Электронная библиотека » Гвидо Тонелли » » онлайн чтение - страница 5


  • Текст добавлен: 16 ноября 2022, 08:20


Автор книги: Гвидо Тонелли


Жанр: Прочая образовательная литература, Наука и Образование


сообщить о неприемлемом содержимом

Текущая страница: 5 (всего у книги 16 страниц) [доступный отрывок для чтения: 5 страниц]

Шрифт:
- 100% +
В поисках дымящегося пистолета

Несмотря на успехи теории и многочисленные экспериментальные подтверждения, все еще держится небольшая, но очень воинственная группа критиков, яростно оппонирующих теории инфляции.

Что совершенно нормально и типично для научного метода: все критиковать, во всем сомневаться, искать слабости, проверять альтернативные гипотезы – таковы обязательные составляющие профессиональной деонтологии ученых.

Тем не менее следует признать, что есть еще одна критическая точка, на которую скептикам легко показывать пальцем. Ведь в итоге инфляция рождается из скалярного поля, которое, в свою очередь, возникает из вакуума и его нестабильного потенциала, запустив расширение, но пока еще никому не удалось найти надежных следов инфлатона – элементарной частицы, ассоциированной с этим полем. В тот день, когда это случится, ни у кого больше не останется сомнений – это то же самое, что найти “дымящийся пистолет”, из которого выстрелила инфляция. Но этого еще не произошло, и охота на инфлатон продолжается.

Идея, от которой отталкивался сам Алан Гут, заключается в том, что запустить весь механизм мог бозон Хиггса. Неуловимая частица была в то время всего лишь гипотезой, ключевым элементом теории, и она запросто могла оказаться фантазией, как многие другие. Более того, теория не предсказывала ни массы этой частицы, ни других ее характеристик. Наличие бозона Хиггса в роли инфлатона легко объясняло, как начиналась инфляция, но гораздо труднее было найти механизм, который мог бы ее остановить.

В действительности и Гут, и другие ученые быстро придумали модели, в которых различные скалярные поля запускали один и тот же механизм. Роль замороженного потенциала, на которую предлагался бозон Хиггса, для создания состояния ложного вакуума мог сыграть любой слабо меняющийся потенциал, который бы медленно падал, пока первичный пузырек быстро расширялся. Так появилось целое семейство различных инфляционных моделей с характеристиками, принципиально зависящими от того, кто придет выступить в качестве инфлатона.

Некоторые дошли до того, что стали теоретизировать на тему вечной инфляции. Отталкиваясь от идеи, что квантовые флуктуации скалярного поля могут столкнуть кусочек этого самого поля в водоворот инфляционного пароксизма, чтобы из него родилась потом Вселенная и началась ее эволюция, они предполагают также, что оставшийся за пределами процесса материал может пригодиться для чего-то еще и тогда в процессе вечной инфляции будут рождаться все новые и новые вселенные, как то и следует из современной теории мультиверсума.

Только с открытием инфлатона будет возможно, с одной стороны, получить неопровержимое подтверждение истинности теории, а с другой стороны, разобраться с разнообразием предложенных моделей.

Когда в 2012 году после долгой охоты, длившейся почти пятьдесят лет, удалось наконец открыть бозон Хиггса и измерить все его характеристики, включая массу, немедленно возобновилась дискуссия о его возможной роли во время инфляционной фазы.

Вновь прибывший был первой фундаментальной скалярной элементарной частицей, и некоторые космологи сразу подумали, что он и есть инфлатон. У них появились и оппоненты, которые стали с ними спорить на том основании, что бозон Хиггса слишком тяжелый. И сейчас ищут похожую частицу, но полегче, которая могла бы появиться в некоторых редких распадах, вызванных столкновениями на Большом адронном коллайдере, или какую-нибудь другую скалярную частицу, близкого родственника бозона Хиггса, с которой он мог бы разделить тяжесть примордиальной ноши и разродиться целой Вселенной.

Мнения по этому поводу самые противоречивые, и решение может прийти только из новой серии экспериментов.

На ближайшие годы уже предусматриваются значительно более точные, чем прежде, измерения космического микроволнового фонового излучения, чтобы ясно реконструировать испаряющиеся следы, оставленные инфляцией. Благодаря недавнему открытию гравитационных волн возникла надежда довести чувствительность новых инструментов прямо-таки до такого уровня, чтобы они смогли идентифицировать реликтовые гравитационные волны – едва заметные возмущения пространства-времени, которые смогут напрямую рассказать нам, что же произошло во время первоначального инфляционного роста.

Проводимые на Большом адронном коллайдере эксперименты оставляют нам надежду на случайное открытие новой скалярной частицы со всеми характеристиками, точно соответствующими фотороботу главного подозреваемого.

Мифическая эра Великого объединения

Инфляция – не первый акт пьесы, разыгранный на нашей сцене, хотя и определенно один из самых зрелищных. Мы не в состоянии описать, что происходило непосредственно перед этим, но мы знаем, что это были очень важные мгновения. Непроницаемая стена закрывает их от нас. Мы можем только фантазировать наугад, как пленники в пещере Платона. В цепях с младенчества, с путами на ногах и шее, лишенные всякого представления о внешнем мире, они не могли видеть напрямую, что происходит за пределами пещеры, им была открыта только стена. Поэтому свои представления о мире они строили на основании появляющихся на ней теней. Чем-то подобным занимаемся и мы, ученые, когда пытаемся угадать, что могло происходить до начала инфляции. Мы можем только видеть тени и фантазировать.

Мы проводим точные измерения в том диапазоне энергий, которые можем изучать непосредственно, используя для этого ускорители или наблюдая явления с высокими энергиями, предоставляемые нам космосом. После этого мы экстраполируем полученные результаты в тот диапазон энергий, который мы не в состоянии изучать непосредственно, и пользуемся допущениями, совместимыми со всеми накопленными данными.

Мы говорим о начальной фазе жизни Вселенной, длившейся невероятно короткое время, называемое планковским, всего 10–43 секунды, которому соответствовал бы диаметр Вселенной в 10–33 сантиметра. Пространству при таких размерах невозможно быть ни непрерывным, ни спокойным – в нем кипят виртуальные частицы, рождающиеся и исчезающие в безумном ритме. Получающееся безудержное квантовое бурление и есть пространство – беспокойное и хаотичное, наполненное разломами и неоднородностями. На этих масштабах квантовая пена вскипает спазмами и флуктуирует без меры. Кривизну и топологию этого пространства можно описывать только в вероятностных терминах.

Ни одна из современных физических теорий не может описать, что могло происходить в планковскую эру, и различные гипотезы приводят к различным выводам. За стеной, преграждающей взгляд, прячутся секреты квантовой гравитации, химера, которую поколения физиков преследуют уже не первое десятилетие. Может быть, в этой крошечной области кишели еще более крошечные струны, то ли десяти-, то ли двадцатишестимерные, а может быть, у пространства была дискретная структура, организованная в бесконечно малые петли, или, возможно, уловки природы, примененные ей для квантования гравитации, превосходят силу воображения, доступную нам, людям, сегодня.

Никому не удалось пока бросить взгляд на то, что происходило так близко к начальному моменту, исследовать расстояния столь малые. Но если позволено только строить рациональные гипотезы о доминирующих явлениях этого краткого временного интервала, то вот одна из них: это была эра Великого объединения. Все фундаментальные взаимодействия были собраны в единое поле: одна-единственная сила царила в крошечном фрагменте квантовой пены, которой суждено было стать нашей Вселенной.

Весь мир, где мы живем, удерживается вместе силами, которые мы можем классифицировать, расположив их в порядке убывания интенсивности. Первым в этом списке будет сильное ядерное взаимодействие. Оно удерживает вместе кварки, образуя протоны и нейтроны и собирая из них ядра всевозможных элементов. Его энергия высвобождается в ядерных установках, и это благодаря ему светятся звезды. Слабое ядерное взаимодействие скромнее и решительно менее заметно. Оно проявляется только на субъядерных расстояниях и никогда не выходит на середину сцены. Обнаруживает себя в некоторых ядерных распадах, на первый взгляд несущественных, но на самом деле жизненно важных для динамики Вселенной. Электромагнитное взаимодействие удерживает целыми атомы и молекулы и определяет своими законами распространение света. Гравитация, несомненно, самое слабое из взаимодействий, но о ней говорят больше, чем обо всех остальных. Она присутствует везде, где только есть масса или энергия, и пронизывает весь космос, она управляет движением и самых маленьких астероидов Солнечной системы, и самых гигантских скоплений галактик.

Сегодня в холодной и состарившейся Вселенной, где мы обитаем, все эти взаимодействия существуют по отдельности, и у каждого из них своя интенсивность и свой радиус действия. Но мы могли проверить в многочисленных экспериментах, что все это сильно меняется в зависимости от плотности энергии. По мере своего роста она, кажется, все более успешно проводит в жизнь принцип равенства и справедливости: сильное становится менее сильным, слабое становится менее слабым. Интенсивность сильного ядерного взаимодействия уменьшается, и то же самое происходит с электромагнитным. Слабое ядерное взаимодействие, напротив, крепчает до такой степени, что становится возможным предсказать, где пересекутся все три кривые, – то значение энергии, при которой они будут действовать как одна единая сила.

При всем этом гравитация остается немного в стороне: она до того слабая, что нам не удается сделать ее колебания соразмерными исследуемым значениям энергии, но тем не менее становится естественным ввести ее в игру.

Мы называем планковской эрой тот первичный период эволюции Вселенной, когда все четыре фундаментальных взаимодействия объединены в одну суперсилу. Она чем-то напоминает мечты о золотом веке, когда существовал священный союз между людьми и богами и они жили вместе, переживая взаимную любовь и ревность.

В этой Вселенной, крошечной и горячей, царят совершенные элегантные симметрии, которые разрушаются одна за другой по мере того, как все в ней охлаждается.

Первый драматический разрыв происходит прямо в планковское время, когда гравитация отваливается от остальных. Вскоре после этого следующий фазовый переход отделяет сильное взаимодействие от электрослабого.

Наша история начинается еще до того, как инфляция приводит к Большому взрыву: в крошечном пузырьке вакуума, заполненном полем суперсилы, мало-помалу фазовые переходы нарушают симметрию, разрывая между собой различные взаимодействия. Возникающая отсюда кристаллизация первичного поля населит наш мир четырьмя различными фундаментальными взаимодействиями, и они враз изменят все.

В отличие от двух первых фазовых переходов мы собрали немало данных относительно следующего за ними и узнали его историю подробно: именно из-за него оказалась нарушенной симметрия, объединявшая слабое взаимодействие с электромагнитным. Мы смогли изучить этот фазовый переход в лабораториях ЦЕРН, благодаря открытию бозона Хиггса, главного участника того, что происходило через 10–11 секунды после Большого взрыва. Этому и будет посвящена следующая глава.

День 2
Осторожное прикосновение бозона все изменило навсегда

Раскаленная Вселенная, едва вышедшая из инфляционной фазы, уже содержала в себе всю необходимую материю, всю необходимую энергию, но, если бы у нас была возможность заглянуть ей внутрь, мы не увидели бы там ничего знакомого. Мы бы там обнаружили что-то вроде газа мельчайших частиц, совершенно неразличимых между собой: все безмассовые, летающие со скоростью света. Все вместе они казались бы совершенным объектом – однородным и изотропным, равным самому себе в каждой своей точке и под любым углом. Никаких сгущений и разрежений, никаких намеков на неоднородность.

Если бы она не расширялась с неимоверной скоростью, мы могли бы принять ее за идеальное воплощение Парменидова бытия: всегда тождественна себе, симметрична при любом повороте, напрочь лишена изъянов и дефектов. Настоящее царство однородности и совершенства под управлением симметрии, простой и элегантной. Если бы не случилось чего-то неожиданного, что нарушило бы эту казавшуюся непоколебимой гармонию, то из этого совершенного объекта ничего бы и не родилось. Он оставался бы стерильной Вселенной, сгустком энергии, лишенным лунного света, аромата цветов, грустным, безымянным, одиноким.

Мы близки к моменту, когда произошло последнее, вероятно самое важное, превращение, предопределившее ее судьбу.

Покончив с эйфорией инфляции, Вселенная продолжила расширяться, к чему ее принуждала кипевшая внутри энергия. Увеличиваясь в размерах, Вселенная остывала, вступая при этом в реакции, которые основательно меняли ее динамику.

Мы уже приближаемся к стомиллиардной доле секунды после Большого взрыва, и начиная с этого момента происходящее становится значительно более ясным. После того как мы открыли бозон Хиггса и определили его массу, в этой части истории осталось мало секретов.

Новорожденная Вселенная уже впечатляет. Она достигла значительного размера в миллиард километров, и внезапно, когда ее температура упала ниже порогового значения, бозоны Хиггса, которые до этого мгновения свободно перемещались, замерзли и кристаллизовались. При таких температурах, ниже температуры замерзания, они не могли уцелеть и вынуждены были скрываться в комфортабельных усыпальницах вакуума. Потребуется немало терпения для того, чтобы они снова появились. Пройдет 13,8 миллиарда лет, прежде чем где-то на планете Земля кому-то удастся достичь в столкновениях частиц достаточной энергии, чтобы вернуть бозоны Хиггса к жизни, да и то лишь на долю секунды, однако этого времени им хватило, чтобы оставить недвусмысленные следы своего присутствия.

Ассоциированное с ними поле приобрело определенное значение, и сразу радикально изменились свойства вакуума. Из-за этого многие элементарные частицы оказались подвержены сильному взаимодействию и потому замедлились, то есть обрели массу; остальные частицы, которых не коснулась эта перемена, продолжили свое движение со скоростью света.

Поле Хиггса нарушило совершенную симметрию, характеризовавшую первичную Вселенную, и слабое ядерное взаимодействие окончательно отделилось от электромагнитного. Некоторые элементарные частицы оказываются настолько тяжелыми, что становятся нестабильными и подталкивают Вселенную к быстрому охлаждению. Остальные, хотя и приобрели массу, остаются легкими, и это их свойство будет фундаментальным, чтобы они могли объединяться, организовываясь в довольно специфическое вещество.

Новая сущность – поле Хиггса, – действуя деликатно, строит разнообразие, следуя всего одному простому и ясному правилу. Элементарные частицы как будто увязли в этом поле, по-разному взаимодействуя с ним, и разная интенсивность этого взаимодействия привела к тому, что у них в результате оказались непоправимо разные массы. Эту тонкую операцию поле Хиггса проводит, почти как Демиург из “Тимея” Платона – первый мастер, умевший при помощи чисел придать динамику и жизнеспособность до тех пор бесформенной и безжизненной материи.

Все теперь будет рождаться от этого деликатного толчка, навсегда изменившего природу вещей. Но не будем забегать вперед. Пока еще только заканчивается второй день, прошло всего 10–11 секунды.

Песнь Нарцисса

Рассматривая эту картину в первый раз, трудно не поддаться очарованию изображенного на ней совершенного круга, содержащего две фигуры: склонившегося над водой изящно одетого мальчика и восхитившего его до экстаза собственного отражения. Решение, найденное Караваджо для пересказа мифа о Нарциссе, просто гениально. Это одна из самых известных метаморфоз Овидия: о прекрасном юноше, который, после того как он отверг любовь нимфы Эхо, был осужден полюбить того, кем никогда бы не смог обладать, – себя самого. И юноша протягивает левую руку к своему отражению в воде в надежде коснуться любимого, но все, что он может, – это намочить в воде палец. Замкнутый круг лишь подчеркивает совершенную зеркальную симметрию, объединяющую обе фигуры.

Эта знаменитая картина из палаццо Барберини в Риме – один из тех шедевров, в которых для рассказа о красоте использовали симметрию.

Буквальное значение исходного греческого слова συμμετρία – “в соответствующих размерах” – напоминает нам о таких понятиях, как пропорциональность и гармония, которые занимали столько места в эстетических и философских учениях античности. Для древних греков и римлян произведению искусства, чтобы считаться красивым, следовало обладать симметрией, а его элементам и объемам – быть связанными определенными математическими пропорциями.

Центральная симметрия, определяющая правильность формы сплетенной пауком паутины или лучей морской звезды, широко использовалась в классическом мире – достаточно вспомнить Пантеон или храм Геркулеса Непобедимого на Пьяцца-Бокка-делла-Верита в Риме.

Современное понимание симметрии, для поддержания традиции предполагающее повторение форм и фигур при их трансляции или поворотах, – значительно более позднее приобретение. Из этого более позднего понимания родились жемчужины Возрождения: купол собора Святого Петра Микеланджело или шедевр Браманте – Темпьетто в Сан-Пьетро-ин-Монторио.

Современные представления о симметрии сделали возможной математическую формализацию, нашедшую много приложений в науке. В частности, для физики симметрия – это не только некое свойство, подразумевающее регулярность и красоту пропорций. Она превратилась в настоящий действенный инструмент, позволяющий открывать новые законы природы. И случилось это главным образом благодаря Амалии Эмми Нёттер – возможно, величайшему математику в истории.

На долю молодой немецкой исследовательницы выпало много невзгод, прежде чем она смогла поступить в университет. Она была неоплачиваемой и мало ценимой сотрудницей, когда в 1918 году смогла сформулировать утверждение, изменившее весь ход развития современной физики. Теорема Нёттер гласит, что всякая непрерывная симметрия законов физики связана с каким-то из законов сохранения, то есть с какой-то измеримой физической величиной, которая остается инвариантной.

Наиболее известные примеры относятся к сохраняющимся величинам в классической механике и соответствующим симметриям. Если законы движения какой-то системы не изменяются при поступательном движении системы отсчета – то есть для этих законов выполняется пространственно-трансляционная симметрия, – тогда сохраняется количество движения; если же они остаются инвариантными при трансляции вдоль оси времени, то сохраняется энергия; то же при вращениях – сохраняется угловой момент; и так далее.

В современной физике эти отношения между симметриями, преобразованиями и сохраняющимися физическими величинами получили обобщение. Инвариантность какого-либо физического свойства в системе отсчета, подвергнутой каким-либо преобразованиям, позволит обнаружить и формализовать отношения, которые заложат основу для нового понимания материи. Именно так и родятся принципы сохранения физических величин со странными названиями, которые станут со временем решающими для понимания мельчайших компонентов материи: странность, изоспин, лептонное число и так далее.

Концепция симметрии окажется самой общей, будут говорить о симметрии непрерывной или дискретной, локальной или глобальной, точной или приближенной – все они окажутся фундаментальными инструментами для познания динамики элементарных частиц и их полей. Без вклада Эмми Нёттер все это было бы невозможно.

Кульминацией этих усилий станет создание Стандартной модели элементарных частиц – монументальной конструкции, предоставляющей наиболее точное описание материи, которым мы теперь располагаем.

Самая успешная теория современной физики объясняет свойства материи через очень небольшое число ее компонентов: шесть кварков и шесть лептонов, организованных в три семейства. Двенадцать частиц вещества связываются вместе или взаимодействуют, обмениваясь другими частицами, служащими переносчиками сил: фотоны переносят электромагнитные взаимодействия, глюоны переносят взаимодействия сильные, векторные бозоны W и Z переносят взаимодействия слабые. У частиц вещества, лептонов и кварков, полуцелый спин (1/2), они входят в семейство фермионов, а у частиц, переносящих взаимодействия, спин целый (1), они входят в семейство бозонов. С помощью этого небольшого набора деталей возможно построить все известные формы материи, как стабильные, заполняющие нашу повседневную жизнь, так и экзотические и эфемерные, образующиеся в ускорителях, в высокоэнергетических событиях в недрах звезд или во время космических катастроф.

Эта теория немедленно получила единодушное признание, поскольку обладала колоссальной предсказательной силой. С самого момента своего появления в 1960-е годы она предсказывала существование некоторых новых элементарных частиц, регулярно с тех пор открываемых, и давала возможность с огромной точностью рассчитывать новые физические величины, которые, когда их удавалось измерить, оказывались в полном согласии с предсказанием, с точностью до десяти значащих цифр совпадающими с вычисленным значением.

Архитравом Стандартной модели служит объединение слабого и электромагнитного взаимодействий, ставших теперь двумя разными проявлениями одной и той же силы – электрослабого взаимодействия.

И все это опять-таки было следствием определенной симметрии. Первым о ней заговорил Энрико Ферми, едва только отметивший свое тридцатилетие. Благодаря своей интуиции он распознал в странностях казавшегося маргинальным явления – излучения электронов при распаде некоторых радиоизотопов – какое-то новое фундаментальное взаимодействие. Ферми предположил, что между этим новым взаимодействием и электромагнетизмом есть изрядная формальная аналогия, и воспользовался этой аналогией, чтобы описать новое взаимодействие и вычислить его константу связи.

Многие годы его так и называли: “взаимодействие Ферми”. Название сменилось только много позже, чтобы подчеркнуть малость этой самой константы связи G, определяющей интенсивность взаимодействия, и это она в честь своего первооткрывателя стала носить его имя – “константа Ферми”.

Революционная идея молодого физика открыла путь тому самому объединению электромагнитных сил со слабым ядерным взаимодействием, которое тридцать лет спустя легло в основу Стандартной модели фундаментальных взаимодействий.

В 1865 году Джеймс Клерк Максвелл опубликовал уравнения, ставшие фундаментом для теории, которая объединила электрические и магнитные явления: так возник электромагнетизм. По прошествии века история повторилась. В конце шестидесятых годов прошлого века появилась новая теория стараниями Стивена Вайнберга, Шелдона Глэшоу и Абдуса Салама, при определяющем вкладе Герарда Хоофта. Электромагнетизм и слабые взаимодействия оказались проявлениями одного и того же поля, и с тех пор их стали называть электрослабыми.

В 1983 году Карло Руббиа открыл предсказанные теорией векторные бозоны W и Z, и это стало окончательным триумфом Стандартной модели.

Но под пеленой успеха скрывалась глубокая трещина, внутренняя слабость теории, которая в любой момент могла обернуться переламыванием архитрава и крушением всего здания.

Ее обнаруживал один простой вопрос: как могло случиться так, что два взаимодействия, столь различные между собой, оказывались проявлениями одного и того же поля? Радиус действия электромагнитного взаимодействия бесконечен, тогда как слабое взаимодействие проявляется только на крошечных внутриядерных расстояниях. Один из общих законов физики гласит, что радиус какого-либо взаимодействия обратно пропорционален массе переносящей его частицы. Масса фотона равна нулю, и поэтому в электромагнитное взаимодействие могут быть вовлечены частицы, сколь угодно далекие одна от другой. Напротив, бозоны W и Z очень массивны, в 80–90 раз тяжелее протона, и у них радиус действия очень мал. Слабое взаимодействие возможно только внутри ядер, и потому мы смогли узнать о его существовании только совсем недавно.

Но в таком случае как же может фотон, не имея массы, переносить то же электрослабое взаимодействие, что и бозоны W и Z? Что отличает бозоны W и Z от фотона? Что в точности мы называем массой?

Внимание! Это не конец книги.

Если начало книги вам понравилось, то полную версию можно приобрести у нашего партнёра - распространителя легального контента. Поддержите автора!

Страницы книги >> Предыдущая | 1 2 3 4 5
  • 0 Оценок: 0

Правообладателям!

Данное произведение размещено по согласованию с ООО "ЛитРес" (20% исходного текста). Если размещение книги нарушает чьи-либо права, то сообщите об этом.

Читателям!

Оплатили, но не знаете что делать дальше?


Популярные книги за неделю


Рекомендации