Электронная библиотека » Элизабет Таскер » » онлайн чтение - страница 2


  • Текст добавлен: 18 января 2019, 20:40


Автор книги: Элизабет Таскер


Жанр: Прочая образовательная литература, Наука и Образование


Возрастные ограничения: +12

сообщить о неприемлемом содержимом

Текущая страница: 2 (всего у книги 25 страниц) [доступный отрывок для чтения: 7 страниц]

Шрифт:
- 100% +

Первая часть. Пыль на фабричном полу

Глава 1
Фабрика за работой

В час пополуночи 8 февраля 1969 г. небо над штатом Чиуауа на севере Мексики озарилось светом огненного шара.

«Все вокруг залило светом – можно было разглядеть муравья на полу, – рассказывал впоследствии корреспонденту The Washington Post редактор местной газеты Гильермо Асунсоло. – Сияние было такое, что приходилось закрывать глаза».

Пылающая глыба с шумом разрезала атмосферу, пока не взорвалась над деревней Пуэблито-де-Альенде, разлетевшись на множество осколков по территории площадью 250 кв. км. Увидев такое зрелище, любой бы ужаснулся приближающемуся концу света. Но на самом деле объятый огнем объект был не предвестником нашей смерти, а свидетелем нашего рождения.

Твердые тела, проникающие в атмосферу Земли из космоса, называют метеороидами. Контакт с атмосферой земли губителен для куска горной породы, поскольку воздух оказывает куда большее сопротивление его полету, чем вакуум в космосе. Когда метеороид врезается в атмосферу, воздух быстро сжимается, что приводит к резкому повышению температуры. Окружающий космического пришельца воздух вспыхивает, превращая песчинки в «падающие звезды» – метеоры, а редкие глыбы большого размера – в огненные шары, болиды. Вероятность полного выгорания в таких экстремальных условиях весьма велика, поэтому большинство метеороидов до поверхности Земли никогда не долетает. Те, которым все-таки удается пережить все трудности опасного путешествия, в награду за стойкость переходят в категорию метеоритов.

Эффектный вход в атмосферу метеорита Альенде (названного так в честь деревни, над которой он взорвался) не мог пройти незамеченным. В район падения метеорита сразу же нагрянули ученые, к поискам обломков привлекли местных жителей и школьников. Группа полевых исследователей из Смитсоновского института в Вашингтоне за несколько недель после падения собрала около 150 кг метеоритного материала и передала его 37 лабораториям в 13 странах. Всего было собрано более 2 т материала самого разного веса– от крошечных фрагментов весом 1 г до громадной 110-килограммовой глыбы. Исходя из столь значительного объема находок можно было сделать вывод, что перед взрывом метеор был размером с автомашину. В результате активной работы по сбору осколков Альенде и их передачи ученым он заслужил звание «самого тщательно обследованного метеорита в истории». Однако повышенный интерес к нему объяснялся не только его аномально большим размером.

Все начало 1969 г. сотрудники научных лабораторий по всей Америке находились в состоянии напряженного ожидания – экипаж «Аполлона-11» должен был вот-вот доставить образцы лунных пород, собранные во время исторической высадки на Луне. И тут прямо у них под носом в Землю врезается еще один осколок горной породы из космоса. Когда извлеченные с места падения куски метеорита Альенде были исследованы с помощью лабораторного оборудования, которое к тому моменту уже было подготовлено к анализу внеземного материала и только ждало своего часа, обнаружилось, что это был не какой-нибудь там заурядный космический булыжник. Нет, вещество с белыми точками, из которого он состоял, оказалось углистым хондритом, то есть Альенде относился к редкому классу метеоритов, на который приходится менее 5 % всех падений. Этот класс состоит из самых первых объектов, из которых формировалась Солнечная система, а метеорит Альенде остается самым крупным представителем этого класса из всех когда-либо найденных на Земле.

Уникальность углистого хондрита в его древнем происхождении: когда вы держите его в руках, вы как будто смотрите на детскую фотографию самого дальнего предка. Эта горная порода сформировалась в самом начале истории нашей планеты. Но, в отличие от Земли, ей не удалось набрать достаточную массу для того, чтобы вырасти в самостоятельную планету. С помощью этого снимка, на котором в физической форме запечатлено самое начало нашего собственного существования, мы можем с большой точностью определить момент рождения нашего планетного окружения.



Как показывает лабораторный анализ, в метеоритах содержатся элементы, которые являются радиоактивными: атомы в них могут спонтанно превращаться в атомы другого элемента. Этот радиоактивный распад носит случайный характер, а значит, точно сказать, когда конкретный атом изменит свое состояние, невозможно. Однако есть значительное число атомов, изучая которые ученые могут с определенной долей уверенности определить время, которое требуется для того, чтобы половина из них распалась. Этот отрезок времени называют периодом полураспада элемента. То есть, если мы сможем узнать, какая часть радиоактивного элемента распалась, мы получим своего рода часы, с помощью которых мы сможем рассчитать, сколько времени прошло.

Одним из таких радиоактивных элементов, содержащихся в метеоритах, является рубидий-87 (обозначаемый как 87Rb). Цифра 87 указывает на массу атомного ядра рубидия – центральной его части, состоящей из положительно заряженных частиц под названием «протоны» и частиц под названием «нейтроны», которые имеют ту же массу, что и протоны, но при этом не обладают электрическим зарядом. Когда атом 87Rb распадается, один из его нейтронов становится протоном в ходе процесса, получившего название бета-распад. Результатом является атом стронция-87 (87Sr), ядро которого имеет ту же массу, что и 87Rb, но при этом в нем на один протон больше и на один нейтрон меньше.

Период, за который половина атомов 87Rb распадается в 87Sr, составляет 49,23 млрд лет. Он отлично подходит для оценки временных рамок образования планет. Если бы период полураспада был очень коротким (скажем, несколько лет), тогда атомы 87Rb исчезли бы задолго до того момента, когда изучаемый осколок горной породы достиг поверхности Земли. С другой стороны, существенно большая продолжительность этого отрезка времени означала бы отсутствие такого количества атомов 87Sr, которого было бы достаточно для проведения измерений. Поэтому достаточного уровня точности измерений методом радиоактивного датирования можно достичь в тех случаях, когда измеряемый период времени находится в промежутке от одной десятой периода полураспада до 10 периодов полураспада.

Измеряя текущее количество атомов 87Rb в метеорите и количество атомов 87Sr, образовавшихся в результате распада рубидия, ученые могут рассчитать, какая часть атомов распалась с момента формирования метеорита. Затем, зная период полураспада 87Rb, они могут определить, сколько времени прошло с момента образования горной породы.

В случае с углистым хондритом, таким, например, как метеорит Альенде, полученный описанным способом возраст указывает на самое начало истории нашей планеты. Он равен 4 560 000 000 годам.

Планетообразующий диск

Благодаря метеориту Альенде мы знаем, когда зародилась наша планета. Но что именно тогда она из себя представляла, остается для нас загадкой. Углистый хондрит вряд ли можно сравнить с четкой фамильной фотографией, на которой видны лица всех предков. Скорее он похож на размытое селфи дальнего кузена с датой в виде наспех нацарапанных закорючек в нижнем углу. Не имея более четкого представления об условиях, в которых началось формирование нашей планеты, мы не сможем понять, есть ли у нас шанс найти второй такой мир.

И пусть с семейным фотографом нам не повезло, у нас все же есть один достоверный факт об эпохе, когда мы родились: 4,56 млрд лет назад наше Солнце появилось на свет. Оказывается, связи всего лишь с одним-единственным событием – завершившимся незадолго до того формированием нашей звезды – достаточно, чтобы понять, как образуется планета.

Если мы углубимся в прошлое еще на несколько миллионов лет, взяв за точку отсчета момент образования первобытного метеорита, мы окажемся в одном из самых холодных мест в Галактике. Место это – колыбель нашего Солнца: умопомрачительно холодное облако газа с температурой –263 °C. Именно в таких звездных колыбелях и зарождаются все звезды в нашей Галактике. Эти облака состоят преимущественно из водорода, а их массы приблизительно в 1000–1 000 000 раз превышают массу Солнца. Поскольку они образуются в Галактике, которая находится в постоянном движении, газ в облаках распределяется не равномерно, а постоянно перемещается и перемешивается, как пух в старой перине, собираясь в плотные сгустки, называемые ядрами. В результате концентрации большой массы в небольшом пространстве под действием гравитации ядро начинает сжиматься, что делает его еще более плотным и ускоряет его коллапс. По мере уплотнения газ нагревается и рождается звездный эмбрион – протозвезда.

Хотя солирующую партию здесь исполняет гравитация, она – не единственная сила, заставляющая вещество сжиматься. Увлекаемый вращением Галактики и взаимодействиями с соседними облаками, газ в облаке-колыбели также вращается. Подобно тому, как при катании на детской карусели вас выталкивает наружу, вращение газа помогает ему сопротивляться действию гравитации. Эта дополнительная сила удерживает газ, вращающийся с наибольшей скоростью в ядре, в стороне от коллапсирующей протозвезды. В результате этого процесса, похожего на работу пиццайоло, который крутит тесто в руках, пока не получится плоская пицца, вокруг звезды формируется вращающийся диск газа.



По мере того как газ перестает сжиматься и начинает охлаждаться, частицы пыли конденсируются внутри диска подобно кристалликам льда, образующимся при замерзании водяного пара. Эти крошечные песчинки сливаются с хаотичным скоплением пыли, которое уже присутствует в газовой облаке, образуя первые твердые тела вокруг нашего Солнца. Так начинается процесс формирования планеты. Из мельчайших строительных блоков на этой газово-пылевой фабрике, которую называют «протопланетным диском», собираются все более массивные объекты.



Видимая простота описываемого процесса кажется несколько подозрительной. Ведь если бы все происходило именно так, тогда вокруг каждой звезды при ее рождении появлялся бы ее собственный планетообразующий диск. Может ли процесс образования планет и правда быть настолько широко распространен во Вселенной?

Проверить это нетрудно – например, можно поискать протопланетные диски вокруг существующих сейчас молодых звезд. Проблема в том, что эти диски не светятся. В отличие от звезды в центре, которая активно разогревается, превращаясь в колоссальный пылающий шар, окружающий ее пылевой диск не может сам излучать свет. Но при этом пыль должна поглощать исходящую от звезды энергию. Энергия света звезды должна нагревать пыль в протопланетном диске точно так же, как лучи летнего солнца раскаляют капот автомобиля. Нагревшись, пыль должна выделять тепло в виде низкоэнергетического излучения инфракрасного спектра.

Человеческий глаз не чувствителен к инфракрасному излучению, но найти камеры, которые могут его регистрировать, не так уж и трудно. К сожалению, этот вид устройств, отлично подходящий для фиксации тепла, исходящего от ночного грабителя, невозможно просто направить в небо, чтобы обнаружить там протопланетный диск. Причина в том, что, хотя звезда нагревает диск, его температура все равно может опускаться намного ниже любого значения, которое можно встретить на Земле. Чтобы излучаемое самой камерой тепло не мешало работе, ее придется охладить до температуры ниже той, которая фиксируется в звездной колыбели. Кроме того, собственная атмосфера Земли очень хорошо поглощает инфракрасное излучение; в этом она легко даст фору упомянутому выше грабителю, убегающему с вашим новым телевизором. Поэтому лучшее место для размещения такого инструмента – космос.

Даже несмотря на то, что поддерживать низкие температуры при работе с космическими телескопами проще, использовать их для охоты за инфракрасным излучением все равно можно только при наличии дополнительного охлаждения. Обычно нужная температура достигается с помощью жидкого гелия, который медленно испаряется, поглощая окружающее его тепло и поддерживая температуру телескопа на уровне –270 °C. Когда гелий полностью испаряется, телескоп слегка нагревается до умеренно мягких –244 °C.

Как раз такими телескопами, чья задача заключается в поиске дисков вокруг молодых звезд, были телескопы «Инфракрасная космическая обсерватория» (Infrared Space Observatory) и космический телескоп «Спитцер» (Spitzer Space Telescope). Первый был запущен в 1995 г. Европейским космическим агентством и продолжал работать до 1998 г., пока не закончился гелиевый хладагент. «Спитцер» – одна из «Больших обсерваторий» NASA. В эту знаменитую группу спутников также входит космический телескоп «Хаббл». «Спитцер» был запущен в 2003 г., хладагент на нем был выработан в мае 2009-го, но телескоп продолжил работу в режиме ограниченной нагрузки при более высокой температуре. Результаты работы этих телескопов не оставляли сомнений: все звезды младше миллиона лет окружены пылевыми дисками. Если этого набора условий достаточно для формирования планет, то вокруг каждой новой звезды действительно могут образовываться новые миры.

Впрочем, проведенные исследования позволили сделать еще и другой вывод. Хотя у всех самых молодых звезд были диски, только 1 % звезд старше 10 млн лет по-прежнему имели тот набор условий, который требуется для формирования планет. Единственное толкование: формирование планет происходит в рамках определенного периода времени.



Исчезновение протопланетного диска может объясняться несколькими причинами. Самое захватывающее объяснение: весь диск превращается в планеты, в результате чего образуется целый хоровод новых миров. К сожалению, наблюдения за нашей Солнечной системой и за известными нам эзкопланетными системами показывают, что общая конечная масса планет составляет лишь 1 % от первоначальной массы диска, что заставляет задуматься о том, куда деваются остальные 99 %.

Еще одно вероятное объяснение заключается в том, что под действием гравитационных сил диск притягивается к близлежащим звездам, отрываясь от своего солнца. Это процесс действительно может иметь место в некоторых случаях, но он не настолько широко распространен, чтобы им можно было объяснить полное исчезновение всех протопланетных дисков: обычно звезды находятся слишком далеко друг от друга. Поэтому за разрушением диска должны стоять факторы внутреннего порядка, то есть в процессе формирования звезды и дисковой системы последняя разрушает саму себя.

Отчасти в разрушении виновато трение внутри диска. Для наглядности можно представить себе диск в виде следующих друг за другом беговых дорожек вокруг звезды. Газ на внутренней дорожке выбивается вперед, опережая газ на соседней внешней дорожке. В результате трения между дорожками скорость газа на внутренней дорожке уменьшается, а значит, в противостоянии вращения и гравитационных сил протозвезды последние начинают одерживать верх. Увлекаемый вперед газом с внутренней дорожки, газ на внешней дорожке набирает скорость, но одновременно с этим замедляется под влиянием газа с дорожки, которая граничит с ним с другой стороны. По мере уменьшения влияния на диск вращения газ и находящаяся во взвешенном состоянии пыль падают по направлению к звезде.

Этот процесс падения вещества по спирали называют аккрецией. Безусловно, на него можно списать исчезновение определенной части диска. Однако, учитывая, что этот процесс протекает достаточно медленно, вряд ли его можно считать единственной причиной. На разрушение внешних частей дисков путем аккреции потребовалось бы несколько миллиардов лет. Но, как показывают наблюдения, все происходит намного быстрее – приблизительно за 10 млн лет. Еще больше усугубляет ситуацию то обстоятельство, что процесс частичного разрушения диска наблюдается исключительно редко. Это указывает на то, что фактическое время разрушения в 10 раз меньше, а сам процесс, скорее всего, протекает практически одновременно во всем диске. Последний вывод наиболее проблематичен, поскольку, чем ближе к звезде, тем быстрее протекает аккреция, а значит, диск поглощается изнутри. Для этого требуется вторая, более динамичная деструктивная сила. Ее источником выступает сама звезда.

Подобно болезненному взрослению подростка, процесс превращения молодой протозвезды в полноценное солнце протекает весьма бурно. В случае со звездой промежуточной массы, такой, например, как Солнце, этот бунтарский период называют стадией Т Тельца – в честь первой звезды – звезды в созвездии Телец, при наблюдении за которой был зафиксирован этот неловкий момент. Почти как осыпающие родителей оскорблениями подростки, звезды типа Т Тельца являются источником не только губительной радиации в форме высокоэнергетического ультрафиолетового и рентгеновского излучения, но еще и опаляющих ветров, несущих с собой высокоэнергетические частицы. Сталкиваясь с верхними газовыми слоями диска, они нагревают их. В непосредственной близости от солнца эта бомбардировка энергией приводит лишь к очень сильному нагреванию диска. Однако по мере удаления гравитационное притяжение звезды слабеет, и этой энергии может быть достаточно для того, чтобы газ и малейшие частицы пыли диска могли преодолеть притяжение и ускользнуть в виде ветра. Этот процесс называют фотоиспарением (дословно – «испарением под действием фотонов», то есть частиц излучения). Считается, что именно по его вине разрушается основная часть диска. Вблизи звезды, где сила гравитации достаточно велика, чтобы противостоять фотоиспарению, дело довершает аккреция.

С исчезновением газового диска вокруг звезды продолжают свободно обращаться только планеты и прочие твердые объекты, которые слишком велики, чтобы их унесло вместе с газом. При этом большая часть сохраняющегося в системе газа уже входит в состав планет, где он удерживается гравитационным полем. Поскольку в нашей Солнечной системе существует четыре планеты, огромная часть объема которых приходится на газовую атмосферу, мы знаем, что к моменту разрушения диска формирование планетного окружения должно быть почти завершено. Таким образом, на то, чтобы куча частичек пыли в 10 раз меньше песчинки превратилась в полноценный мир, похожий на место, где однажды может зародиться жизнь, должно уходить приблизительно 10 млн лет.

Пока что у нас есть все основания сомневаться в том, что такое вообще возможно. Более того, можно даже утверждать, что диски, которые мы наблюдаем вокруг молодых звезд, вовсе не материал для образования планет, а всего-навсего пылевые плаценты новорожденных звезд. Проверить эту гипотезу можно, например ответив на вопрос о количестве вещества, которое должно было присутствовать в протопланетном диске Солнца, чтобы из него сформировалась Солнечная система. Если эта величина не имеет ничего общего с массой дисков, наблюдаемых вокруг молодых звезд, то идею о переходе от пыли к планетам придется признать чистейшим вздором.

Если бы мы взялись воспроизвести процесс образования планет, построив модель Солнечной системы из деталей LEGO, нам бы не составило труда определить количество вещества, которое понадобится на начальном этапе. Разобрав конструкцию и подсчитав количество пластиковых деталей, использованных при строительстве планет, мы бы могли точно сказать, сколько элементов требуется для реализации такого проекта. Однако, проделывая ту же операцию с протопланетным диском, мы сталкиваемся с проблемой: патологический клептоман – Солнце – постоянно крадет значительную часть деталей в процессе строительства.

Если разобрать все планеты в Солнечной системе на части и расплющить их так, чтобы они образовали диск, получившаяся в результате этого система окажется богата железом и силикатными соединениями, содержащими кремний, магний, углерод и кислород, а на удаленных от Солнца участках будут в изобилии встречаться обледенелости. За этим стоят более тяжелые элементы, которые быстрее всего конденсировались из газа в твердое состояние, образуя пыль, а затем (как следует из предполагаемого нами механизма) и более крупные куски горной породы и планеты. Более легкие элементы, такие как водород, могли связываться с пылинками, образуя твердые соединения, например лед, или оказывались заперты в атмосферах планет. Однако под действием излучения молодого Солнца диск все-таки потерял большую их часть в результате испарения.

Пожалуйся мы на эту досадную особенность легких материалов в страховую компанию, нас бы точно обвинили в придумывании небылиц и попросили предоставить доказательства в подтверждение заявленного нами изначального количества. Задача эта не из легких. Единственный способ решить ее – это предположить, что диск формировался из того же газа в области звездообразования, что и Солнце. Тогда у нас появляется точка отсчета для сравнения материала, который должен был там изначально содержаться, а именно само Солнце.

Представим себе игрушечную модель Солнечной системы, сделанную из разноцветных деталей. Теперь представим, что кто-то решил украсть часть кубиков, но при этом этот воришка питает особую страсть к красному. В этом случае после кражи нам бы было намного легче определить, сколько деталей было использовано в процессе строительства. Зная, что при сборке модели было одинаковое количество деталей красного, зеленого и синего цвета, мы могли бы легко подсчитать количество недостающих красных деталей исходя из общего количество деталей других двух цветов. Например, если после разборки модели оказалось, что в ней 100 зеленых, 100 синих и пять красных деталей, было бы логичным предположить, что вор украл 95 красных деталей, а всего на момент начала строительства их было 300.

С помощью этого метода можно определить количество недостающих элементов в протопланетном диске. Поскольку диск и Солнце формировались из одного газового ядра, соотношение элементов в них изначально должно было одинаковым. Подобно красным деталям в нашем примере, диск потерял летучие элементы, но их количество по сравнению с более тяжелыми элементами должно было быть таким же, как в Солнце. Поэтому для оценки изначальной массы диска мы можем дополнить массу диска, состоящего из раздробленных частей планет, массой более легких элементов, используя соотношения между этими элементами в Солнце. При этом мы исходим из допущения, что процесс образования планет из более твердых элементов, которые мы сейчас действительно видим в их составе, в Солнечной системе протекал в идеальных условиях. В реальности часть этой массы была утрачена в период подростковых вспышек характера Солнца на стадии Т Тельца. Тем не менее это дает нам абсолютный минимум массы, необходимый для формирования Солнечной системы. Это значение называют минимальной массой протосолнечной туманности. Оно составляет приблизительно 3 % массы Солнца. По совпадению, согласно имеющимся оценкам, примерно такую же массу имеют наблюдаемые диски вокруг молодых звезд.

Есть еще один кусок горной породы, являющийся наглядным свидетельством того, что из протопланетного диска может получиться наполненная планетами солнечная система. Это астероид Итокава. 9 мая 2003 г. Японское агентство аэрокосмических исследований запустило беспилотный космический аппарат, который должен был приземлиться на него.

Астероиды – это обычно куски горной породы размером от нескольких километров до сотен километров, которые встречаются главным образом в пространстве между Марсом и Юпитером. При столкновении астероиды разлетаются на фрагменты, часть которых направляется в сторону Земли и – в случае проникновения в атмосферу нашей планеты – становится метеоритами. Столкнувшись в начале своего существования с другим астероидом, Итокава был вытолкнут на новую орбиту ближе к Земле, что сделало его легкой мишенью для космических аппаратов.

Запущенный японцами аппарат назывался «Хаябуса». Он не только сфотографировал 540-метровый астероид, но и доставил в июне 2010 г. на Землю образцы с поверхности Итокавы. На сделанных в ходе миссии снимках виден объект, формой напоминающий плод арахиса и состоящий из многочисленных фрагментов разного размера. Твердые каменистые фрагменты и гранулы пыли удерживались вместе, образуя нечто рыхлое, под действием гравитационного притяжения Итокавы, которого было недостаточно, чтобы из астероида получился плотный круглый шар. Представление об астероидах как о скоплениях массивных глыб неправильной формы подтверждается данными, полученными в ходе миссий на другие астероиды. Наиболее вероятное объяснение такой морфологии состоит в том, что она является результатом столкновения и слипания видимых кусочков меньшего размера, то есть это на ее примере мы можем наблюдать работу фабрики планет. Результат этой работы – планеты и сохранившийся астероидный мусор, а также пыль, оседающая на «фабричный пол».

Так что в случае с газово-пылевым диском мы действительно имеем дело с самой настоящей фабрикой по производству планет. Именно здесь начался процесс сборки, в ходе которого песчинки пыли превратились в восемь новых миров, размеры которых больше их в 10 000–100 000 млрд раз. Это самый грандиозный процесс строительства во Вселенной, и он протекал вокруг каждой звезды, которую вы видите на ночном небе.


Страницы книги >> Предыдущая | 1 2 3 4 5 6 7 | Следующая
  • 4.8 Оценок: 6

Правообладателям!

Данное произведение размещено по согласованию с ООО "ЛитРес" (20% исходного текста). Если размещение книги нарушает чьи-либо права, то сообщите об этом.

Читателям!

Оплатили, но не знаете что делать дальше?


Популярные книги за неделю


Рекомендации