ощущения, что такое искривление пространства, не терзайтесь. Запутаться в уравнениях и формулах очень просто. Однако, к счастью, Международная гильдия популяризаторов космологии подобрала прекрасную аналогию, и если вы дадите мне слово не понимать ее чересчур буквально, я последую примеру коллег.

Приклейте на огромный лист резины горстку маленьких пластмассовых галактик.

Найдите компанию силачей и вместе с ними возьмитесь за лист со всех сторон.

Потяните как следует.

Муравей, живущий в одной из галактик, сочтет себя пупом вселенной, поскольку все остальные галактики с его точки зрения будут удаляться. Более того, чем больше расстояние между двумя галактиками, тем быстрее – с точки зрения муравья – они будут удаляться друг от друга: именно этот эффект и наблюдал Хаббл.

Я могу забросить вас в любую галактику, и если у вас достанет эгоцентризма, вы сочтете себя центром вселенной. Однако – и это и есть самое главное – то же самое увидит любой наблюдатель в любой галактике.

Поверните часы вселенной в обратную сторону, и расстояния между всеми галактиками сожмутся до нуля. Где произошел Большой взрыв? А везде!

Однако понимать эту аналогию слишком буквально опасно. Особенно упорный муравей, того и гляди, построит прелестный звездолетик и отправится, например, искать край резинового листа. А вот в нашей (не-резиновой) вселенной достигнуть края в принципе невозможно, нечего даже и мечтать. У вселенной нет центра – и краев тоже нет. Так что у нас остается всего два варианта.

Первый, честно скажу, леденит душу. Может статься, что вселенная и в самом деле бесконечна. То есть не просто очень-очень велика, а действительно бесконечна. Вдумайтесь – бесконечна!


Тороидальная вселенная


Мы еще вернемся к практическим различиям между великанской и бесконечной вселенной, но лично меня гораздо больше утешает вариант номер два: возможно, вселенная замкнута сама на себя. Это как Пак-Ман, который исчезает на одном краю экрана и тут же появляется с противоположной стороны. С точки зрения Пак-Мана, он идет все вперед и вперед и не может дойти до конца.

Не волнуйтесь – Земля ведет себя точно так же. Если не обращать внимания на произвольно установленные нашими собратьями демаркационные линии вроде Линии перемены даты, можно шагать на восток бесконечно – и не дойдешь ни до края, ни до центра. Будешь постоянно проходить одни и те же места – и все.

С практической точки зрения между бесконечной и повторяющейся вселенной нет большой разницы. Расширение вселенной и ограниченная скорость света сговорились не пускать нас даже облететь вселенную и вернуться в исходную точку. Но это не мешает нам задать следующий вопрос: а какого вселенная размера?

Вселенная: одна или множество?

Космос большой. Очень.

А вот какого точно он размера, мы сказать не можем, честное слово. Всю вселенную мы не в состоянии окинуть взглядом, поскольку она существует всего 14 миллиардов лет, а скорость света такая, какая есть. На Земле мы называем линию, дальше которой нам не заглянуть, горизонтом, и ко вселенной в целом это тоже относится.

В принципе, мы можем вписать в этот горизонт триллионы галактик, но нигде не сказано, что на этом все и кончится. Есть вполне реальная вероятность, что вселенная за горизонтом, там, где мы ее не видим, совсем не такая, как поблизости. Мало того, что мы не в состоянии разглядеть, что происходит в сотнях миллиардов световых лет от нас, поскольку вообще все движется либо со скоростью света, либо медленнее: все, что находится за горизонтом, никак не подвержено влиянию происходящего здесь, на Земле.

Но и этого мало: поскольку вселенная расширяется с ускорением, выясняется, что со временем из нашего поля зрения будет исчезать все больше и больше галактик. Галактики в пределах нашего горизонта находятся от нас на расстоянии всего-то 60 миллиардов световых лет. А все, что происходит дальше, навеки останется тайной.

Все, что находится вне нашего горизонта, – это с любой практической точки зрения иная, независимая вселенная, а следовательно, хотим мы этого или нет, мы живем во множественной вселенной – в определенном смысле. Если вы знаток научной фантастики[45]45
  Конечно, знаток, как же иначе.


[Закрыть]
, то по крайней мере поверхностно знакомы с идеей множественной вселенной, однако словосочетание «множественная вселенная» каждый понимает по-своему. К счастью для нас, физик из Массачусетского технологического института Макс Тегмарк разработал подробную иерархическую классификацию множественных вселенных. Положа руку на сердце, все в этой классификации, кроме первого уровня, в котором мы и так не сомневаемся, крайне спекулятивно – и чем дальше, тем спекулятивнее. Так что давайте уговоримся, что пока что мы просто навскидку раскладываем все по полочкам.

Множественная вселенная первого уровня. Вселенная очень велика, но это можно понять

С практической точки зрения вполне можно рассматривать любой участок вселенной размером в 100 миллиардов световых лет как остров. Однако если острова не связаны друг с другом, возникает резонный вопрос, почему так вышло и почему каждый отдельный участок обязан быть похожим на все остальные.

Представьте себе, на этот вопрос вполне можно получить ответ. Однако сперва констатируем факт, подтвержденный наблюдениями: нас окружает излучение, оставшееся с начала вселенной, и это излучение однородно с точностью примерно до одной стотысячной. Этот факт становится еще страннее, если вспомнить, что свет, попадающий в нас «сверху» и «снизу» – со стороны северного и южного полюсов – приходит из невероятно отдаленных точек вселенной. Два фотона из этих потоков, скорее всего, никогда не находились в областях, когда-либо бывших в термическом контакте друг с другом.

Это один из самых глубоких и болезненных вопросов в космологии. Первоначально вселенная была очень мала, но длилось это совсем недолго. Похоже, что области, находящиеся на небосводе на расстоянии больше градуса, не имели возможности смешаться друг с другом – и все же вселенная в целом выглядит на удивление однородной. Напомню, что это одно из предположений космологического принципа.

В 1980 годы Алан Гут, который тогда работал в Национальной ускорительной лаборатории SLAC, выдвинул гипотезу инфляции, позволяющую обойти проблему горизонта. И хотя она плохо укладывается в голове, заранее предупреждаю, что на данный момент инфляционная модель для большинства космологов стала догмой. Она позволяет объяснить огромное количество явлений во вселенной в том виде, в каком мы ее наблюдаем.

В первые мгновения существования множественной вселенной здесь царила кипучая активность, особенно в первые 10–35 секунд. За этот краткий миг вселенная претерпела колоссальное расширение по экспоненте, и отдельные участки пространства – отдельные пузырьки – выросли в 1060 и более раз.

Если гипотеза инфляции верна, а мы, повторяю, практически убеждены, что так и есть, то за пределами видимого пространства есть еще много пространства. Каждый пузырек – вселенная в себе, и легко вообразить, что если их достаточное количество, то многие из них могли бы быть похожи на наш, вероятно, даже в точности, как наш. Согласно большинству моделей инфляции пузырьки порождают другие пузырьки – и т. д. до бесконечности, и в результате получается бесконечная вселенная, которая поначалу так сильно нас пугала.

Каких же размеров должна достигнуть множественная вселенная первого уровня, чтобы у каждого человека на Земле появился точный двойник? Просто чудовищных. По оценкам Тегмарка, отсюда до тождественной вселенной примерно 10 в степени 1029 метров – на страницах этой книги не будет чисел больше этого, кроме самой бесконечности. Имеется в виду, что каждый атом во вселенной-дубликате находится в точности на том же месте и движется с той же скоростью с точностью до квантовой неопределенности, что и в нашей собственной вселенной. А это означает, что если биография вашего двойника и отличается от вашей, мозг двойника устроен так, чтобы он думал, будто у него именно такая биография.

Видите? Мы вернулись к теме близнецов-негодяев!

Если вселенная бесконечна, в ней хватит места не просто для вашего двойника, а для бесчисленного множества ваших двойников!

Это унизительно и немного страшно. Как будто за тобой украдкой подглядывает бесконечное множество шпионов.

Если же вселенная не бесконечна, можно спокойно почивать на лаврах собственной неповторимости. По скромным теоретическим оценкам минимальный размер нашей множественной вселенной – около 1080 метров, и кажется, будто это много, если не вспоминать, что это лишь крошечная доля пространства, необходимого для появления двойников.

Множественная вселенная второго уровня. Разные вселенные с разными физическими законами

Наш участок вселенной вырос из крошечного клочка только-только зародившейся множественной вселенной, однако, как мы уже поняли, наш пузырек не единственный. Более того, не исключено, что в некоторых из этих пузырьков, а может быть, и во всех, законы физики несколько отличаются от наших. То ли электричество в них немного сильнее или слабее, то ли сильное взаимодействие (скрепляющее нейтроны и протоны) не совсем такое, как у нас, то ли измерений больше трех.

Позвольте прояснить некоторые обстоятельства существования множественных вселенных второго уровня.

1. То, что эта модель верна, неочевидно. Не исключено, что фундаментальные силы на самом деле составляют самую основу всего сущего и что все вселенные построены на одних и тех же физических законах.

2. Если и в самом деле существует множественные вселенные второго уровня, они не обязательно похожи на нашу. Возможно, во многих из них нет ни звезд, ни галактик, какие-то почти совсем пустые, какие-то схлопнулись под воздействием собственной гравитации. Чтобы создать, например, звезды или тяжелые элементы, физика должна быть очень-очень тонко настроена, да и мы тоже, и большинство вселенных просто не проходит отбора.

3. Края у вселенной все равно нет. Вселенные не отгорожены друг от дружки кирпичной стеной. Все вселенные в пределах множественной вселенной второго уровня – это потенциальные множественные вселенные первого уровня.

Однако и на втором уровне история не кончается. Тегмарк предполагает наличие множественных вселенных и третьего, и четвертого уровня, которые еще более спекулятивны и никак не связаны с вопросом о симметриях и о том, одинаковы ли повсеместно законы физики. Но мы про них все равно поговорим, очень уж это интересно.

Множественная вселенная третьего уровня. Множественные миры квантовой механики

Я уже немного говорил о том, как устроена квантовая механика, и большинство физиков просто принимают как данность, что в мире должна быть доля случайности (а может, и львиная доля) и возможность диковинной, хитроумной связи между далеко отстоящими друг от друга событиями.

Однако в этом далеко не все так уж уверены. В 1957 году Хьюго Эверетт, работавший научным консультантом в Пентагоне, придумал «многомировую интерпретацию» квантовой механики. Не то чтобы Эверетт создал совершенно новый набор физических законов. В сущности, вот что он хотел сказать: «Знаете все эти эксперименты, которые показывают квантовое поведение? Так вот, на них можно посмотреть с другой точки зрения».

Согласно многомировой интерпретации, каждый раз, когда квантовое событие можно измерить, создается новый набор вселенных. В одной вселенной можно оценить спин электрона как направленный вверх. В другой – как направленный вниз. Любопытно, что согласно многомировой интерпретации эти вселенные могут взаимодействовать друг с другом, что вызывает странное поведение – квантовую интерференцию.

Как я уже сказал, математически многомировая интерпретация ожидает от квантовых экспериментов того же самого, что и стандартная – копенгагенская – интерпретация, которой придерживается большинство физиков, в том числе и я. Однако еще она обеспечивает нам совершенно новый взгляд на множественную вселенную – причем, честно говоря, этот взгляд предлагает феерические перспективы, если дело вашей жизни – сочинять научную фантастику. И все же вынужден предупредить: если вы подпишетесь на многомировую интерпретацию, уясните себе предельно ясно, что ни Эверетт, ни кто угодно еще не предложил физический механизм путешествия между вселенными. Фантазируйте на здоровье, но отсюда вы никуда не денетесь.

Множественная вселенная четвертого уровня. Если вселенная математически самодостаточна, значит, она существует

На четвертом уровне все становится еще страннее. С первого по третий уровень предполагается, что законы физики хотя бы мимолетно напоминают законы в нашей вселенной. Во множественной вселенной четвертого уровня, как считает Тегмарк, «Все структуры, существующие математически, существуют и физически», хотя не вполне понятно, сколько найдется вселенных, поддающихся математическому описанию.

Насколько нам известно, возможно, что существует какая-то вселенная, где из наших фундаментальных взаимодействий наличествует только одно или вообще нет ни одного. Поскольку мы и в своей-то части множественной вселенной еще не разобрались с физикой до конца, даже если существует множественная вселенная четвертого уровня, мы не можем сказать, каковы составляющие ее вселенные, даже с минимальной долей уверенности.

Беда, с которой мы сталкиваемся всю эту главу, отчасти состоит в том, что мы не знаем, так ли уж необходимы параметры, описывающие нашу вселенную, возможно ли без них существование непротиворечивой вселенной или же они полностью произвольны. Множественная вселенная четвертого уровня по классификации Тегмарка вполне может предполагать существование как бесконечного множества вселенной, так и одной-единственной.

Если у вас и так голова кругом идет от разнообразия множественных вселенных, размышления о возможных наборах параметров едва ли вам помогут.

Однако на самом-то деле разговор у нас пойдет о множественных вселенных первого и второго уровня. В конце концов, на случай, если вы забыли, главная цель нашей беседы – разобраться с вопросом, одинаковы ли законы физики во всей вселенной.

Предназначена ли вселенная для нас?

Я вас уже предупреждал, но дополнительная осторожность не помешает: хотя симметрии позволяют нам лучше понять тайны природы и форму законов физики, они ничего не говорят о конкретном значении постоянных, входящих в эти законы. Мы не собираемся «выводить» массу электрона (по крайней мере, до сих пор нам это не удавалось). Возможно, во вселенной есть нечто фундаментальное, и оно позволит нам вывести все физические константы, однако на данный момент мы блуждаем в потемках. Это означает, что мы не знаем, заложены ли физические постоянные в законах изначально или они оказались такими относительно случайно – как случайна температура за окном в тот или иной день. Симметрия подсказывает, как записать уравнения, однако молчит о числовых значениях переменных.

Есть довольно много параметров, например, заряд электрона, которые взяты более или менее с потолка. Может быть, эти параметры и меняются из конца в конец исполинской вселенной, и отдельным областям – например, нашей наблюдаемой вселенной – просто повезло, что они подходят для возникновения сложной жизни.

В том, что мы по чистой случайности живем в области, законы физики в которой идеально подходят для существования человека, нет ничего загадочного. Иначе и быть не могло! Иначе нас с вами не было бы и некому было бы об этом рассуждать. То есть большинству физиков антропная аргументация и в самом деле не по сердцу. Большинство из нас лелеет надежду, что когда-нибудь потом мы сумеем разработать Теорию Всего, основанную исключительно на основных принципах.

А если они не заложены в саму ткань мироздания, насколько тонкая настройка нужна законам физики, чтобы мы могли существовать? Каковы наши шансы?

Позвольте предвосхитить типичный вопрос о тонкой подстройке вселенной. Почему свет перемещается со скоростью 299 792 458 метров в секунду? Как мы уже видели, краткий ответ состоит в том, что гораздо разумнее просто сказать, что свет перемещается со скоростью одна световая секунда в секунду и оставить в стороне вопрос об определении метра как исторический курьез.

Иначе говоря, значения параметров, выраженные в каких-то единицах, почти никогда не относятся к делу, поскольку, очевидно, они зависят от того, какие единицы выберешь. Я об этом заговорил, поскольку есть несколько способ комбинировать физические постоянные так, чтобы все единицы сократились. Вот, например, так называемая постоянная тонкой структуры (коротко – ПТС), представляющая собой просто число безо всяких единиц.



Что это за буковки? В этом уравнении e – заряд электрона, с – само собой, скорость света, а ћ – постоянная Дирака, она же приведенная постоянная Планка[46]46
  Если вы небрежно упомянете о ней на ближайшей коктейль-вечеринке – не упустите случая! – назовите ее «аш-перечеркнутое». Профессионалы сразу поймут.


[Закрыть]
. Она вылезает везде, где замешана квантовая механика.

Значение постоянной тонкой структуры составляет примерно 1⁄137,035 999 08, и она входит в число самых точно подсчитанных постоянных за всю историю физики. И при всей этой точности мы не имеем ни малейшего представления, откуда она взялась. С числами в чистой математике так не бывает. Например, число p вполне можно вывести из основных принципов, даже если вы в жизни не видели круга. Вот как об этом говорит Ричард Фейнман:

Мы прекрасно знаем, какие танцы надо исполнить в экспериментах, чтобы измерить это число с очень большой точностью, но не понимаем, какие танцы надо исполнить на компьютере, чтобы получить это число – разве что тайком ввести его туда!

ПТС – это мера силы электромагнитного взаимодействия и, как вы, вероятно, заметили, она гораздо меньше единицы. С объективной точки зрения электромагнитная сила очень слаба. С другой стороны, по сравнению с другими взаимодействиями электромагнетизм неимоверно силен. Задумайтесь хотя бы о том, что электростатическое отталкивание между нашими кроссовками и полом с легкостью преодолевает гравитационное притяжение всей Земли!

В наших стандартных моделях космологии и физики частиц присутствует по меньшей мере 25 разных безразмерных и, судя по всему, независимых параметров. Предположим, мы возьмем и изменим одну только ПТС. Что будет?

Если бы ПТС была, например, больше 0,1 (примерно в 14 раз больше измеряемой величины), то углерод – а следовательно, и все элементы тяжелее углерода – не мог бы производиться в звездах. Это была бы катастрофа для углеродных форм жизни.

Или возьмем другой параметр – силу сильного ядерного взаимодействия, того самого, благодаря которому не рассыпаются ядра атомов. Если увеличить константу сильного взаимодействия всего на четыре процента, протоны быстро связывались бы друг с другом и формировали гелий‑2, изотоп, у которого вообще нет нейтронов. Звезды быстро выгорали бы и вырабатывали бы только инертный гелий – и ничего интересного так не возникло бы.

Похоже, так же обстоят дела с большинством фундаментальных постоянных. Мы живем во вселенной, где соотношение параметров таково, что обеспечивает наше существование. Это позволяет сделать всего три варианта выводов – причем все они не слишком соблазнительны.

1. Вселенная создана конкретно для людей или для сложной жизни в целом.

2. Параметры вселенной естественным образом следуют из какого-то еще не открытого закона физики, и нам просто чертовски повезло, что этот закон допускает наше существование.

3. Параметры во множественной вселенной варьируются, и по необходимости мы живем в одной из областей (возможно, очень редких), которая способна обеспечить условия для жизни (потому что при другом развитии событий нас бы не было).

Первый вариант попросту не имеет отношения к физике, вот почему он мне не нравится. Второй вариант, похоже, соответствует истине, однако физикам еще предстоит открыть Теорию Всего. А пока об этом можно сказать очень мало, и поэтому второй вариант оставляет у меня ощущение глубокой неудовлетворенности. Что же можно сказать о третьем варианте?

Вместо того чтобы задаваться вопросом, что бы случилось, если бы изменилась ПТС (или любой другой параметр), можно задаться вопросом, ответ на которые дадут наблюдения – вопросом о том, меняется ли она вообще, – а для этого придется заглянуть в пучины пространства.

Если мы хотим посмотреть, как меняется вселенная на космологических расстояниях от нас, придется начать с наблюдения объектов, которые находятся от нас на расстоянии в миллиарды световых лет. К счастью, природа обеспечила нас идеальными маяками – квазарами. В сущности, квазары – это гигантские черные дыры, впитывающие огромные количества вещества. Поскольку вещество падает в них с околосветовой скоростью, оно нагревается и производит излучение в достаточном количестве, чтобы его было видно в дальних уголках Вселенной.

Пространство между нами и квазарами заполнено облаками газа, и этот газ отчасти поглощает излучение по пути к нам. Облака поглощают свет только в определенном диапазоне длин волн, и эти длины определяются значением ПТС. Стоит изменить ПТС, и этот диапазон тоже изменится.

Начиная с 1999 года Джон Уэбб из Университета Нового Южного Уэльса и его сотрудники проверяют, меняется ли ПТС со временем и расстоянием, а для этого они наблюдают фотоны, поглощаемые разнообразными ионами железа и магния в очень далеких облаках. Изучая относительные длины волн поглощенных фотонов, ученые получают возможность сравнить ПТС на космологических расстояниях с тем, что получается по данным лабораторных измерений здесь, на Земле.

Результаты получились крайне неожиданные. Данные наблюдений далеких галактик в одной области неба показывают, что ПТС там примерно на одну стотысячную больше, чем на Земле, а в другой области – на одну стотысячную меньше.

Если эти результаты верны, их значение колоссально. Выходит, что ПТС почему-то варьируется в разных областях вселенной – и не надо забывать, что мы, прежде всего, не знаем, откуда вообще берется значение ПТС. Это плевок в лицо космологическому принципу.

Два очень важных факта. Во-первых, даже если этот результат верен, отклонение необычайно мало. Все то, что наблюдали Уэбб с коллегами, не делает ни тот, ни другой конец наблюдаемой вселенной непригодным для человеческой жизни. Для этого пришлось бы забираться неизмеримо дальше. Во-вторых, большинство физиков пока еще не убеждены, что результат верен. Сигнал относительно слаб, и целый ряд других исследовательских групп его не подтверждают. Лично я пока не собираюсь подбираться к своим учебникам с большой бутылью штрих-корректора. Если законы физики в пределах вселенной и меняются, то очень-очень мало.

В этой бочке дегтя есть, однако, и ложка меда. Даже если это отклонение и вправду есть, оно так незначительно, что мы можем ввести еще одну симметрию.

Трансляционная симметрия: законы физики в точности одинаковы во всех местах во Вселенной.

Крупномасштабная однородность – общее единообразие – структуры вселенной показывает, или по крайней мере предполагает, что во вселенной заложена трансляционная симметрия.

Внимание! Это не конец книги.

Если начало книги вам понравилось, то полную версию можно приобрести у нашего партнёра - распространителя легального контента. Поддержите автора!

Страницы книги >> Предыдущая | 1 2 3 4 5 6 7
  • 0 Оценок: 0

Правообладателям!

Данное произведение размещено по согласованию с ООО "ЛитРес" (20% исходного текста). Если размещение книги нарушает чьи-либо права, то сообщите об этом.

Читателям!

Оплатили, но не знаете что делать дальше?


Популярные книги за неделю


Рекомендации