Текст книги "200 занимательных логических задач"
Автор книги: Дмитрий Гусев
Жанр: Философия, Наука и Образование
Возрастные ограничения: +12
сообщить о неприемлемом содержимом
Текущая страница: 1 (всего у книги 5 страниц) [доступный отрывок для чтения: 1 страниц]
Дмитрий Алексеевич Гусев
200 занимательных логических задач
© Гусев Д. А., 2015
© Издательство «Прометей», 2015
* * *
От автора-составителя
Предлагаемые в этой книге задачи значительно различаются как по типу своего построения, так и по уровню сложности. Одни из них близки к математике, и для их решения надо будет составить какое-нибудь простое уравнение, другие не имеют с ней ничего общего. Некоторые задачи предполагают знание нескольких простых законов физики, некоторые являются логическими упражнениями и головоломками, а некоторые представляют собой просто шутки, розыгрыши или фокусы. Какие-то задачи очень просты – вы сможете их решить за считанные секунды, а над какими-то, наоборот, надо изрядно поломать голову. Возможно, в некоторых случаях дело не обойдется без карандаша и бумаги – надо будет составить схему или нарисовать рисунок. Также может потребоваться калькулятор или даже какие-нибудь предметы домашнего обихода. Однако при всех различиях между этими задачами они сходны между собой в том, что для их решения требуется какой-нибудь нестандартный подход и работа воображения. Поэтому они и называются занимательными. Решение этих задач способствует развитию внимания, памяти, гибкости ума, которую также часто называют смекалкой или сообразительностью, или находчивостью.
Ко всем задачам приводятся ответы и комментарии, однако не спешите в них заглядывать, попытайтесь самостоятельно найти верное решение. Чем больше этих задач вы сможете решить, тем проще и легче будете в дальнейшем справляться с задачами подобного типа и даже научитесь самостоятельно их составлять.
Этот сборник занимательных задач поможет вам интересно и с пользой провести время в часы досуга, скоротать его в длительном путешествии, найти тему для разговора или разрядить затянувшуюся неловкую паузу в беседе с малознакомыми людьми, а также пригодится вам в различных иных жизненных ситуациях.
Условия задач
1. Стрелка компаса, как известно, одним своим концом указывает на север, а другим – на юг. Есть ли на земном шаре такое место, где стрелка компаса обоими своими концами указывает на север?
2. Как разделить пять яблок между пятью людьми таким образом, чтобы одно яблоко осталось лежать в корзине? (Задача-шутка).
3. Каким образом, пользуясь тремя пятерками и какими угодно знаками математических действий, написать выражение, равное единице?
4. Крестьянину надо перевезти через реку волка, козу и капусту. Но в лодке может поместиться только крестьянин, а вместе с ним или только волк, или только коза, или только капуста. Но если оставить волка с козой, то он ее съест, а если оставить козу с капустой, то она ее съест. Как крестьянину перевезти свой груз через реку?
5. В каждом из 10 мешков находится по 10 монет. Каждая монета весит 10 гр. Но в одном мешке все монеты фальшивые – не по 10, а по 11 гр. Как с помощью только одного взвешивания определить, в каком мешке (в 1-ом, или во 2-ом, или в 3-ем и т. д.) находятся фальшивые монеты (все мешки пронумерованы от 1 до 10)? Мешки можно открывать и вытаскивать любое количество монет из каждого.
6. На всех трех железных банках с печеньем перепутаны этикетки: «Овсяное печенье», «Песочное печенье» и «Шоколадное печенье». Банки закрыты, и вы можете взять только одно печенье из одной (любой) банки, а потом правильно расположить этикетки. Как это сделать?
7. Доктор прописал человеку три таблетки, сказав, что он должен их принимать по одной через каждые полчаса. Через какое время после начала лечения человек выпьет последнюю таблетку?
8. Как число 66 увеличить в полтора раза, не производя над ним никаких арифметических действий?
9. Петр и Иван живут в одном городе недалеко друг от друга. У каждого из них есть только стенные часы, которые находятся у них дома. Однажды Петр забыл завести свои часы, и они остановились. Он пошел в гости к Ивану, чтобы посмотреть, который час, пробыл там некоторое время и, вернувшись домой, правильно поставил свои стенные часы. Как он это сделал?
10. У крестьянина есть 6 кусков цепи по 5 звеньев в каждом, из которых он хочет сделать одну длинную и замкнутую цепь, состоящую из 30 звеньев. Разрезать одно звено стоит 8 копеек, а вновь соединить его – 18 копеек. Однако можно просто купить новую замкнутую цепь из 30 звеньев за полтора рубля. Каким образом возможно изготовить цепь из имеющихся 6 кусков и сколько денег при этом можно сэкономить?
11. Представим себе, что некое колесо движется в каком-то направлении. Есть ли у этого колеса такие точки, которые движутся в этом направлении быстрее и такие, которые движутся медленнее?
12. Самовар вмещает 30 стаканов воды. Один стакан наливается из полного самовара за полминуты. Следовательно, весь самовар при непрерывно открытом кране опорожнится за 15 минут. Верно ли это рассуждение? Если нет, то какая ошибка в нем допущена?
13. Какая борона глубже разрыхлит землю – та, у которой 20 зубьев, или та, у которой их 60?
14. Как двумя ударами топора разрубить подкову на шесть частей, не перемещая частей после удара?
15. В одном древнем государстве количество денег приравнивалось к длине серебряного бруска. Работник починил дом заказчика за 15 дней, причем в конце каждого дня он требовал по одному дециметру серебра. Хозяин дома, у которого был брусок серебра длиной 15 дециметров, расплатился с работником, разрезав этот брусок всего четыре раза. Как он это сделал?
16. В нумизматической коллекции есть 24 монеты, которые внешне ничем не отличаются друг от друга. Одна из монет золотая и весит больше, чем другие. Как с помощью трех взвешиваний на чашечных весах найти золотую монету?
17. В вашем шкафу лежит двадцать два синих носка и тридцать пять черных носков. Вам надо в полной темноте взять из шкафа пару носков. Сколько носков нужно взять, чтобы с гарантией получить совпадающую пару?
18. Старинным часам требуется тридцать секунд, чтобы пробить шесть часов. За сколько секунд часы пробьют двенадцать часов?
19. В пруду растет один лист лилии. Каждый день число листьев удваивается. На какой день пруд будет покрыт листьями лилии наполовину, если известно, что полностью он будет покрыт ими через 100 дней?
20. Полторы курицы несут полтора яйца в полтора дня. Как много нужно куриц, несущихся в полтора раза лучше, чтобы они снесли полтора десятка яиц за полторы декады?
21. Пассажирский лифт поднимается на пятый этаж в два раза быстрее, чем грузовой лифт на третий этаж. Какой лифт придет раньше: грузовой на третий этаж или пассажирский на пятый, если они начали движение с первого этажа одновременно?
22. Летит гусь. Навстречу ему – стая гусей. «Здравствуйте, 100 гусей», – говорит он им. Они отвечают: «Нас не 100 гусей; вот если бы нас было столько, сколько сейчас, да еще столько, да еще пол-столько и четверть-столько, да еще ты, вот тогда нас было бы 100 гусей». Сколько гусей летит в стае?
23. Из 10 спичек построено изображение дома. Как переложить две спички таким образом, чтобы дом повернулся другой стороной?
24. В зоопарке живут четвероногие звери и двуногие птицы. В зоопарке имеется тридцать голов и сто ног. Сколько зверей и сколько птиц живет в зоопарке?
25. Докажем, что 3 = 7. Известно, что если над каждой частью равенства проделать одну и ту же операцию, то равенство останется неизменным. Отнимем у каждой части нашего равенства по пять: 3–5 = 7–5. Получится: – 2 = 2. Теперь возведем каждую часть равенства в квадрат: (– 2)2 = 22. Получится: 4 = 4, следовательно, 3 = 7. Найдите ошибку в этом рассуждении.
26. Можно ли, раздевшись, лежать на голой каменистой поверхности, как на мягкой перине?
27. У арфы их четыре, у домбры шесть, и у гитары тоже шесть. О чем идет речь? (Задача-шутка).
28. Пусть а = b + c, тогда c = a – b. Подставляя эти выражения в равенство: a c = a c, получим: a (a – b) = (a – b) (b + c) или a2 – a b = a b – b2 + a c – b c. После переноса а с в левую часть равенства получим: a2 – a b – а с = a b – b2 – b c. Вынесем за скобки общий множитель в каждой части равенства: а (а – b – c) = b (a – b – c). Разделив обе части полученного равенства на (а – b – c), получим, что а = b и, одновременно, а = b + c (см. начало). Найдите ошибку в этом рассуждении.
29. Представьте себе кусок шахматной доски размером 5 × 5 клеток, т. е. состоящий из 25 клеток. Далее представьте, что на каждой клетке находится по одному жуку. Теперь предположим, что каждый жук переполз на соседнюю по горизонтали или по вертикали клетку (этого куска) доски. Останутся ли при этом пустые клетки?
30. Как известно, в любом атоме есть ядро, размеры которого меньше размеров самого атома. Если размер атомного ядра равен 10-12 см, а размер всего атома равен 10-6 см, следовательно, ядро по размеру меньше самого атома в 2 раза, ведь 12: 6 = 2. Верно ли это утверждение? Если нет, то во сколько раз атомное ядро меньше атома?
31. Собеседник просит вас задумать четное число. Далее он предлагает вам утроить его, затем взять половину полученного числа и опять утроить ее. После этого он просит поделить получившееся число на 9 и сообщить ему результат. После этого он называет число, которое было вами задумано. Как он это делает?
32. Каким образом возможно носить воду в решете, разумеется, ничем не затыкая его отверстий?
33. Из двух городов, находящихся на расстоянии 300 км один от другого одновременно выехали два велосипедиста навстречу друг другу со скоростью 50 км в час. Вместе с одним из велосипедистов из города вылетела муха, пролетающая в час 100 км. Она опередила первого велосипедиста, полетев навстречу второму. Встретив его, она сразу же полетела назад к первому. Повстречав его, опять полетела навстречу второму. Так она продолжала свои полеты до тех пор, пока велосипедисты не встретились. Сколько километров пролетела муха?
34. Диаметр Солнца больше диаметра Земли в 110 раз. Следовательно, и объем Солнца больше объема Земли приблизительно в 110 раз. Верно ли это утверждение? Если нет, то во сколько раз объем Солнца больше объема Земли?
35. Можно ли на самолете долететь до Луны? (Надо принять во внимание, что самолеты снабжены реактивными двигателями, как и космические ракеты, и работают на том же топливе, что и они).
36. У хозяйки был прямоугольный коврик размером 120 × 90 см. Два его противоположных угла истрепались, и их пришлось отрезать (см. рисунок). Однако хозяйке непременно хотелось, чтобы коврик был в форме прямоугольника. Она попросила мастера разрезать его на такие две части, чтобы из них можно было сшить прямоугольник, не теряя при этом, конечно же, ни кусочка материи. Как это возможно сделать?
37. Как известно, световой луч движется со скоростью 300 000 км/с и доходит от солнца до земли приблизительно за 8 минут. Таким образом, несмотря на огромную скорость, свету требуется некоторое время для преодоления огромных расстояний. Следовательно, если бы свет распространялся не с какой-то конечной скоростью (пусть и очень большой), а мгновенно, то мы наблюдали бы восход солнца всегда на 8 минут раньше, чем обычно. Например, если в какой-то день восход приходится на 6 часов утра, то при мгновенном распространении света, он имел бы место в 5 часов 52 минуты. Верно ли это рассуждение? Если нет, то какая ошибка в нем допущена?
38. Можно ли иголкой проколоть пятидесятикопеечную монету? Если да, то как это сделать?
39. Из Москвы в Петербург, расстояние между которыми приблизительно равно 650 км, вышел поезд со скоростью 70 км/час. В то же время из Петербурга в Москву вышел поезд со скоростью 120 км/час. Какой из этих поездов будет находиться ближе к Москве, когда они встретятся?
40. Стандартный стакан (200 гр.) наполнен водой до краев. Сколько булавок можно в него накидать, чтобы из стакана не вылилось ни капли воды?
41. У Петрова в кабинете висит портрет. Петров спрашивают: «Кто изображен на этом портрете?» Он запутанно отвечает: «Отец висящего есть единственный сын отца говорящего». Кто изображен на портрете?
42. Миссионер попал в плен к дикарям, которые посадили его в темницу и сказали: «Отсюда только два выхода – один на свободу, другой к гибели; выбраться тебе помогут два воина, – один говорит всегда правду, другой всегда лжет, но неизвестно, кто из них лжец, а кто правдолюбец; ты можешь задать любому из них только один вопрос». Какой вопрос надо задать, чтобы выбраться на свободу?
43. Каким образом можно определить, не пользуясь никакими измерительными приборами, на равные ли шесть отрезков разделена эта линия?
44. В плоскую широкую тарелку налито немного воды. В тарелке лежит монета, которая едва закрывается тонким слоем воды. Как, не выливая воду из тарелки, достать монету, но при этом не намочить руки?
45. Три миссионера и три каннибала должны пересечь реку в лодке, в которой могут поместиться только двое. Миссионеры должны соблюдать осторожность, чтобы каннибалы не получили на каком-то берегу численное преимущество. Как переплыть реку?
46. Если три дня назад был день, предшествующий понедельнику, то какой день будет послезавтра?
47. В монастыре висят две веревки из редкостного шелка. Они прикреплены к середине потолка на расстоянии одного метра друг от друга и достигают пола. Вор-акробат хочет украсть как можно больше веревки. Высота потолка 20 метров. Вор знает, что если он спрыгнет или упадет с высоты более 5 метров, то не сможет выбраться из монастыря. Поскольку лестницы у него нет, ему остается только лезть по веревке. Он нашел способ украсть веревки почти на всю длину. Как это сделать?
48. Девушка ехала в такси. По пути она так много болтала, что шофер занервничал. Он сказал ей, что очень сожалеет, но не слышит ни слова, – поскольку его слуховой аппарат не работает, он глух как пробка. Девушка замолчала, но, когда они доехали до места, поняла, что водитель над ней подшутил. Как она догадалась?
49. Вы находитесь в каюте стоящего на якоре океанского лайнера. В полночь вода была на 4 метра ниже иллюминатора и поднималась на полметра в час. Если эта скорость удваивается каждый час, то за какое время вода достигнет иллюминатора?
50. Собеседник предлагает вам задумать любое число. Далее он просит вас удвоить его и к полученному результату прибавить 5. Затем он предлагает умножить получившееся число на 5 и к результату прибавить 10. Потом он просит эту последнюю сумму умножить на 10 и сообщить ему результат. После этого он называет задуманное число. Как он это делает?
51. Две колеи рельсов идут параллельно, за исключением того места, где они проходят через тоннель, в котором по всей длине дорога становится одноколейной. Однажды днем один поезд вошел в тоннель с южного конца, а другой – с северного. Поезда шли в противоположных направлениях с большой скоростью, однако крушения не произошло. Почему?
52. Три путешественника прилегли отдохнуть в тени деревьев и уснули. Пока они спали, шутники вымазали углем их лбы. Проснувшись, и взглянув друг на друга, они начали смеяться, причем каждому из них казалось, что двое других смеются друг над другом. Внезапно один из них перестал смеяться, так как сообразил, что его собственный лоб тоже испачкан. Как он об этом догадался?
53. Из шести спичек постройте четыре равносторонних треугольника. Спички нельзя ни гнуть, ни ломать.
54. Сдвинув только одну их четырех спичек, сделайте квадрат. Спички нельзя ни гнуть, ни ломать.
55. С восходом солнца путешественник начал подниматься по узкой, извилистой тропинке на вершину горы. Он шел то быстрее, то медленнее, часто останавливаясь, чтобы отдохнуть. Проделав длинный путь, он достиг вершины только к закату солнца. Проведя ночь на вершине, с восходом солнца он отправился в обратный путь, по той же тропинке. Спускался он также с неравномерной скоростью, неоднократно отдыхая по дороге, и к закату солнца достиг подножия горы. Понятно, что средняя скорость спуска превышала среднюю скорость подъема. Есть ли на тропинке такая точка, которую путешественник проходил в одно и то же время суток, как во время подъема, так и во время спуска?
56. Из Москвы во Владивосток каждый день выходит поезд. Так же каждый день из Владивостока в Москву выходит поезд. Переезд длится 10 дней. Если вы выехали из Владивостока в Москву, то сколько поездов, идущих в обратном направлении, встретится вам во время поездки?
57. У скульптора есть десять одинаковых статуй. Он хочет, чтобы у каждой из четырех стен зала находилось по три статуи. Как их разместить?
58. Начертите, не отрывая карандаша от бумаги, следующие фигуры:
59. Один математик предложил торговцу такую сделку. Математик дает торговцу 100 рублей, а торговец дает математику взамен 1 копейку. Каждый следующий день математик дает торговцу на 100 рублей больше, чем в предыдущий, т. е. на второй день он дает ему 200 рублей, на третий – 300 рублей и т. д. А торговец дает математику взамен в два раза больше денег, чем в предыдущий день, т. е. на второй день он дает ему 2 копейки, на третий – 4 копейки, на четвертый – 8 копеек, на пятый – 16 копеек и т. д. Производить такой обмен они договорились в течение 30 дней. Кому из них этот обмен выгоден и почему?
60. Годовщина Октябрьской революции по старому стилю попадает на 25 октября, а по новому стилю – на 7 ноября. Таким образом, все события по старому стилю на 13 дней предшествуют тем же самым событиям по новому стилю. Значит, если по новому стилю Новый год приходится на 1 января, то по старому стилю он должен попадать на 19 декабря. Почему же мы тогда отмечаем старый Новый год 14 января?
61. Из спичек построено изображение рюмки, наполненной вином. Как переставить две спички таким образом, чтобы получившийся рисунок обозначал выплескивание вина из рюмки, т. е. после перестановки оно должно быть вне рюмки.
62. Как расположить шесть папирос так, чтобы каждая из них соприкасалась с пятью остальными?
63. Перед вами стоят три человека. Один из них Правдолюб (говорит всегда правду), другой Лжец (всегда лжет), а третий Дипломат (то говорит правду, то лжет). Вы не знаете, кто есть кто и задаете вопрос человеку, который стоит слева:
– Кто стоит рядом с тобой?
– Правдолюб, – отвечает он.
Потом вы спрашиваете человека стоящего в центре:
– Кто ты?
– Дипломат, – отвечает тот.
И, наконец, вы спрашиваете человека, который стоит справа:
– Кто стоит рядом с тобой?
– Лжец, – отвечает он.
Кто же стоит слева, кто – справа, кто – в центре?
64. Существует простой и дешевый способ путешествовать, которым, как то ни удивительно, никто не пользуется. Как известно, Земля вращается вокруг своей оси, причем достаточно быстро (всего за 24 часа каждая точка земного экватора проходит приблизительно 40 000 км – путь равный длине экватора). Значит, вместо того, чтобы куда-то ехать на поезде или лететь на самолете, или плыть на корабле, нам достаточно подняться высоко над землей на воздушном шаре или дирижабле и какое-то время там неподвижно находиться. За это время Земля повернется к нам другой частью своей поверхности и надо будет всего лишь спуститься в нужное место. Верно ли это рассуждение? Если нет, то какая ошибка в нем допущена?
65. В десятилитровом ведре находится 10 литров вина. В вашем распоряжении два пустых ведра: одно – 7 л, а другое – 3 л. Как с помощью этих ведер, путем переливаний, разделить 10 литров вина на две одинаковые части по 5 лит ров?
66. У Андрея часы отстают на 10 минут, но он думает, что они на 5 минут спешат. Он договорился с Катей встретиться в 18 часов в условленном месте. У Кати часы на 5 минут спешат, но она думает, что они отстают на 10 минут. Кто из них первым придет к назначенному месту свидания?
67. Попугай, которому 110 лет, спросил старого крокодила: «Сколько тебе лет?» Крокодил, привыкший выражаться сложно и запутанно, ответил: «Мне сейчас в 10 раз больше лет, чем было тебе тогда, когда мне было столько же лет, сколько тебе сейчас». Сколько лет крокодилу?
68. Начав плавание от берега круглого водоема, весельная лодка прошла строго на север 30 км, и достигла берега. Потом она повернула на восток и прошла неизменным курсом еще 40 км до очередной встречи с берегом. Каков диаметр данного водоема?
69. Возможно ли вскипятить воду на открытом пламени в бумажной коробке?
70. Вдоль стен квадратного бастиона комендант расположил 16 часовых по пять человек с каждой стороны (см. рисунок). После этого пришел полковник и, недовольный расположением часовых, приказал расставить их так, чтобы с каждой стороны их было по шесть. Затем пришел генерал и распорядился разместить часовых по семь человек с каждой стороны. Каким было расположение часовых в последних двух случаях?
71. Заяц, убегая от волка, пытается пробраться в пункт В. Уходя от погони, он петляет, двигаясь из А в В по кривой А С D В по дугам малых окружностей так, как это показано стрелками на рисунке. Преследующий его волк начал движение из пункта А мгновением позже и, надеясь настичь зайца в пункте В, движется по дуге большой окружности. Догонит ли он зайца в пункте В, если их скорости совершенно одинаковы?
72. На какие три числа (не считая единицу) делятся без остатка следующие числа: 1110, 999, 888, 777, 666, 555, 444, 333, 222, 111?
73. Кате вдвое больше лет, чем будет Насте тогда, когда Оле исполнится столько лет, сколько сейчас Кате. Кто из них старше, а кто младше?
74. В одном классе ученики разделились на две группы. Одни должны были всегда говорить только правду, а другие – только неправду. Все ученики класса написали сочинение на свободную тему, которое должно было заканчиваться фразой: «Все, здесь написанное, правда» или «Все, здесь написанное, ложь». В классе было 17 правдолюбцев и 18 лжецов. Сколько получилось сочинений с утверждением о правдивости написанного?
75. Сколько всего прапрадедушек и прапрабабушек было у всех ваших прапрадедушек и прапрабабушек?
76. На столе лежит в разложенном виде носовой платок. На нем в центре стоит горлышком вниз пустая стеклянная бутылка. Как вытянуть платок из-под бутылки, не прикасаясь к ней?
77. 5 + 5 + 5 = 550
В левой части равенства надо поставить только одну черточку или палочку для того, чтобы равенство получилось истинным.
78. Докажем, что три раза по два будет не шесть, а четыре. Возьмем спичку, сломаем ее пополам. Это один раз два. Потом возьмем половинку и сломаем ее пополам. Это второй раз два. Затем возьмем оставшуюся половинку и ее тоже сломаем пополам. Это третий раз два. Получилось четыре. Следовательно, три раза по два будет четыре, а не шесть. Найдите ошибку в этом рассуждении.
79. Как соединить девять точек между собой четырьмя линиями, не отрывая карандаша от бумаги?
80. В магазине хозяйственных товаров покупатель спросил:
– Сколько стоит один?
– Двадцать рублей, – ответил продавец.
– Сколько стоит двенадцать?
– Сорок рублей.
– Хорошо, дайте мне сто двенадцать.
– Пожалуйста, с вас шестьдесят рублей.
Что покупал посетитель?
81. Если в двенадцать часов ночи идет дождь, то можно ли ожидать, что через 72 часа будет солнечная погода?
82. Три человека заплатили за обед 30 рублей (каждый по 10). После их ухода хозяйка обнаружила, что обед стоит не 30, а 25 рублей и отправила мальчика с 5 рублями вдогонку. Каждый из путников взял себе по рублю, а 2 рубля они оставили мальчику. Выходит, что каждый из них заплатил не по 10, а по 9 рублей. Их было трое: 9 × 3 =27, и еще два рубля у мальчика: 27 + 2 = 29. Куда делся рубль?
83. В бассейн площадью 1 Га налили 1 000 000 литров воды. Можно ли плавать в таком бассейне?
84. Что больше: квадратный корень из двух или кубический корень из трех?
85. У одного мальчика не хватает до стоимости линейки 24 коп., а у другого не хватает до этой стоимости 2 коп. Когда они сложили свои деньги вместе, то все равно не смогли купить линейку. Сколько стоит линейка?
86. В одном парламенте депутаты разделились на консерваторов и либералов. Консерваторы говорили только правду по четным числам, а по нечетным они говорили только неправду. Либералы, наоборот, говорили только правду по нечетным числам, а по четным числам они говорили только неправду. Каким образом с помощью одного вопроса, заданного любому депутату, можно точно установить, какое сегодня число: четное или нечетное? Ответы должны быть определенными: «да» или «нет».
87. Бутылка с пробкой стоит 1 руб. 10 коп. Бутылка дороже пробки на рубль. Сколько стоит бутылка и сколько стоит пробка?
88. Возраст человека в 1998 году оказался равным сумме цифр года его рождения. Сколько ему лет?
89. Катя живет на четвертом этаже, а Оля – на втором. Поднимаясь на четвертый этаж, Катя преодолевает 60 ступенек. Сколько ступенек надо пройти Оле, чтобы подняться на второй этаж?
90. Математик написал на листке двузначное число. Когда он перевернул листок вверх ногами, число уменьшилось на 75. Какое число было написано?
91. У Саши три брата. Один старше на 3 года, второй на 3 года младше, третий моложе Саши втрое, а отец втрое старше Саши. Всем им вместе 95 лет. Сколько лет каждому из них?
92. Прямоугольный лист бумаги сложили пополам шесть раз. На сложенном листе сделали 2 дырки. Сколько дырок будет на листе, если его развернуть? (Дырки сделаны не на сгибах).
93. В пустую стеклянную бутылку напустили дыма. Как вытряхнуть или вывести дым из бутылки, не наливая в нее воду или какую-нибудь другую жидкость?
94. Корзинка с фруктами весит 11 кг. Фрукты тяжелее корзинки на 10 кг. Сколько весит корзинка, и сколько весят фрукты?
95. Кусок бумаги имеет форму прямоугольника, одна сторона которого равна 4, а другая 9 единицам длины. Как разрезать этот прямоугольник на две равные части, таким образом, чтобы, сложив их, получить квадрат?
96. Два отца и два сына поймали трех зайцев: каждый по одному. Как такое возможно?
97. У Насти дома живут разные животные: все, кроме двух, – попугаи; все, кроме двух, – котята; все, кроме двух, – кролики. Сколько домашних животных у Насти?
98. Собеседник предлагает вам задумать любое трехзначное число. Потом он просит продублировать его, чтобы получилось шестизначное число. Например, вы задумали число 389, продублировав его, имеем шестизначное число – 389389; или 546 – 546546 и т. п. Далее собеседник предлагает вам это задуманное наобум число разделить на 13. «Вдруг получится без остатка», – говорит он. Вы производите деление с помощью калькулятора (можно и без него) и действительно ваше шестизначное число делится на 13 без остатка. Далее он предлагает вам получившийся результат разделить на 11. Вы делите, и опять получается без остатка. И, наконец, собеседник просит вас разделить получившийся результат на 7. Деление не только проходит без остатка, но и дает в результате то самое трехзначное число, которое вы произвольно выбрали сначала. Каким образом это происходит?
99. Как разделить фигуру, состоящую из трех одинаковых квадратов на четыре равные части?
100. Сто школьников одновременно изучали английский и немецкий языки. По окончании курсов они сдавали экзамен, который показал, что 10 школьников не освоили ни тот, ни другой язык. Из оставшихся немецкий сдали 75 человек, а английский – 83. Сколько экзаменовавшихся владеет обоими языками?
101. Каким образом из кружки, ковшика, кастрюли и любой другой посуды правильной цилиндрической формы, наполненной до краев водой, отлить ровно половину, не используя никаких измерительных приборов?
102. Часовая и минутная стрелки иногда совпадают, например в 12 часов ли в 24 часа. Сколько раз они совпадут между 6 часами утра одного дня и 10 часами вечера другого дня?
103. Теплоход доплывает из Нижнего Новгорода до Астрахани за 5 суток, обратный путь он проделывает с той же собственной скоростью за 7 суток. За сколько суток из Нижнего Новгорода до Астрахани доплывет плот?
104. Три курицы несут три яйца за три дня. Сколько яиц снесут 12 куриц за 12 дней?
105. Как написать число 100 с помощью пяти единиц и знаков действий?
106. Давайте подсчитаем, сколько дней в году мы работаем, а сколько отдыхаем. В году 365 дней. Восемь часов в день уходит у каждого на сон – это 122 дня ежегодно. Вычитаем, остается 243 дня. Восемь часов в день занимает отдых после работы, это тоже 122 дня в год. Вычитаем, остается 121 день. По выходным, которых в году 52, никто не работает. Вычитаем, остается 69 дней. Далее, четырехнедельный отпуск – это 28 дней. Вычитаем, остается 41 день. Примерно 11 дней в году занимают различные праздники. Вычитаем, остается 30 дней. Таким образом, мы работаем всего один месяц в году. Верно ли это рассуждение? Если нет, то какая ошибка в нем допущена?
107. В один ряд стоят три наполненных водой стакана и три пустых. Каким образом сделать так, чтобы наполненные и пустые стаканы чередовались, если можно взять в руки только один стакан?
108. Если один рабочий может построить дом за 12 дней, то двенадцать рабочих построят его за один день. Следовательно, 288 рабочих построят дом за один час, 17 280 рабочих построят его за одну минуту, а 1 036 800 рабочих смогут построить дом за одну секунду. Верно ли это рассуждение? Если нет, то в чем заключается допущенная в нем ошибка?
109. Какое слово всегда пишется неправильно? (Задача-шутка).
110. – Ручаюсь, – сказал продавец в зоомагазине, – что этот попугай будет повторять любое услышанное слово. Обрадованный покупатель приобрел чудо-птицу, но, придя домой, обнаружил, что попугай нем, как рыба. Тем не менее, продавец не лгал. Как такое возможно?
111. В комнате есть свеча и керосиновая лампа. Что вы зажжете первым, когда вечером войдете в эту комнату?
112. Как при помощи одной только линейки найти диагональ кирпича?
113. Петр сильно устал и лег спать в 7 часов вечера, поставив механический будильник на 9 часов утра. Сколько часов ему удастся поспать?
114. Отрицание истинного предложения является ложным предложением, а отрицание ложного – истинным. Однако, следующий пример говорит, что это, как будто, не всегда так. Предложение «Это предложение содержит шесть слов» является ложным, поскольку в нем не шесть, а пять слов. Но отрицание «Это предложение не содержит шесть слов» также является ложным, так как в нем как раз шесть слов. Как разрешить это недоразумение?
115. Сколько существует восьмизначных чисел, сумма цифр которых равна 2?
116. Периметр фигуры, составленной из квадратов равен 6. Чему равна ее площадь?
117. Чему равна разность куба суммы квадратов чисел 2 и 3 и квадрата суммы их кубов?
118. Половина от половины числа равна половине. Какое это число?
119. Со временем человек обязательно побывает на Марсе. Саша Иванов – это человек. Следовательно, Саша Иванов со временем обязательно побывает на Марсе. Верно ли это рассуждение? Если нет, то какая ошибка в нем допущена?
Внимание! Это не конец книги.
Если начало книги вам понравилось, то полную версию можно приобрести у нашего партнёра - распространителя легального контента. Поддержите автора!Правообладателям!
Данное произведение размещено по согласованию с ООО "ЛитРес" (20% исходного текста). Если размещение книги нарушает чьи-либо права, то сообщите об этом.Читателям!
Оплатили, но не знаете что делать дальше?