Электронная библиотека » Джейми Дейвис » » онлайн чтение - страница 4


  • Текст добавлен: 12 октября 2016, 14:11


Автор книги: Джейми Дейвис


Жанр: Прочая образовательная литература, Наука и Образование


сообщить о неприемлемом содержимом

Текущая страница: 4 (всего у книги 20 страниц) [доступный отрывок для чтения: 6 страниц]

Шрифт:
- 100% +

Еще более сложные ситуации возникают в тех случаях, когда эпибласт образует не две отдельные первичные полоски, которые дают начало двум осям тела, а одну «недоудвоившуюся» Y-образную первичную полоску. Это приводит к образованию двух голов и, возможно, двух шей при общем позвоночнике. Это явление называется «удвоением оси», но название явно неудачно, так как удваивается не вся ось (в этом случае проблем бы не было), а только ее часть. У людей это явление встречается редко – как правило, оно приводит к выкидышу или мертворожденному ребенку, а если младенец рождается живым, то скоро умирает. Заспиртованные экспонаты такого рода есть почти во всех старых коллекциях естественно-научных редкостей. Очень редко люди с этой аномалией все же выживают. Самый яркий пример – это сестры Абигейл и Бриттани Хенсел, которым сейчас около двадцати пяти лет. Голова и шея у каждой из сестер своя, а туловище общее. Все, для чего нужна голова, они могут делать совершенно независимо, например, каждая из сестер может читать независимо от другой. При ходьбе, игре на пианино и управлении автомобилем им приходится действовать вместе (надо полагать, чиновникам пришлось немало потрудиться над разработкой индивидуального экзамена по вождению). Несмотря на анатомические аномалии, сестры Хенсел абсолютно нормальные, умные и общительные молодые женщины. Удвоение оси более широко распространено у других животных, например рептилий и амфибий, которые выживают с этой аномалией гораздо чаще людей. Двуглавый крысиный полоз по имени Мы (We) прожил в Городском музее Сент-Луиса восемь лет и стал одной из его главных достопримечательностей. Известность ему принесли не только необычный внешний вид, но и «споры», время от времени возникавшие между его головами, каждая из которых имела свое мнение. Есть даже одна ископаемая находка взрослой двухглавой ящерицы.[50]50
  Bufetaut E, Li J, Tong H, Zhang H. A two-headed reptile from the Cretaceous of China. Biol Let. 2007; 3: 80–1.


[Закрыть]
Удвоение оси у амфибий можно индуцировать путем воздействия на сигнальные механизмы, эквивалентные сигнальным механизмам в эпибласте и гипобласте млекопитающих (собственно говоря, существование этих механизмов было впервые показано именно на лягушках). Например, в результате введения в эмбрион лягушки одного из белков, синтезируемого в ПВЭ млекопитающих и необходимого для формирования головы, получается лягушка с несколькими головами. Этот белок получил название Cerberus («Цербер») в честь многоголового пса, стража входа в Аид.

С точки зрения этики закономерность «одна первичная полоска – один человек» может быть истолкована как доказательство того, что ее образование – поворотный момент в развитии человека. Главным аргументом является то, что до формирования первичной полоски нельзя точно сказать, сколько людей получится из эмбриона, а значит, установить четкую связь между конкретным эмбрионом и конкретным человеком. Развивая эту мысль, можно прийти к выводу, что структура, которую нельзя приравнять к конкретному человеку, не может быть наделена правами человека, а значит, проводить исследования эмбрионов до наступления стадии гаструляции можно. Напротив, как только сформировалась первичная полоска, количество будущих детей известно. На них распространяются права человека, и экспериментировать на них нельзя. Рассуждений такого рода немало, и некоторые из них сдвигают границу допустимого на более ранний период, вплоть до момента зачатия. Основная проблема такого подхода в том, что законодатели хотели бы видеть четкую границу между стадией, когда эмбрион еще не является человеком, и стадией, когда он бесспорно им уже является. Некоторые аспекты развития действительно связаны со ступенчатыми изменениями, как я уже говорил в начале этой главы, а другие (например, размер) меняются постепенно. Вполне возможно, что становление индивидуальности не является ступенчатым. Не исключено, что потенциальная способность стать человеком воплощается в реальную человеческую природу за счет последовательности шагов, занимающей месяцы и даже годы (формирование нейронных связей в мозге продолжается в течение долгого времени после рождения). Суть проблемы в том, что мы пока что слишком мало знаем о биологических основах человеческой индивидуальности, чтобы с уверенностью сказать, является ли ее становление внезапным или постепенным процессом. Вот почему в настоящее время все этические споры, которые якобы должны четко указать, когда именно человек становится человеком, колеблются на грани софистики.

Движения, благодаря которым клетки собираются вместе для формирования первичной полоски, не прекращаются и после ее создания. По мере поступления большего количества клеток центр полоски как бы проседает. Из полоски получается узкая бороздка, которая ближе к середине диска расширяется, образуя уплощенную область, называемую узелком. Клетки узелка продуцируют сигнальные белки, которые, во-первых, привлекают в этот регион дополнительные клетки, а во-вторых, заставляют их ослабить межклеточную адгезию и «включить» гены, способствующие их превращению в клетки других типов. Клетки, расположенные ближе к источнику сигнала (то есть к узелку), получают большую дозу сигнальных белков и реагируют сильнее. Ослабление системы адгезионных связей между клетками и активация у них миграционного поведения приводят к тому, что клетки свободно перемещаются в плоскости эпителиального диска и могут даже покинуть его.[51]51
  Oki S, Kitajima K, Meno C. Dissecting the role of Fgf signaling during gastrulation and left-right axis formation in mouse embryos using chemical inhibitors. Dev Dyn. 2010; 239:1768– 78.


[Закрыть]
,[52]52
  Weng W, Stemple DL. Nodal signaling and vertebrate germ layer formation. Birth Deffects Res C Embryo Today. 2003; 69:325–32.


[Закрыть]
,[53]53
  Vincent SD, Dunn NR, Hayashi S, Norris DP, Robertson EJ. Cell fate decisions within the mouse organizer are governed by graded Nodal signals. Genes Dev. 2003; 17:1646–62.


[Закрыть]
Клетки проваливаются под поверхность диска эпибласта, переходя на его нижнюю сторону. Этот процесс распространяется по первичной полоске в направлении от головы к хвосту, так что более задние участки тела проходят его значительно позже, чем передние.[54]54
  Для лучшего понимания изложенного в тексте материала полезно вкратце суммировать то, что происходит во время гаструляции с первичной полоской.
  1. Первичная полоска появляется на хвостовом конце диска и постепенно распространяется в сторону его головного конца (примерно до 18-го дня после оплодотворения), но до него не доходит (см. рис. 11).
  2. На головном конце первичной полоски появляется узелок.
  Вдоль средней линии первичной полоски появляется первичная бороздка. Ее формирование связано с миграцией клеток внутрь эмбриона. Из первичной полоски, расположенной непосредственно за узелком, выселяются клетки, из которых впоследствии сформируется мезодерма тела (костная и хрящевая ткани, кожа, циркуляторная система, выстилка полостей тела). Из самой задней части первичной полоски внутрь мигрируют клетки, из которых сформируется внезародышевая мезодерма (то есть мезодерма структур, которые нужны только эмбриону во время развития).
  Клетки, которые уходят внутрь непосредственно через узелок, впоследствии становятся клетками осевой мезодермы – нотохорда. После погружения внутрь они мигрируют в сторону головного конца.
  3. Первичная полоска подвергается регрессу – отступает в сторону хвостового конца (см. рис. 11). По мере регресса из узелка продолжают выселяться клетки, которые подстраиваются сзади к клеткам нотохорда. Таким образом, миграция узелка к хвостовому концу обеспечивает удлинение нотохорда. Клетки мезодермы также продолжают выселяться из первичной полоски до самого конца ее регресса. – Примеч. науч. ред.


[Закрыть]
По мере того как ближайшие к центру бороздки клетки уходят из диска, их бывшие соседи сдвигаются ближе друг к другу и к центру бороздки так, чтобы заполнить свободное пространство, а затем, когда наступает их очередь, тоже проваливаются под диск, покидая эпибласт.

Первые клетки первичной полоски, которые уходят из диска на определенном уровне оси «голова – хвост», присоединяются к гипобласту: они расталкивают его клетки и встраиваются между ними, так что клеточный состав центральной области этого слоя полностью изменяется (рис. 12). Оказавшиеся в этой области клетки образуют слой, который называется эндодерма. (Это слово в переводе означает «внутренняя кожа»; название связано с тем, что в дальнейшем этот слой образует трубку кишки и трубки ассоциированных с ним органов – печени и поджелудочной железы.) Клетки, которые уходят из полоски немного позже, слабо связаны друг с другом и не образуют непрерывный слой. Они образуют мезодерму (в переводе – «средняя кожа»), которая лежит между эндодермой и внешним слоем. Клетки первичной полоски, которые не успевают «утонуть» и после завершения гаструляции остаются в эпибласте, формируют эктодерму (в переводе – «внешняя кожа»).[55]55
  Tam PP, Behringer RR. Mouse gastrulation: The formation of a mammalian body plan. Mech Dev. 1997; 68:3–25.


[Закрыть]
Таким образом, первичная полоска и узелок не только показывают нам ось «голова – хвост» у эмбрионов, но и превращают один слой клеток в три разных слоя: эктодерму, мезодерму и эндодерму (см. рис. 12). Это основные слои тела почти у всех животных.[56]56
  Некоторые примитивные животные, например медузы, имеют только эктодерму и эндодерму.


[Закрыть]

Для того чтобы уйти из диска, клетки должны сначала добраться до первичной полоски, и поэтому время их погружения тесно связано с исходным расстоянием до нее. Клетки, располагавшиеся ближе к средней линии диска, быстро проходят короткое расстояние и выселяются из полоски, тогда как клетки, располагавшиеся вблизи краев диска, начинают выселяться значительно позже, когда первые клетки уже давно погрузились под диск. Время и пространство так тесно сплелись в процессе гаструляции, что трудно определить, какой из этих факторов играет более важную роль в судьбе клеток. Определяется их судьба еще до начала миграции за счет ранних сигналов от ПВЭ или она становится известной только после того, как клетки выселяются из диска и оказываются внутри эмбриона? По-видимому, судьба некоторых клеток предопределена еще до начала движения.[57]57
  Rossant J, Tam PP. Blastocyst lineage formation, early embryonic asymmetries and axis patterning in the mouse. Development. 2009; 136:701–13.


[Закрыть]
,[58]58
  Witler L, Kessel M. The acquisition of neural fate in the chick. Mech Dev. 2004; 121:1031–42.


[Закрыть]
,[59]59
  Chapman SC, Matsumoto K, Cai Q, Schoenwolf GC. Specification of germ layer identity in the chick gastrula. BMC Dev Biol. 2007; 7:91.


[Закрыть]
,[60]60
  Gerhart J, Neely C, Elder J, Pfautz J, Perlman J, Narciso L, Linask KK, Knudsen K, George-Weinstein M. Cells that express MyoD mRNA in the epiblast are stably commited to the skeletal muscle lineage. J Cell Biol. 2007 Aug 13; 178(4):649–60.


[Закрыть]
,[61]61
  Streit A, Berliner AJ, Papanayotou C, Sirulnik A, Stern CD. Initiation of neural induction by FGF signalling before gastrulation. Nature. 2000; 406:74–8.


[Закрыть]
Примером может служить обсуждавшееся выше программирование области, в которой будет формироваться голова, с помощью сигналов от ПВЭ, или программирование клеток, удаленных от ПВЭ, на формирование первичной полоски. Насколько четко определена на этих ранних этапах дальнейшая судьба других клеток, непонятно. Дело усложняется тем, что в некоторых случаях «запрограммированная» судьба клеток является всего лишь наиболее вероятным путем их развития. Если в эксперименте поместить их в другую среду и подвергнуть воздействию других сигналов (что вполне возможно и в естественных условиях, если во время гаструляции они затеряются среди других клеток), такие клетки могут «передумать» и пойти совсем по другому пути развития. Эта область эмбриологии все еще полна нерешенных вопросов, которые ждут своих исследователей.


Рис. 12. Образование трех слоев тела – эктодермы, мезодермы и эндодермы – во время гаструляции. В верхней левой части изображен эпибласт эмбриона, у которого уже образовался узелок, как он виден со стороны амниотической полости. Гипобласт лежит под эпибластом и не виден. На основном рисунке изображена первичная полоска в разрезе (он обозначен пунктирной линией на рисунке в верхней левой части). Клетки эпибласта активно мигрируют в плоскости пласта, и траектории их движения сходятся в бороздке, получившейся из первичной полоски. Затем эти клетки выселяются из эпибласта и уходят в пространство между дисками. Часть из них (те, которые встраиваются между клетками гипобласта, расталкивая их от средней линии к краям) дадут начало эндодерме, а часть – мезодерме (новому слою клеток посередине между эпибластом и гипобластом). Клетки, не покинувшие эпибласт, формируют эктодерму


Почти сразу после образования эндодермы клетки, расположенные вдоль центральной линии диска гипобласта (то есть под первичной полоской), начинают двигаться вверх (рис. 13). Это клетки, которые выселялись из эпибласта непосредственно через узелок, с той его стороны, которая обращена к голове, а значит, это клетки, получившие самую высокую дозу сигнальных молекул узелка. Благодаря им эти клетки «запрограммированы» на то, чтобы покинуть эндодерму.[62]62
  Sausedo R, Schoenwolf GC. Quantitative analyses of cell behaviors underlying notochord formation and extension in mouse embryos. Anat Rec. 1994; 239:103–12.


[Закрыть]
,[63]63
  Sulik K, Dehart DB, Iangaki T, Carson JL, Vrablic T, Gesteland K, Schoenwolf GC. Morphogenesis of the murine node and notochordal plate. Dev Dyn. 1994 Nov; 201(3):260–78.


[Закрыть]
,[64]64
  Jurand A. Some aspects of the development of the notochord in mouse embryos. J Embryol Exp Morphol. 1974; 32:1–33.


[Закрыть]
Сразу после этого они выстраиваются вдоль оси эмбриона и образуют плотный стержень – нотохорд.[65]65
  У большинства животных нотохорд образуется непосредственно из мезодермы. Недавнее открытие того факта, что у мышей и, предположительно, у человека он формируется из центральной области слоя эндодермы, стало неожиданностью.


[Закрыть]
Это одна из важнейших структур на ранних стадиях развития эмбриона. Чтобы понять, почему эта структура возникает так рано (а также то, почему она возникает вообще), нужно обратиться к эволюции животного мира.

Зоологи классифицируют животных, используя иерархическую систему. Основной единицей этой системы является вид (например, Homo sapiens/Человек разумный). Схожие виды образуют род (например, Homo). Похожие рода сгруппированы в семейства (например, Hominidae), семейства – в отряды (например, Приматы). Отряды, в свою очередь, объединяются в классы (например, Mammalia/Млекопитающие), классы – в подтипы (например, Vertebrata/Позвоночные), а подтипы – в типы. Самые первые классификации основывалась на простом сходстве, но, после того как благодаря Дарвину и Уоллесу прояснилась роль изменчивости и естественного отбора в возникновении кластеров схожих таксонов, классификации стали отражать эволюционные взаимоотношения. Тип Chordata (Хордовые), к которому относятся все позвоночные, включает всех животных, имеющих нотохорд на каком-то этапе развития. С точки зрения количества видов в типе хордовых преобладают позвоночные, но есть в нем и несколько беспозвоночных, оставшихся с раннего кембрия. Большинство из них довольно редкие организмы, но ланцетник встречается достаточно часто, и в некоторых районах Азии его даже употребляют в пищу. Ланцетники – животные примерно пяти сантиметров в длину, внешне похожие на рыб. Они не имеют костного скелета, но нотохорд сохраняется у них на протяжении всей жизни, укрепляя тело и обеспечивая опору для мышц.


Рис. 13. Образование нотохорда из клеток, расположенных вдоль средней линии эндодермы (напомним, что эндодерма образовалась из погрузившихся клеток первичной полоски)


Нотохорд, однако, не просто придает телу жесткость. Он состоит из особых клеток, выделяющих специальные белки. Поэтому нотохорд может служить источником сигналов при разметке плана строения эмбриона, а его расположение вдоль средней линии делает его идеально приспособленным для этой цели. Хордовые, включая позвоночных, активно используют эти сигналы для разметки внутренних тканей. Так, например, детерминируются различные типы нервных клеток в спинном мозге или соединительных тканей и мышц по обеим сторонам тела. Сигналы нотохорда настолько важны, что событиям, в которых они играют ключевую роль, посвящены несколько последующих глав (5, 7 и 9). В ходе эволюции позвоночных план строения хордовых значительно усложнился, но все эти усложнения, в конечном счете, основаны на способности клеток на ранних этапах развития получать и интерпретировать сигналы нотохорда. Поэтому нам уже никуда не деться от этой структуры. У взрослого организма нотохорд заменяется более сложной конструкцией, позвоночным столбом, но на раннем этапе развития мы не можем обойтись без его сигналов. Нотохорд – эмбриологическая «живая окаменелость» – утратил свою изначальную функцию механической поддержки, но остается важным элементом нашего развития. Он существует ровно столько времени, сколько нужно для того, чтобы он успел выполнить свою функцию. Позже нотохорд разрушается, а его остатки идут на образование межпозвонковых дисков, смягчающих нагрузку на позвоночник[66]66
  McCann MR, Tamplin OJ, Rossant J, Séguin CA. Tracing notochord-derived cells using a Noto-cre mouse: implications for intervertebral disc development. Dis Model Mech. 2012; 5:73–82.


[Закрыть]
(повреждение этих дисков приводит к болезненной межпозвоночной грыже).

Мало того что система «узелок/первичная полоска» определяет положение главной оси тела и образует первые слои тканей, она также выполняет еще одну важную функцию – нарушение зеркальной симметрии левой и правой половины тела.[67]67
  Lee JD, Anderson KV. Morphogenesis of the node and notochord: The cellular basis for the establishment and maintenance of left—right asymmetry in the mouse. Dev Dyn. 2008; 237:3464–76.


[Закрыть]
Она делает это, перемещая жидкость в полости эмбриона очень неэффективным, но крайне полезным образом. Многие клетки животных обладают ресничками – маленькими, гибкими выростами. Каждая ресничка оснащена крошечным моторчиком, состоящим из белков, которые получают энергию из химических реакций и используют ее для воздействия на другие белки. Благодаря этим моторчикам реснички движутся – бьются. У одноклеточных животных биение ресничек позволяет им перемещаться в жидкости. В организме человека некоторые неподвижные клетки, напротив, используют реснички для перемещения жидкости. Например, реснички клеток дыхательных путей очищают легкие от слизи, а реснички клеток, выстилающих яйцевод, продвигают яйцеклетки и ранние эмбрионы к матке. У клеток узелка тоже есть реснички, они находятся на нижней стороне узелка и обращены в заполненную жидкостью полость.

Реснички клеток узелка имеют две необычные особенности. Во-первых, они отходят от клетки под углом примерно 45 градусов и направлены вниз и назад. Наклон назад обусловлен тем, что клетки «чувствуют» передне-заднюю полярность эмбриона.[68]68
  Santos N, Reiter JF. Tilting at nodal windmills: Planar cell polarity positions cilia to tell left from right. Dev Cell. 2010; 19:5–6.


[Закрыть]
Во-вторых, они бьются не так, как обычные реснички (их биение напоминает удар кнута), а совершают круговые движения, напоминающие раскручивание лассо перед броском. Эти вращения очень быстрые, около шестисот оборотов в минуту (что сопоставимо с числом оборотов двигателя автомобиля на холостом ходу). Ресничка всегда вращается по часовой стрелке (если смотреть от ее кончика в сторону клетки). Это связано с тем, что двигательные белковые комплексы обладают зеркальной асимметрией и могут присоединяться к ресничкам и вращать их только одним образом.[69]69
  Hirokawa N, Tanaka Y, Okada Y, Takeda S. Nodal f ow and the generation of left—right asymmetry. Cell. 2006; 125:33–45.


[Закрыть]
Расположение каждой реснички таково, что, когда она находится в нижней части описываемой ей окружности, она движется к левой стороне эмбриона, а когда она описывает верхний полукруг, то движется к его правой стороне (рис. 14). Пока что все симметрично, но близость реснички к клетке в верхней части описываемой ею окружности при движении вправо означает, что движение жидкости существенно замедлено силой вязкого сопротивления у поверхности клетки. Когда реснички находятся в нижней части окружности, далеко от поверхности клетки, эта сила минимальна и жидкость продвигается более эффективно. Так возникает дисбаланс между количеством жидкости, выталкиваемым вправо, и количеством жидкости, выталкиваемым влево. Это похоже на эффект создания боковой силы гребным винтом, хорошо знакомый владельцам одномоторных лодок. Ограниченное пространство между винтом и корпусом приводит к тому, что при включенном моторе лодка не только движется вперед, но и смещается в сторону (рис. 14). В переполненной гавани это нередко приводит к интересным последствиям.

Неравномерный поток жидкости, обусловленный характером биения ресничек, приводит к тому, что левая сторона узелка постоянно омывается свежей жидкостью из запаса в пространстве под ресничками.[70]70
  Shields AR, Fiser BL, Evans BA, Falvo MR, Washburn S, Superfine R. Biomimetic cilia arrays generate simultaneous pumping and mixing regimes. Proc Natl Acad Sci U S A. 2010; 107:15670–5.


[Закрыть]
Клетки могут получать из нее много микроэлементов (например, кальций). Правая же сторона узелка получает отработанную жидкость, с меньшим количеством полезных веществ. Белки, секретируемые клетками узелка, также будут уходить влево.


Рис. 14. Реснички, вращающиеся у поверхности, направляют поток жидкости влево. В верхней части рисунка представлен вид на узелок. Реснички направлены вниз под углом 45 градусов по отношению к будущей брюшной стороне эмбриона и назад к хвостовому концу тела. Они вращаются по часовой стрелке, описывая конус. В нижнем левом углу рисунка – вид с хвостового конца эмбриона. Положение вращающихся ресничек создает дисбаланс потока жидкости – она более эффективно перегоняется влево. В нижнем правом углу представлен вид со стороны кормы лодки и изображен аналогичный эффект, знакомый тем, кому приходилось управлять лодкой в ограниченном пространстве


Клетки узелка выделяют в жидкость, которая находится под ними, различные белки, в том числе Nodal – мощную сигнальную молекулу названную так по месту образования (от англ. node узелок). Nodal синтезируется в обеих частях узелка, но как только он выходит наружу поток жидкости тут же относит его влево. Кальций стимулирует образование этого белка, поэтому свежая, богатая кальцием жидкость, поступающая в левую часть узелка, способствуют образованию там большего количества белка Nodal. Он влияет на производство других белков, в том числе тех, которые влияют на экспрессию генов. Накопление белка Nodal на левой стороне эмбриона приводит к тому, что эта сторона активирует немного иной набор генов, чем правая сторона. Так нарушается зеркальная симметрия эмбриона.

Потеря идеальной зеркальной симметрии полезна для процесса создания человеческого организма. Если смотреть снаружи, то кажется, что правая половина нашего тела зеркально симметрична левой, но многие внутренние структуры расположены асимметрично. Асимметричны сердце и круги кровообращения, селезенка и поджелудочная железа смещены влево, а печень и аппендикс – вправо. Существует огромное количество мелких различий между левым и правым полушарием мозга. Некоторые признаки асимметрии видны невооруженным глазом. У мужчин, например, одно яичко (в большинстве случаев левое) ниже, чем другое.[71]71
  За невероятно детальное исследование асимметрии мошонки у греческих скульптур, опубликованное в 1979 г., его автор, Й. К. Макманус, был удостоен Игнобелевской премии в области медицины за 2002 г. Премия учреждена журналом «Анналы невероятных исследований» и присуждается за работы, которые заставляют людей сначала засмеяться, а потом задуматься.


[Закрыть]
Возможно, способность к асимметричному развитию и не была жизненно необходима для эволюции высших позвоночных, но почти наверное упростила ее. В противном случае нам, вероятно, потребовались бы парные органы (кроме, разве что, пищеварительного тракта, центральной нервной системы, пениса, влагалища и мочевого пузыря, а они и так расположены по срединной линии). Это привело бы к проблемам с размещением органов в теле. У рыб, с их удлиненным узким телом, пары органов могли бы расположиться друг за другом, но наземным или летающим животным это, скорее всего, было бы невыгодно.

Самое примечательное в этом механизме нарушения симметрии то, что асимметрия на уровне организма обусловлена, по большому счету, асимметрией на молекулярном уровне, а именно асимметрией белковых комплексов, обеспечивающих биение ресничек. Это один из немногих случаев, когда конкретное свойство молекулы переносится на весь организм. Этот механизм необычен, но его существование подтверждено убедительными доказательствами. Во-первых, вращение ресничек клеток эмбриона можно наблюдать непосредственно. Во-вторых, создаваемый ресничками поток можно смоделировать – сначала математически, а потом и практически, в экспериментах с искусственными ресничками. Поток жидкости был неоднократно визуализован – как в эмбрионах, так и в искусственных моделях – путем добавления окрашенных частиц. Немало исследований посвящено образованию и накоплению белка Nodal. Идею о существовании такого механизма подкрепляют и данные по мутациям. Мутации, нарушающие образование или вращение ресничек, приводят к появлению организмов с нарушенной асимметрией. У одной мутантной мыши (inv) реснички направлены в другую сторону (под углом 45 градусов не в сторону хвоста, а в сторону головы). Поток жидкости движется в основном вправо, и можно предположить, что строение тела мышей с этой мутацией будет всегда зеркально отличаться от нормального. Именно это мы и наблюдаем. С аналогичной инверсией рождаются и некоторые люди – судя по всему, по той же причине.

События, описанные в этой главе, происходят всего за два-три дня (спустя 15–17 дней после зачатия), но кардинально меняют строение эмбриона. Прежде он представлял собой диск, на вид не имеющий ничего общего со сложным животным. Теперь же у него есть удлиненное тело с четкой выраженным передним и задним концом, спинной и брюшной стороной и правым и левым боком, ткани трех типов, определенным образом расположенных относительно друг друга, а также нотохорд, проходящий по центральной оси. Задатки будущего животного налицо, и можно приступать к усложнению внутреннего строения.


Страницы книги >> Предыдущая | 1 2 3 4 5 6 | Следующая
  • 0 Оценок: 0

Правообладателям!

Данное произведение размещено по согласованию с ООО "ЛитРес" (20% исходного текста). Если размещение книги нарушает чьи-либо права, то сообщите об этом.

Читателям!

Оплатили, но не знаете что делать дальше?


Популярные книги за неделю


Рекомендации